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ABSTRACT 
Neural network (NN) modeling has been applied to 
forecasting of lumpy demand (Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012) and empirically compared with a 
number of well-referenced methods traditionally 
applied in studies on lumpy demand forecasting – 
simple moving average, weighted moving average with 
optimal weights, simple exponential smoothing, 
Croston’s method, and the Syntetos-Boylan 
approximation. The overall superiority of NN over the 
other methods, in terms of forecast accuracy based on a 
number of scale-free error statistics, was demonstrated. 
However, demand forecasting performance with respect 
to standard accuracy measures may not translate into 
inventory systems efficiency.  Applying a (T,S) 
inventory system, we consider fill rate (FR) as service 
criterion. We conduct simulation searches to find order-
up-to levels required to meet a target FR of 0.90 or 
0.95. We find that significantly higher levels of on-hand 
inventory are required when using the more statistically 
accurate NN forecasts. 
 
Keywords: lumpy demand forecasting, forecast 
accuracy, scale-free error statistics, inventory control, 
simulation search 

 
1. INTRODUCTION 
Demand for an item is said to be intermittent when there 
are intervals during which no demand occurs. Demand 
is erratic when there are large variations in the sizes of 
actual demand occurrences. When demand is both 
intermittent and erratic, it is said to be lumpy. 
Intermittent or lumpy demand has been observed in 
both manufacturing and service environments – e.g., 
electrical equipment, jet engine tools and veterinary 
health products (Willemain, Smart, Schokor, and 
DeSautels 1994), the automotive industry (Syntetos and 
Boylan 2001, 2005), maintenance parts for aircraft, both 
commercial and military (Ghobbar and Friend 2002, 
2003; Eaves and Kingsman 2004; Syntetos, Babai, 
Dallery, and Teunter 2009), electronic components 
(Gutierrez, Solis, and Mukhopadhyay 2008; 
Mukhopadhyay, Solis, and Gutierrez 2012), and 

professional electronics (Solis, Longo, Mukhopadhyay, 
Nicoletti, and Brasacchio 2014). 
Syntetos, Boylan, and Croston (2005) proposed a 
scheme for categorizing demand into four classes 
(smooth, erratic, intermittent, and lumpy), as originally 
presented in the doctoral thesis of Syntetos (2001). The 
SBC scheme (for Syntetos, Boylan, and Croston) uses 
cutoff values of 0.49 for 2CV  (the squared coefficient 
of variation of demand sizes and 1.32 for ADI (the 
average inter-demand interval).  SBC suggests 

49.02 <CV  and 32.1>ADI  to characterize 
intermittent (but not very erratic) demand and

49.02 >CV  and 32.1>ADI  to characterize lumpy 
demand. 
Simple exponential smoothing (SES) will adjust the 
demand forecast upward immediately after a demand 
occurs and downward if no demand occurs. Croston 
(1972) noted that, when demand is intermittent, 
therefore, the SES forecast results in a bias that places 
the most weight on the most recent demand occurrence. 
To address this bias in SES, he proposed a method for 
forecasting intermittent demand involving separate 
exponential smoothing of the nonzero demand sizes and 
the inter-demand intervals. 
While Croston’s method (CR) used a common 
exponential smoothing constant α, Schultz (1987) 
proposed separate smoothing constants, iα  and sα , to 
be respectively used in updating estimates of inter-
demand intervals and nonzero demand sizes. Eaves and 
Kingsman (2004) present a clear specification of CR 
involving these two smoothing constants.  
A positive bias in CR, arising from an error in Croston’s 
mathematical derivation of expected demand, has been 
reported by Syntetos and Boylan (2001). A correction 
factor of ( )21 iα− , applied to the CR estimator of 
demand, was suggested by Syntetos and Boylan (2005). 
This correction of the bias in CR has come to be known 
in the intermittent demand forecasting literature (Boylan 
and Syntetos 2007; Gutierrez, Solis, and 
Mukhopadhyay 2008; Mukhopadhyay, Solis, and 
Gutierrez 2012) as the Syntetos-Boylan approximation 
(SBA). We note that, while the correction factor is 
specified in terms of iα , Syntetos and Boylan (2005) 
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themselves apply SBA using a common smoothing 
constant α  = iα  = sα . SBA has, in fact, been 
commonly implemented in this manner. 
The above three methods (SES, CR, and SBA) are 
traditionally cited in the intermittent demand forecasting 
literature. As well, Syntetos and Boylan (2005) have 
evaluated a 13-period simple moving average (SMA) in 
comparison with SES, CR, and SBA.   
Gutierrez, Solis, and Mukhopadhyay (2008) and 
Mukhopadhyay, Solis, and Gutierrez (2012) applied 
neural network (NN) modeling in forecasting lumpy 
demand. They used a multilayered perceptron trained by 
a back-propagation algorithm (Rumelhart, Hinton, and 
Williams 1988) using three network layers (as 
suggested by Xiang, Ding, and Lee 2005): 
 

