
ORCHESTRATING THE INTEROPERABILITY WORKFLOW WITHIN A

TRANSPORT SIMULATION PLATFORM

Judicaël Ribault, Gregory Zacharewicz

Univ. Bordeaux, IMS, UMR 5251, F-33400 Talence, France

judicael.ribault@u-bordeaux1.fr, gregory.zacharewicz@u-bordeaux1.fr

ABSTRACT

The domain of logistics and transport is now gaining

with the use of the web, geo positioning and RFID to

improve the tracking and decision making for the

product more appropriate routing in order to save time,

cost and reduce impact on the environment. The

combination of these software and hardware devices

faces interoperability problems. This paper proposes to

introduce a new simulation platform that will mix

interaction with real world including sensor and human

interfacing and simulation world. In detail, the

proposition of this paper is to combine the Taverna

Workflow, which handles and triggers the call of web

services proposed by a platform, with several

simulation models. In particular one drawback of

several workflows orchestrator tools is that they do not

provide time management facilities to handle time and

to rhythm simulation run. This paper introduces a

message clock ordering solution defined by G-DEVS

models to give the beat to the transport simulation

workflow system. The imbrication of G-DEVS

modelling and simulation with the workflow Taverna

shows the possibility of the interoperability and

complementarity of these approaches.

Keywords: Workflow, Taverna, Interoperability,

Discrete event simulation, G-DEVS

1. INTRODUCTION

The effectiveness of enterprise information technology

system (IS) depends not only on its internal

interconnectivity of its inner software components, but

also on its ability to exchange data, so to collaborate,

with every day new tools developed and updated in the

environing digital world. This necessity led to the

development of the concept called interoperability that

allows improving collaborations between enterprises IS.

No doubt, in such context where more and more

networked enterprises are developed; that enterprise

interoperability is seen as one of the most wanted

solutions in the development of an enterprise IS. Also

the data treatment calls both human processing and

automatic treatments. The sequencing of these actions is

desired to be controlled or orchestrated by a high level

application that can decide the human resource and/or

component to solicit.

From a research point of view, several works has

been launched since the beginning of 90’s in the domain

of Workflow. Workflow was first designed to formalize

and improve enterprise business process. A product

workflow is a set of linked steps required for developing

a product until it gets into market [Weske 2012]. The

workflow steps are based on observing a number of

steps that are usually enchained manually and

formalizing them. The research on the Workflow

initiated by the Workflow Management Coalition

[Zacharewicz2008] was a premise to workflow

modelling (e.g. with BMPN) and it permits the

development of recent ERP systems in the enterprises.

Nevertheless a clear distinction appeared in the late 90’s

between the theoretical approaches in this domain and

applied approaches. In the theoretical approach,

Modelling and Simulation (M&S) is a main

consideration, while in the applied approaches,

execution is the core problem. Few approaches

compose efficiently M&S and real executions in the

transport domain. Main reasons are the slowing for

synchronization of the simulation engine, that is usually

constrained by causality [Chandy, 1979] between real

and simulated time, and the interoperability barriers that

are faced between hardware and software [Chen, 2003].

Recent improvements in web-based development

propose new facilities to connect the applications in a

more convenient way. For instance the web services can

support that question of interoperability. We can

classify the Web services into two categories:

 Web services of type "REpresentational State

Transfer" (REST) [Richardson, 2007] whose

main purpose is to manipulate XML

representations of Web resources using a

uniform set of HTTP operations (GET, PUT,

POST, DELETE) and URI.

 Arbitrary Web services, which expose an

arbitrary set of operations that can be executed

remotely by using SOAP and WSDL standards

that facilitate interoperability.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

185

mailto:judicael.ribault@u-bordeaux1.fr
mailto:gregory.zacharewicz@u-bordeaux1.fr

We propose to use web services and workflow for

interoperability among simulation and real-world

application. Web services enable the integration of

applications or data from heterogeneous sources (i.e.

Mash-up). This paper is proposing to apply the use of

workflow Web services and simulation to the

PRODIGE application.

Section 2 describes the necessary background

needed to understand how workflows of services and

simulation can drive real application. Section 3 presents

the scientific contribution while section 4 put it into

practice in a real framework.

