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ABSTRACT 

In this paper, we developed a supervisory control 

algorithm for fuel economy optimization of 48V MHEV 

(Mild Hybrid Electric Vehicle). It consists of the 

driving mode decision algorithm (Driving modes of 

48V MHEV: Idle stop & go, EV(EV-launch, sailing), 

HEV(torque assist, Charge), ICE only, Recuperation)  

and power distribution algorithm for each driving mode. 

In particular, power distribution control is a key factor 

in determining the fuel economy of 48V MHEV. In this 

paper, a simulation-based analysis is performed to 

analyze the fuel consumption relevance of the power 

distribution algorithm. The vehicle model was 

developed in the Autonomie environment. The optimal 

power distribution control method was derived by 

analyzing the fuel consumption simulation results 

(traveling cycle: FTP 75) for the power distribution 

control with different tendencies. 

 

Key Words : 48V mild hybrid electric vehicle, 

Supervisory control, Power distribution control 

 

1. INTRODUCTION 

In recent years, OEMs have been working to develop 

xEVs such as electric vehicles, hybrid electric vehicles, 

and fuel-cell electric vehicles in accordance with the 

global fuel economy and CO2 regulations. However, 

high-voltage, environmentally-friendly vehicles have 

not satisfied consumers because of the high cost of the 

vehicle to meet safety requirements. Solving these 

problems, OEM adopts the 48V system and develops 

the Mild Hybrid system which has better fuel economy 

improvement rate. This method can minimize 

powertrain structural changes, which can reduce the 

complexity of the vehicle system and reduce the cost. 

Various configurations (P0 ~ P4) have been proposed 

according to the electric motor mounting method of the 

48V mild hybrid system (Figure 1). 

 

 
Figure 1: Configuration according to motor position  

 

The P0 configuration replaces the existing belt-driven 

12V generator to achieve a 48V system with minimal 

cost, while the P1 to the P4 configurations can be 

equipped with a high power motor with high 

mechanical power transfer efficiency. In addition, the 

P2-P4 configurations are capable of running in the EV 

mode, so the fuel efficiency improvement is high. The 

P4 configuration has the similar shape of e-AWD so 

that the vehicle dynamics control function can be 

realized. 

 

In this paper, we study the P0 + P4 mixed configuration. 

This configuration enables various operations ranging 

from idle stop & go, EV mode, regenerative braking, 

charge, and torque assist to high efficiency through the 

combined operation of the belt drive generator (BSG) 

and the rear-axle drive motor. Among these supervisory 

control functions, the tendency of power distribution 

between regenerative braking, charging and torque 

assist is a key factor in determining fuel economy 

improvement. In this paper, we propose a rule - based 

power distribution algorithm for optimal fuel economy 

by analyzing the effect of each control on fuel economy. 

For this purpose, a 48V mild hybrid vehicle model with 

P0 + P4 configuration is realized using Autonomie and 

a simulation case for power distribution control with 

different tendencies is defined. Finally, we derived a 

rule-based power distribution control method optimized 

for 48V mild hybrid system through fuel economy 

simulation in FTP-75 cycle. 
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2. VEHICLE MODEL AND SIMULATION  

ENVIRONMENT 

 

 
Figure 2: Target Vehicle 

 

As shown in Figure 2, a 48V MHEV vehicle with a P0 

+ P4 structure is modeled. TM is the transmission, CL 

is the clutch, ENG is the engine, and FD is the final 

drive. The front wheel can be driven by the engine and 

the BSG, and the engine and the BSG are connected by 

a belt, which allows the torque assist and engine start 

via the BSG. The rear wheel is driven by a rear-axle 

motor. The main components information of the target 

vehicle are shown in Table 1. 

Table 1: Vehicle main components 

Engine 99kW L gasoline engine 

BSG 11kW PM motor 

Rear-axle motor 10kW PM motor 

Battery 48V/11.5Ah lithium-ion battery 

 

The 48V mild hybrid vehicle with the configuration as 

shown in the Figure 3 is the composition of the 

simulation model. The simulation model developed 

using Autonomie is consists of an upper controller, a 

driver model, an environmental model, and a powertrain 

model. Powertrain components consist of an engine, 

BSG, rear-axle motor, 48V and 12V battery, BDC, 

LDC, wheel, vehicle dynamics model, etc.  

 

 
Figure 3: Simulation model and  powertrain 

configuration 

 

Table 2: Vehicle Parameters 

Vehicle weight (kg) 1490 

Frontal Area (m
2
) 2.8 

Rolling Coefficient 0.009 

Aerodynamic Coefficient 0.37 

Air density (kg/m
3
) 1.23 

Front final drive ratio  4.113 

Rear final drive ratio 10.74 

 

 

3. SUPERVISORY CONTROL ALGORITHM 

As shown in the figure 4, the upper control algorithm 

was developed using Simulink, and consists of the 

mode decision algorithm and the power distribution 

algorithm of each mode. 