• One input layer for input variables, 
• One hidden unit layer, and 
• One output layer of one unit. 

   
This NN architecture was applied to an industrial 
dataset consisting of 24 time series. Gutierrez, Solis, 
and Mukhopadhyay (2008) compared the forecasting 
performance of NN to those of the SES, CR, and SBA 
methods. 
In addition to NN modeling, Mukhopadhyay, Solis, and 
Gutierrez (2012) evaluated one additional ‘non-
traditional’ method for forecasting lumpy demand: a 
five-period weighted moving average with optimized 
weights (WMA5) determined by way of a standardized 
ordinary least squares regression with current period 
demand as target variable and the five most recent 
lagged period demands as predictor variables. 
Mukhopadhyay, Solis, and Gutierrez (2012) initially 
used separate smoothing constants iα  and sα , as 
proposed by Schultz (1987), in the application of CR 
and SBA. Apparently in view of the adjustment of the 
positive bias in CR by the correction factor of SBA, the 
latter was found by Mukhopadhyay, Solis, and 
Gutierrez (2012) to be consistently superior to the 
former for every single iα  and sα  combination tested. 
Furthermore, they did not observe any substantial 
improvement in forecast accuracy resulting from the use 
of separate smoothing constants iα  and sα . As a result,   
In this paper, therefore, we shall focus – as 
Mukhopadhyay, Solis, and Gutierrez (2012) did – on 
the comparative performance of the following four 
forecasting methods: 

 
• SES 
• SBA 
• WMA5 
• NN. 

 
For intermittent demand, the use of low smoothing 
constant values in the range of 0.05-0.20 has been 
recommended (Croston 1972; Johnston and Boylan 
1996).  Syntetos and Boylan (2005) used the four α 

values of 0.05, 0.10, 0.15, and 0.20 for the SES, CR, 
and SBA methods. Gutierrez, Solis, and Mukhopadhyay 
(2008) and Mukhopadhyay, Solis and Gutierrez (2012) 
used these same four values. 
This paper is organized as follows. In Section 2, we 
describe the industrial dataset, the partitioning of data 
into training and test samples, and error measures that 
have been used to assess forecast accuracy. In the next 
section, we briefly summarize the findings of Gutierrez, 
Solis, and Mukhopadhyay (2008) and Mukhopadhyay, 
Solis and Gutierrez (2012) in their empirical 
investigations of forecasting performance. In Section 4, 
we discuss results of our inventory control performance 
simulations. Section 5 is our concluding section.   
 
2. DATASET, DATA PARTITIONING, AND 

FORECAST ACCURACY MEASURES 
 
2.1. Dataset and Data Partitioning 
Gutierrez, Solis, and Mukhopadhyay (2008) and 
Mukhopadhyay, Solis, and Gutierrez (2012) used actual 
demand data from an electronic components distributor 
operating in Monterrey, Mexico. The dataset involves 
24 stock keeping units (SKUs), each with 967 daily 
demand observations. As a forecasting method, WMA5 
applies to the dataset in terms of weekly demand over a 
5-day work week.  
All 24 SKUs exhibit lumpy demand, with values of 

2CV ranging between 9.84 and 45.93, and values of 
ADI between 2.63 and 3.28 (see Table 1). These 2CV  
and ADI values are all clearly consistent with the SBC 
specification of 49.02 >CV  and 32.1>ADI  for 
lumpy demand.  
Gutierrez, Solis, and Mukhopadhyay (2008) used the 
first 624 observations of the 967 daily demand 
observations in each of the 24 time series to ‘train’ the 
NN model (the training or calibration sample).  The 
forecasting methods were then tested on the final 343 
observations (the test sample).  This generated an 
approximately 65:35 partitioning (65% training data 
and 35% test data).   
In addition to the 65:35 partitioning, Mukhopadhyay, 
Solis and Gutierrez (2012) also applied an 80:20 split as 
suggested by Bishop (1995), as well as a 50:50 
partitioning.  