2. BACKGROUND

In this section, we first present the enterprise

interoperability concept. Then we briefly present the

PRODIGE system and how workflow can be used for

experimentation. Then we present the DEVS formalism

and its interoperability through web services. Finally we

present the Taverna workflow management system to

orchestrate the experimentation.

2.1. Interoperability

Enterprise Interoperability [Chen, 2003] refers to the

ability of interaction between enterprise systems. The

interoperability is considered as significant if the

interactions can take place at least at the three different

levels: data, services and process, with a semantic

defined in a given business context.

Interoperability extends beyond the boundaries of

any single system, and involves at least two entities.

Consequently establishing interoperability means to

relate two systems together and remove

incompatibilities. Incompatibility is defined as the

fundamental concept of interoperability [Zacharewicz

2011a]. It is the obstacle to establish seamless

interoperation. The concept ‘incompatibility’ has a

broad sense and is not only limited to ‘technical’ aspect

as usually considered in software engineering, but also

‘information’ and ”organization”, and concerns all

levels of the enterprise.. Basic concepts relating to

enterprise interoperability are classified into three main

dimensions as described in the cube proposed in [Chen,

2003]. The integrated approach is demanding to all

partners to have the same description of information.

The unified approach is asking partners just to prepare

data to exchange to be compliant with a Meta model but

local description can be kept. The third dimension is

federated. Here, interoperability must be accommodated

on the fly between partners without considering a pre-

existing meta model.

Our goal is to tackle interoperability problems

through the identification of barriers (incompatibilities)

which prevent interoperability to happen

The first kind of barrier concerns the nonexistence

of commonly recognized paradigms and data structure,

for that, clarification is required to propose a sound

paradigm. The second requirement not addressed at the

enterprise modelling level is the synchronization of

data. The right order of data exchanged is important,

ignoring this can lead to misunderstanding and wrong

functioning of the model. Finally the enterprise

modelling must consider the confidentiality

management of data. The interoperability can be

considered between concurrent enterprises in that

context, a strategy of data sharing/not sharing between

these must be defined.

Today, most of the approaches developed are

unified ones. For example, in the domain of enterprise

modelling, we can mention UEML (Unified Enterprise

Modelling Language) [Roque, 2008] and PSL (Process

Specification Language) [NIST, 2003] which aim at

supporting the interoperability between enterprise

models and tools. Using the “federated approach” to

develop enterprise interoperability appears to be the

most challenging and few activities have been

performed in this direction. The federated approach

aims to develop full interoperability and is particularly

suitable for an inter-organisational environment (such

as networked enterprises, virtual enterprises, etc.). In

the enterprise interoperability roadmap published by the

European Commission in 2006, developing “federated

approach” for interoperability was considered as one of

the research challenges for the years to come.

From the state of the art of the enterprise

interoperability domain and some implementations

experiences to be presented in next points, we will

introduce in the next section some propositions to

address these compatibility challenges.

2.2. PRODIGE

The PRODIGE project aims to prepare the future of

physical products transportation, placing the reflection

at the organizational level that control the flow of

commodities in order to provide a technical and

organizational solution helping the reduction of the

travelled distance, optimization of the tours, volumes

transported and taking into account new issues related

to sustainable development.

The base of the work proposed in this paper, start

from a transportation Web application released in the

project. This platform is composed of a server where

several trucks users are remotely contacted to display

their positions thanks to GPS and GSM communication.

The server is proposing algorithm to optimize truck

routing. It is exposing its methods through the use of

SOAP Web services in order to promote interoperability

(set a tour, view the results, etc.). The idea is to test the

function of the tool regarding a sequence of calls in

dynamic. For that purpose a simulation tool for making

alive the workflow is required if you don’t want to

launch all the trucks on the roads for each test.

2.3. Workflow

Workflows can quickly orchestrate several experiments

(and optionally simultaneously) of the PRODIGE

application. Indeed, computer experimentation has no

time constraints which must face the real experiment: a

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

186

tour of several hours can be simulated in a few seconds.

Among the possibilities offered by computer

experimentations, we can mention the possibility to

verify and debug the PRODIGE application during its

development. This parallelism of tasks saves time and

resources allocated to the development of the

PRODIGE application. Computer experimentation also

allows to quickly test new features. Once all the

features established and verified, computer

experimentation can create scenarios of use mimicking

the behaviour of different actors (manager, customers,

and drivers in the case of PRODIGE). A scenario can

have several objectives:

 Quantitative: calculating and comparing

several variables such as the number of

kilometres travelled by products or the amount

of CO2 emissions produced for a set of

delivery

 Qualitative: following the different steps of the

delivery of a product (e.g. respect of delivery

times, compliance with cold chain, etc.)