 

Figure 4:Supervisory control algorithm(Power 

distribution(red)/Mode decision(blue) algorithm)  

 

3.1. Mode decision algorithm 

In the mode decision algorithm, the driving mode is 

determined according to the driver's request and the 

vehicle state. The driving modes used in the 48V 

MHEV are classified as follows. 

 

1. Idle stop & go mode 

In this mode, the engine is turned off at stop to 

save idle fuel consumption. Since it starts by 

using BSG, it can operate when the SOC is 

above a certain level. 

 

2. EV mode 

In this mode, when the driver's acceleration 

demand torque is below the EV limit torque 

and the SOC is above a certain level, the 

vehicle travels using the rear-axle motor. It is 

used to start with a low demand torque when 

the vehicle is stationary, or to maintain the 

vehicle speed while driving. 

 

3. ICE only mode 

In this mode, the vehicle is driven by the 

engine only when the driver's acceleration 

demand torque exceeds the assist limit torque 

or the torque assist of the motor is limited due 

to low SOC. 

 

4. HEV torque assist mode 

In this mode, the vehicle travels to the engine 

and the motors when the SOC is above a 

certain level and the acceleration demand 

torque is above the EV limit torque and below 

the Assist limit torque. 

 

5. HEV charge mode 

In this mode, when the charge sustaining is not 

possible with only recuperation energy, charge 

using engine and BSG. It is also used to 

prevent battery over discharge. 

 

6. Recuperation mode 
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This mode is used to convert the kinetic energy 

of the vehicle into electrical energy when the 

deceleration demand torque is occurring. 

 

Table 3: Driving mode according to driver's demand 

torque 

Driver torque demand Driving mode 

Tdmd > Tassist_lim ICE  

Charge 
Tassist_lim ≥ Tdmd > TEV_lim Torque assist 

Tdmd ≤ TEV_lim EV 

Tdmd < 0 Recuperation 

 

Tdmd is the driver demand torque in the engine shaft, 

Tassist_lim is the control parameter that limits the torque 

assist torque to below the corresponding value. TEV_lim 

is the control parameter that limits the EV mode to 

operate below the corresponding value with the EV 

limit torque. 

 

3.2. Power distribution algorithm 

In the power distribution algorithm, the torque 

command for each part such as engine, BSG and rear-

axle motor is calculated for each mode according to the 

driver's request.  

1. ICE only mode 

In this mode, the torque demand is distributed 

only to the engine. The power distribution 

formula is as follows. 

 

𝑇𝑒𝑛𝑔 = 𝑇𝑑𝑚𝑑    𝑤ℎ𝑒𝑟𝑒  𝑇𝑑𝑚𝑑 > 𝑇𝑎𝑠𝑠𝑖𝑠𝑡_𝑙𝑖𝑚𝑖𝑡   

𝑇𝑚𝑜𝑡 = 0                                                                               (1) 

𝑇𝐵𝑆𝐺 = 0 

where Tmot is the rear-axle motor torque, Tdmd 

is the driver demand torque, Teng is the engine 

torque, TBSG is the BSG torque, Tassist_limit is the 

assist limit torque. 

 

2.  EV mode 

In the EV mode, the demand power is 

satisfied only by the rear-axle motor. The EV 

limit torque can also be determined.  

𝑇𝑚𝑜𝑡 =
𝑅𝑡𝑚 ∙ 𝑅𝑓𝑟𝑜𝑛𝑡

𝑅𝑟𝑒𝑎𝑟

∙ 𝑇𝑑𝑚𝑑    𝑤ℎ𝑒𝑟𝑒  𝑇𝑑𝑚𝑑 ≤ 𝑇𝐸𝑉_𝑙𝑖𝑚𝑖𝑡   

𝑇𝑒𝑛𝑔 = 0                                                                                  (2) 

𝑇𝐵𝑆𝐺 = 0 

where TEV_limit is the EV limit torque. Rrear is 

the rear final drive ratio, Rfront  is the front 

final drive ratio, Rtm is the gear ratio of 

transmission. 

 

 

 

3. HEV torque assist mode 

In HEV assist mode, the torque for each of 

the engine, BSG, and rear-axle motor is 

calculated according to the demand torque. 

The assist limit torque can also be determined. 

The torque compensation amount of the 

motors can be controlled through the control 

variable f (T). Assist limit torque becomes 0 

(f (T)).  