 
2.2. Forecast Accuracy Measures 
Gutierrez, Solis, and Mukhopadhyay (2008) used the 
following three scale-free error statistics to compare 
forecast accuracy: 
  

• mean absolute percentage error (MAPE),  
• relative geometric root-mean-square error 

(RGRMSE), and  
• percentage best (PB) 

 
Mukhopadhyay, Solis and Gutierrez (2012) applied 
median relative absolute error (MdRAE) as a fourth 
scale-free measure. 
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Table 1: Basic Dataset Statistics 

 
 
3. FORECASTING PERFORMANCE 
Using MAPE, RGRMSE, and PB as error measures, 
Gutierrez, Solis, and Mukhopadhyay (2008) 
independently validated earlier findings (Syntetos and 
Boylan 2005) of the superiority of SBA over SES and 
CR. Moreover, they found that NN modeling, even 
under a relatively simple network topology, generally 
performs better than SES, CR, and SBA for the lumpy 
demand SKUs under investigation. 
Mukhopadhyay, Solis, and Gutierrez (2012) added the 
following to the earlier evaluation: 
  

• WMA5 as a forecasting method,  
• MdRAE as a fourth scale-free error statistic, 

and  
• 80:20 and 50:50 data partitions. 

 
They found both ‘non-traditional’ methods (NN and 
WMA5) for forecasting lumpy demand to outperform 
the methods that are well referenced in the intermittent 
demand forecasting literature (SES, CR, and SBA). In 
particular, NN showed superior performance overall 
with respect to both MAPE and MdRAE as forecast 
accuracy measures, under all three data partitions 
(50:50, 65:35, and 80:20). What was found especially 
noteworthy was that SES and SBA, which have been 
traditionally applied to intermittent demand forecasting, 
did not appear as a ‘best’ method except in six of the 
288 error statistic comparisons (24 SKUs × 4 error 
statistics × 3 partitions) that they reported.    
 
4. INVENTORY CONTROL PERFORMANCE 
Demand forecasting and inventory control performance 
have traditionally been examined independently of each 
other in the literature (Tiacci and Saetta 2009). 
Recognizing that demand forecasting performance with 
respect to standard accuracy measures may not translate 
into inventory systems efficiency, Solis, Mukhopadhyay 
and Gutierrez (2010) made an initial attempt to extend 

beyond the empirical investigation of forecasting 
performance reported in the earlier studies (Gutierrez, 
Solis, and Mukhopadhyay 2008; Mukhopadhyay, Solis, 
and Gutierrez 2012). The results of that first attempt, 
conducted by ‘simulating on the dataset’ in view of the 
difficulty in mathematically characterizing lumpy 
demand, were by-and-large inconclusive.  
  
4.1. Demand Characterization 
One of the issues in forecasting intermittent or lumpy 
demand is the assumption of a distribution of demand 
occurrence. Syntetos and Boylan (2006, p. 39) cited 
three criteria proposed by Boylan (1997) for assessing 
suitability of demand distributions: 
  

• a priori grounds for modelling demand,  
• flexibility of the distribution to represent 

different types of demand, and 
• empirical evidence.  