 Analytics: observing a special case not

understood, difficult or impossible to

reproduce with the real system, often for

scientific purposes.

To this are added demonstrations scenarios, to explain

PRODIGE to public audience and track the movement

of vehicles depending on the scenario chosen.

2.4. DEVS M&S

Discrete EVent Specification (DEVS) was introduced

by [Zeigler 00]. This Moore based language describes a

dynamic system with a discrete event approach using

some typical concepts. In particular it represents a state

lifetime. When a lifetime is elapsed an internal

transition occurs that change the state of the model. The

model also takes also into account the elapsed time

while firing an external state transition triggered by an

event received from outside the considered model.

The behavioural models are encapsulated in atomic

models that are completed with input and output ports.

Then, these models can be composed with others by

connecting inputs and outputs. The composed models

are called coupled models.

Generalized DEVS (G-DEVS) emerged with the

drawback that most classical discrete event abstraction

formalisms (e.g. DEVS) face: they approximate

observed input–output signals as piecewise constant

trajectories. G-DEVS defines abstractions of signals

with piecewise polynomial trajectories [Giambiasi 00].

Thus, G-DEVS defines the coefficient-event as a list of

values representing the polynomial coefficients that

approximate the input–output trajectory. Therefore, a

initial DEVS model is a zero order G-DEVS model (the

input–output trajectories are piecewise constants).

G-DEVS keeps the concept of the coupled model

introduced in DEVS [Zeigler 00]. Each basic model of a

coupled model interacts with the others to produce a

global behaviour. The basic models are either atomic or

coupled models that are already stored in the library.

The model coupling is done with a hierarchical

approach (due to the closure under coupling of G-

DEVS, models can be defined in a hierarchical way).

On the simulation side, G-DEVS models employ an

abstract simulator [Zeigler 00] that defines the

simulation semantics of the formalism. The architecture

of the simulator is derived from the hierarchical model

structure. Processors involved in a hierarchical

simulation are Simulators which implement the

simulation of atomic models, Coordinators, which

implement the routing of messages between coupled

models, and the Root Coordinator, which implement

global simulation management. The simulation runs by

sending different kind of messages between

components. The specificity of G-DEVS model

simulation is that the definition of an event is a list of

coefficient values as opposed to a unique value in

DEVS.

2.5. Services Simulation

We use discrete-event simulation results to mimic the

behaviour of certain elements of the PRODIGE system.

In [Al-Zoubi and Wainer 2010a] the authors discussed

the advantages and disadvantages of several modelling

and simulation environments, including the High Level

Architecture (HLA) [Kuhl et al., 2000], CORBA,

SOAP-based Web-services, etc. As discussed there,

most of these distributed simulation middleware still

lack of plug-and-play interoperability, dynamicity, and

composition scalability. Based on this conclusion, they

designed the first existing RESTful Interoperability

Simulation Environment (RISE) middleware [Al-Zoubi

and Wainer 2010b].

The main goal of RISE is providing simulation

interoperability and mash-up regardless of their

formalism, theory or implementation. Access to RISE is

done through Web resources (URIs like a classic

website URL) and XML messages using HTTP

channels: GET (to read a resource), PUT (to create new

resource or update existing data), POST (to append new

data to a resource), and DELETE (to remove a

resource). RISE allows modellers to run any number of

experiment instances, whose settings and resources

(URIs) are persistent and repeatable (unless deliberately

removed or updated). An interface between RISE and

CD++ [Wainer, 2002] allows running distributed

simulations using the CD++ simulation engine.

We need to orchestrate various services to simulate

the use of the PRODIGE application. We want to use

the results of simulations to drive the PRODIGE

application through formalized scenarios. This

formalization and orchestration of services corresponds

to the use of workflow of services. Workflows of

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

187

services can be useful for computer experimentation by

promoting replayability, sharing and interoperability

[Ribault and Wainer 2012a].

2.6. Workflows of services

In [Tan et al., 2009], the authors compare the service

discovery, service composition, workflow execution,

and workflow result analysis between BPEL and a

workflow management system (Taverna) in the use of

scientific workflows. They determine that Taverna

provides a more compact set of primitives than BPEL

and a functional programming model that eases data

flow modelling. Due to our needs, we identify that a

workflow management system such as Taverna would

be a better alternative than BPEL to illustrate the

feasibility of our approach.