𝑇𝑚𝑜𝑡 = min (𝑓(𝑇) ∙ 𝑇𝑚𝑜𝑡_𝑚𝑎𝑥(𝑤),
𝑅𝑡𝑚 ∙ 𝑅𝑓𝑟𝑜𝑛𝑡

𝑅𝑟𝑒𝑎𝑟

∙ 𝑇𝑑𝑚𝑑) 

𝑇𝐵𝑆𝐺 = min (𝑓(𝑇) ∙ 𝑇𝐵𝑆𝐺_𝑚𝑎𝑥(𝑤), (𝑇𝑑𝑚𝑑

−
𝑅𝑟𝑒𝑎𝑟 ∙ 𝑇𝑚𝑜𝑡

𝑅𝑡𝑚 ∙ 𝑅𝑓𝑟𝑜𝑛𝑡

) ∙
1

𝑅𝑝𝑢𝑙𝑙𝑒𝑦

) 

𝑇𝑒𝑛𝑔 = 𝑇𝑑𝑚𝑑 − 𝑇𝑚𝑜𝑡 − 𝑇𝐵𝑆𝐺                                       (3) 

          𝑤ℎ𝑒𝑟𝑒  𝑇𝑎𝑠𝑠𝑖𝑠𝑡_𝑙𝑖𝑚𝑖𝑡 ≥ 𝑇𝑑𝑚𝑑 > 𝑇𝐸𝑉  

where Tmot_max(w) is the rear-axle motor 

maximum torque , TBSG_max(w) is the BSG 

maximum torque, Rpulley is the belt pulley ratio, 

f(T)  is the control variable for power 

distribution of motors. 

The EV / HEV drive domain is determined by 

the EV / HEV assist limit torque. Through 

this, the electric energy consumption of the 

battery is controlled to perform charge 

sustaining. Therefore, it is possible to control 

the use of all the charged electric energy to 

make a reliable fuel consumption comparison.  

 

4. HEV charge mode 

 In this mode, the engine torque is output by 

adding the torque to be charged to the BSG to 

the driver's requested torque. 

𝑇𝐵𝑆𝐺 = 𝑇𝐵𝑆𝐺_𝑔𝑒𝑛_𝑚𝑖𝑛(𝑤) 

𝑇𝑒𝑛𝑔 = 𝑇𝑑𝑚𝑑 + 𝑇𝐵𝑆𝐺 ∙ 𝑅𝑝𝑢𝑙𝑙𝑒𝑦    

𝑇𝑚𝑜𝑡 = 0                                                                                 (4) 

where TBSG_gen_min(w) is the minimum generating torque 

of BSG. 

 

5. Recuperation mode 

In Recuperation mode, the torque is 

distributed to each motor according to the 

braking torque demand. If the braking torque 

demand exceeding the maximum regenerative 

braking torque, the friction brake is used. In 

this way, distributing the motor torque firstly, 

the regenerative braking energy can be 

maximized. 

𝑇𝑚𝑜𝑡 = max (𝑇𝑚𝑜𝑡_𝑟𝑒𝑔_𝑚𝑖𝑛(𝑤),
𝑅𝑡𝑚 ∙ 𝑅𝑓𝑟𝑜𝑛𝑡

𝑅𝑟𝑒𝑎𝑟

∙ 𝑇𝑑𝑚𝑑)    
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𝑇𝑒𝑛𝑔 = 0                                                                                  (5) 

𝑇𝐵𝑆𝐺 = max (𝑇𝐵𝑆𝐺_𝑟𝑒𝑔_𝑚𝑖𝑛(𝑤), (𝑇𝑑𝑚𝑑 −
𝑅𝑟𝑒𝑎𝑟 ∙ 𝑇𝑚𝑜𝑡

𝑅𝑡𝑚 ∙ 𝑅𝑓𝑟𝑜𝑛𝑡

)

∙
1

𝑅𝑝𝑢𝑙𝑙𝑒𝑦

) 

        𝑤ℎ𝑒𝑟𝑒  𝑇𝑑𝑚𝑑 < 0 

where Tmot_reg_min(ω) is the minimum regenerating 

torque of rear-axle motor, TBSG_reg_min(ω) is the 

minimum regenerating torque of BSG. 

 

4. SIMULATION 

In some cases, the simulation was performed by 

applying the host controller developed in the simulation 

model. 

 

4.1. Simulation case 

As shown in the table 2, different simulation cases are 

defined as follows. 

Table 4: Simulation case according to driving mode 

Simulation case Driving mode 

A Idle stop & go 

B A + Recuperation 

C B + Torque assist 

D C + EV 

E D + Charge 

 

1. Case A 

Only idle stop & go mode is performed, it is a 

criteria to determine the degree in 

improvement of fuel economy. 