 
Syntetos and Boylan argued that compound 
distributions can represent demand incidence and 
demand size by separate distributions, and that the 
negative binomial distribution (NBD) is a compound 
distribution with variance greater than the mean, with 
“empirical evidence in its support.” They declared the 
NBD “to meet all criteria” and accordingly selected 
NBD to represent intermittent demand over lead time 
(plus review period) in their stock control simulation 
model. Other studies (e.g., Boylan, Syntetos, and 
Karakostas 2008; Syntetos, Babai, Dallery, and Teunter 
2009) have similarly conducted empirical investigations 
of stock control using the NBD to characterize 
intermittent demand over the lead time (plus review 
period), citing Syntetos and Boylan’s (2006) declaration 
that the NBD “satisfies both theoretical and empirical 
criteria.” 
Use of the NBD to characterize demand may apply to 
intermittent (but not very erratic) demand. However, 
empirical investigation of lumpy demand datasets has 
shown that the NBD may not provide an acceptable 
approximation for many SKUs exhibiting lumpy 
demand. For instance, Solis, Longo, Mukhopadhyay, 
Nicoletti, and Brasacchio (2014) instead apply a two-
stage approach to characterizing lumpy demand, where 
Stage 1 involves a uniform (continuous) distribution 
defined over the interval (0,1) and Stage 2 involves an 
NBD. While this two-stage alternative has been shown 
to fairly adequately characterize certain lumpy demand 
data, it unfortunately fails in the case of the 24 SKUs 
under consideration with their high degree of 
lumpiness.    
Sani and Kingsman (1997) applied simulation on a 
dataset consisting of long series of daily demand data 
over five years for 30 low demand items.  In view of the 
failure to mathematically characterize the 24 SKUs in 
the current lumpy demand dataset, our simulations of 
inventory control performance similarly take the form 
of a single run performed on the test sample (consisting 

Series 1 2 3 4 5 6
Mean Demand 251.02 262.08 271.60 274.43 278.01 324.84
Std Dev of Demand 1078.80 985.19 1305.36 1221.31 1191.04 1387.20
z (% of Zero Demand) 69.6 67.2 67.3 65.9 64.3 63.8
CV 2 18.47 14.13 23.10 19.81 18.35 18.24
ADI 3.28 3.05 3.06 2.93 2.80 2.76

Series 7 8 9 10 11 12
Mean Demand 237.09 274.31 253.77 346.04 303.11 321.61
Std Dev of Demand 743.88 1134.55 959.19 1710.19 1229.80 1149.70
z (% of Zero Demand) 67.6 66.7 65.6 66.2 65.0 64.8
CV 2 9.84 17.11 14.29 24.43 16.46 12.78
ADI 3.09 3.00 2.90 2.96 2.86 2.84

Series 13 14 15 16 17 18
Mean Demand 299.15 296.07 288.78 305.81 228.74 352.32
Std Dev of Demand 1425.87 1321.28 1090.65 1257.98 889.07 1480.69
z (% of Zero Demand) 66.4 65.9 64.8 65.0 66.2 63.7
CV 2 22.72 19.92 14.26 16.92 15.11 17.66
ADI 2.98 2.93 2.84 2.86 2.96 2.75

Series 19 20 21 22 23 24
Mean Demand 322.98 355.48 328.70 394.84 314.33 410.00
Std Dev of Demand 1054.75 1609.05 1390.67 2675.95 1438.57 1929.56
z (% of Zero Demand) 61.9 65.3 64.2 67.0 64.3 67.3
CV 2 10.66 20.49 17.90 45.93 20.95 22.15
ADI 2.63 2.88 2.79 3.03 2.80 3.06
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of the final 343 observations for the 65:35 partition or 
the final 193 observations for the 80:20 partition). 
4.2. Inventory Control System 
A periodic review inventory control system has been 
recommended for intermittent demand (Sani and 
Kingsman 1997). An order-up-to (T,S) system, where T 
and S respectively denote the review period and the 
base stock (or ‘order-up-to’ level), has been used in 
recent intermittent demand forecasting studies that 
investigate both forecast accuracy and inventory control 
performance (Eaves and Kingsman 2004; Syntetos and 
Boylan 2006; Syntetos, Babai, Dallery, and Teunter 
2009). 
Eaves and Kingsman (2004) simulated a (T,S) system 
on actual demand data, aggregated quarterly, for 18,750 
SKUs randomly selected out of some 685,000 spare 
parts for aircraft of the Royal Air Force of the UK. 
Forecast-based order-up-to levels S were determined as 
the product of the forecast demand per unit of time and 
the ‘protection interval’, T+L (where L is the reorder 
lead time). Implied average stockholdings were 
calculated using a backward-looking simulation 
assuming a common fill rate (or percentage of demand 
to be satisfied from on-hand inventory) of 100%. 
Among the five forecasting methods they evaluated 
(SES, CR, and SBA included), SBA yielded the lowest 
average stockholdings. 
In the current study, we assume a (T,S) system with full 
backordering. For this preliminary report, inventory is 
reviewed on a weekly basis (T = 5) and the reorder lead 
time is three days (L = 3). The literature suggests a 
safety stock component to compensate for uncertainty 
in demand during the protection interval. For each 
SKU, we calculate trs , the standard deviation of daily 
demand over the training sample. We apply a ‘safety 
factor’ k to yield a safety stock level of trsk ⋅ . The 
replenishment quantity qt at the time of review is then 
given by 
 