 

2. Case B 

Perform only idle stop & go / recuperation 

mode. It is possible to estimate the electric 

energy that can be obtained in the driving cycle. 

 

3. Case C 

All electrical energy obtained through 

regenerative braking is used to perform torque 

assist mode. 

 

4. Case D 

Set the EV limit torque to the maximum torque 

of the rear-axle motor to maximize the EV 

mode and use the extra regenerative energy for 

torque assist. 

 

5. Case E 

The EV mode is maximized and the extra 

regenerative energy and forced charged energy 

are used as torque assist. 

 

4.2. Simulation result 

 

Figure 5: Simulation result of Case A 

This is an enlarged view of a part of the simulation 

result. Each value is scaled for easy viewing because of 

the scale difference. Idle stop & go The engine keeps 

idle for a certain period of time after the vehicle is 

stopped, and the engine is turned off and the fuel 

consumption is zero. This confirms that idle top & go 

operation reduces unnecessary fuel consumption. 

 

 

Figure 6: Simulation result of Case B 

 

In the above graph, regenerative braking using two 

motors can be confirmed when decelerating. It is also 

possible to confirm that the torque is distributed 

preferentially to the rear-axle motor. 
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Figure 7: SOC of Case B 

 

In the above graph, it can be confirmed that the battery 

SOC is increased by regenerative braking. It can be 

confirmed that the initial SOC is 55% and the final SOC 

is 92.56%, except for the power consumption by the 

electric component. It is charged 37.56% by 

regenerative braking, and this energy is used for torque 

assist and EV mode. 

 

 

Figure 8: Simulation result of Case C 

 

This is the beginning of the case. Torque assist mode 

starts from about 20.5 seconds and ends in about 23 

seconds. As shown in the graph above, the energy 

obtained by regenerative braking is consumed through 

the torque assist of the motor. In the following figure, it 

can be confirmed that the starting SOC is equal to the 

final SOC. 

 

 

Figure 9: SOC of Case C 

 

Figure 10: Simulation result of Case D 

 

In the above graph, EV mode starts from about 710.5 

seconds. The regenerative braking energy is consumed 

through the EV mode and the SOC is maintained in the 

running cycle as shown below. 

 

Figure 11: SOC of Case D 

 

0 500 1000 1500 2000 2500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

20 20.5 21 21.5 22 22.5 23

0

10

20

30

40

50

60

70

Time[s]

T
o
rq

u
e
[N

m
]

S
p
e
e
d
[r

a
d
/s

]

 

 

Vehicle speed

Engine torque

Mot torque

BSG torque

0 500 1000 1500 2000 2500
0.4

0.45

0.5

0.55

0.6

0.65

Time[s]

S
O

C

707 708 709 710 711 712 713 714 715 716

-10

0

10

20

30

40

50

60

70

80

Time[s]

T
o
rq

u
e
[N

m
]

S
p
e
e
d
[m

/s
]

 

 

Vehicle speed

Engine torque

Mot torque

BSG torque

0 500 1000 1500 2000 2500
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

Time[s]

S
O

C

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017, 
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

189



 

Figure 12: Simulation result of Case E 

 

In the figure 12, it can be seen that the forced charge is 

working because the SOC drops to less than 40%. 

The fuel economy of each simulation case for the 

driving cycle (FTP 75) is as follows. 

Table 5: Fuel economy results 

Simulation 

case 

Driving mode Fuel 

economy 

A Idle stop & go 14.48 

B A + Recuperation 14.73 

C B + Torque assist 17.03 

D C + EV 18.75 

E D + Charge 18.31 

 

Comparing cases C and D, it can be seen that the EV 

mode is more effective in improving the fuel economy 

than the torque assist mode when the regenerative 

braking energy is the same and the total energy charged 

in battery is used. While both cases of D and E use EV 

mode to the maximum, but in the case E, additional 

torque assist is performed using the electrical energy 

obtained by the forced charging, which is inefficient. In 

the C and E cases, Comparing C and E cases, Even if 

the fuel is used for charging, it can be seen that the fuel 

efficiency is improved by using the EV mode. 

 

5. CONCLUSION 

The fuel economy improvement between C, D and E 

cases is determined by EV use domain and the torque to 

assist ratio of the BSG and the rear-axle motor. Among 

them, the EV mode domain contributes the most to fuel 

efficiency improvement. At presented results, the best 

fuel economy is shown in case D, but the more detailed 

study is needed to determine the control tendency to 

obtain optimum fuel efficiency. 
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