tttrtt BIskFLTq +−⋅+⋅+= )( .   (1) 
 
where Ft is the forecast calculated at the time of review 
t, and It and Bt are, respectively, the on-hand inventory 
and backlog. 
Two of the most commonly used service level criteria 
for inventory systems (Silver, Pyke, and Peterson 1998) 
are: 
 

• Probability of not stocking out in a given 
period, and 

• Fill rate (FR)  
 
FR is noted to have considerably more appeal for 
practitioners. We consider target FRs of 0.90 and 0.95 
(or 90% and 95%), as in Syntetos and Boylan (2006). 
Using spreadsheet modeling, we conduct simulation 
searches to find, for each of the four forecasting 
methods under evaluation (SES, SBA, WMA5, and 
NN), the safety factor k needed to meet the target FR.  

 
4.3. Simulation Results 
We first report on simulation results arising under a 
65:35 data partition with a target FR of 95%. In Figure 
1, we graphically compare the average on-hand 
inventory levels arising from use of the four forecasting 
methods. While Mukhopadhyay, Solis, and Gutierrez 
(2012) found both NN and WMA5 to outperform SES 
and SBA (as reported in Section 3), average on-hand 
inventory levels appear to be higher overall for WMA5 
and NN.   

 

 
Figure 1: Average Inventory On-Hand with a 95% Fill 
Rate Under 65:35 Data Partitioning 

 
SES yields the minimum average inventory on-hand for 
11 of the 24 SKUs, SBA for six, NN for four, and 
WMA5 for three. We index the average inventory on-
hand using SBA as base (SBA = 100), and those indices 
are summarized in Table 2. Using a t-test of the 
hypothesis that mean index = 100, the right-hand tailed 
test is highly significant for both NN/SBA (p-value = 
0.0040) and WMA5/SBA (p-value = 0.0075) but not 
significant for SES/SBA (p-value = 0.2311). 
The average backlogs resulting from a 95% target FR, 
arising under a 65:35 data partition, are similarly 
indexed using SBA as base. Resulting indices are 
summarized in Table 3. Using a t-test of the hypothesis 
that mean index = 100, the test is not significant for 
SES/SBA, NN/SBA, and WMA5/SBA. 
We likewise summarize the simulation results arising 
under an 80:20 data partition with a target FR of 90%. 
The average on-hand inventory levels are graphically 
presented in Figure 2. In this case, NN yields the 
minimum average inventory on-hand for 10 of the 24 
SKUs, SES for seven, SBA for four, and WMA5 for 
three. 
Similarly, if average inventory on-hand is indexed using 
SBA as base, the overall average indices are 101.0 for 
SES/SBA, 106.7 for NN/SBA, and 141.1 for 
WMA5/SBA. The right-hand tailed t-test of the 
hypothesis that mean index = 100 is highly significant 
for WMA5/SBA (p-value = 0.0025), significant for 
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NN/SBA (p-value = 0.0409), and not significant for 
SES/SBA (p-value = 0.2095). 
 
Table 2: Indices of Average Inventory On-Hand with a 
95% Fill Rate Under 65:35 Data Partitioning, Using 
SBA as Base 

 
 
Table 3: Indices of Average Backlog with a 95% Fill 
Rate Under 65:35 Data Partitioning, Using SBA as Base 

  
 

Figure 2: Average Inventory On-Hand with a 90% Fill 
Rate Under 80:20 Data Partitioning 
 
Average backlogs and corresponding indices for a 90% 
target FR arising under an 80:20 data partition show 
overall average indices of 100.9 for SES/SBA, 96.8 for 
NN/SBA, and 102.7 for WMA5/SBA. Using a t-test of 
the hypothesis that mean index = 100, the test is not 
significant for SES/SBA, NN/SBA, and WMA5/SBA.  
 
5. CONCLUSIONS AND FURTHER WORK 
Owing to the difficulty in mathematically characterizing 
lumpy demand distributions, particularly with the 
degree of lumpiness found in the industrial dataset 
currently under consideration, we applied simulation on 
the dataset in the current work. This was possible due to 
the length of the time series (967 periods), albeit not 
quite as rigorous as in simulation studies involving 
mathematically specified demand distributions.  
Gutierrez, Solis, and Mukhopadhyay (2008) found that 
NN modeling, even under a relatively simple network 
topology, generally performs better than SES, CR, and 
SBA for the 24 lumpy demand SKUs under 
investigation (as reported in Section 3). Mukhopadhyay, 
Solis, and Gutierrez (2012) reported the ‘non-
traditional’ NN and WMA5 methods to outperform SES 
and SBA (as also reported in Section 3).  
We conducted simulation searches associated with 
target fill rates of 90% and 95%. With average on-hand 
inventory using SBA as base, the indices for 
WMA5/SBA and even for NN/SBA are significantly 
above 100, indicating that average on-hand inventory 
levels are higher overall for WMA5 and NN.  
In the current study, we find support for earlier 
assertions that demand forecasting performance with 
respect to standard accuracy measures may not translate 
into inventory systems efficiency.  In particular, an NN 
model was found to outperform the SES and SBA 
methods in performance with respect to a number of 
scale-free traditional accuracy measures, but appears to 
be inferior when it comes to inventory control 
performance.   

Index
Series SES / SBA NN / SBA WMA5 / SBA

1 100.3 113.0 155.9
2 109.6 104.0 123.4
3 99.6 106.3 112.9
4 99.6 103.4 605.5
5 105.0 99.9 97.7
6 99.8 90.3 136.4
7 102.3 101.4 102.1
8 95.7 106.4 113.6
9 98.3 112.3 128.7
10 99.2 107.4 64.5
11 101.4 107.9 109.9
12 110.4 102.3 343.8
13 99.6 101.6 139.9
14 93.5 115.6 124.0
15 96.0 135.4 206.6
16 98.3 107.7 137.0
17 99.6 143.1 177.8
18 100.5 125.2 128.8
19 98.1 120.7 119.1
20 106.8 84.6 171.5
21 100.6 98.8 126.0
22 101.3 113.4 95.9
23 103.4 88.6 131.4
24 96.1 101.8 147.3

Average 100.6 108.0 158.3

Index
Series SES / SBA NN / SBA WMA5 / SBA

1 103.9 126.8 144.3
2 100.5 88.0 94.6
3 102.3 89.1 127.7
4 99.9 103.4 99.9
5 104.0 106.9 114.4
6 100.0 100.0 100.0
7 101.4 114.9 65.9
8 100.0 100.2 91.9
9 104.5 69.7 75.1
10 103.8 91.1 120.3
11 104.8 86.6 119.9
12 103.3 71.2 109.2
13 109.4 103.4 105.8
14 100.1 102.4 108.7
15 108.1 64.9 118.0
16 102.2 98.0 136.1
17 93.0 110.5 95.9
18 99.2 92.7 104.6
19 105.0 77.9 64.9
20 100.0 99.3 100.3
21 100.9 107.0 84.9
22 97.8 104.3 70.8
23 86.2 110.5 64.3
24 99.8 99.8 104.1

Average 101.2 96.6 100.9
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We appear to have generated evidence to support the 
assertion that, at least for items exhibiting a fairly high 
degree of demand lumpiness, statistical forecast 
accuracy does not necessarily lead to better inventory 
control efficiency. 
Further work remains in terms of simulation searches 
that have yet to be conducted.  
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