Taverna [Hull et al. 2006] is an application that

facilitates the use and integration of a number of tools

and databases available on the web, in particular Web

services. It allows users who are not necessarily

programmers to design, execute, and share workflows.

These workflows can integrate many different resources

in a single experiment.

Taverna workflow can contain services including:

 A service capable of running Java code

directly within Taverna.

 A service to run a remote application via

the REST protocol.

 A service to run a remote application via

the SOAP/WSDL protocol.

A Taverna service can take inputs and produce

outputs. The value of an entry can be part of the

workflow (hardcoded) or a parameter to provide

information during the execution of the workflow. A

REST service returns systematically 2 outputs

predefined: the return value of the Web service (404 if

the resource is not found, 200 if everything went well,

etc...), and the contents of the response (XML, HTML,

ZIP, etc.). Figure 1 represents a REST service in

Taverna. The number of input arguments is variable and

chosen by the developer of the workflow. The number

of output arguments is fixed.

Figure 1: Taverna REST service.

In contrast, a WSDL service will find

automatically, thanks to the WSDL file, the number and

type of input and output. Figure 2 represents a Taverna

workflow with a WSDL service in green in the middle

of the figure. The service is available in Taverna after

the addition of the URL of the WSDL file (such as

http://xxx.xxx.xxx.xxx:8080/WS-

PRODIGE/services/Identification?wsdl). Taverna offers

the possibility to automatically format the input and

output based on the type of parameters required by the

Web service. In this example, the Web service

"identificationChauffeur" that allows a driver to identify

within the PRODIGE application takes as input a data

type 'identificationChauffeur_input' that encapsulates

‘id’, ‘imei’, and ‘pwd’ input. The Web service

"identificationChauffeur" produces as output a data type

'identificationChauffeur_return' that encapsulates

various data such as firstName, lastName, login, etc.

Workflows are particularly suited to automate

experiments, but all necessary parameters cannot

always be specified in advance. In these cases, it is

desirable to interact with users for decision making.

Taverna offers several graphical interfaces for

interacting with the user. A Taverna workflow can also

contain nested workflows in a hierarchical manner. In

this way, a set of simple workflows easily allow to

design more complex workflows. These workflows can

then be shared, reused, and adapted to new needs.

Figure 2: Taverna WSDL service.

3. CONTRIBUTION

We propose to use workflow of services as the

interoperability layer among several services. In

addition, we propose to integrate the G-DEVS engine as

a specific workflow engine. G-DEVS is a formalism

based on a state machine automaton. Workflows differ

from state machines as state machine can be cyclic

graphs while workflows are usually acyclic. Workflow

proceeds down different branches until done. Thus,

using G-DEVS coupled to another workflow engine to

process a workflow could benefit from the DEVS

formalism while keeping the top to bottom behaviour of

the main workflow manager. Interoperability among

workflow engines and applications are done using web

services.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

188

Figure 3: Workflow orchestration architecture.

3.1. Workflow Orchestration Architecture

The Figure 3 presents the orchestration architecture

based on the workflow architecture by the WfMC.

We propose to use Taverna and G-DEVS as the

process definition formalism to express workflows.

Taverna workflow represents the main workflow that

organizes all tasks and enables interoperability between

services. Taverna workflow process definition will be

executed by the Taverna Engine (Interface 1). G-DEVS

process definition will be executed by the G-DEVS

Engine (Interface 1’) as an others workflow enactment

services. Communication between both engines

(Interface 4) will be granted by web services thanks to

RISE. Taverna interprets G-DEVS workflow event and

enables the interoperability with other services using

RESTful or SOAP/WSDL Web services protocols.

Taverna ensures interoperability between workflows

(Interface 4) and among invoked applications (Interface

3) such as Google Maps, G-DEVS Simulation, Routing

Algorithm and PRODIGE. Interface 2 allows Taverna

workflow to interact with users through the use of the

Taverna Desktop.

3.2. Taverna Workflow Model

We want to test the PRODIGE application before

moving to a phase of real experimentation. Then, we

want to be able to quickly test algorithm, compare

studies without having to drive trucks and monopolize

drivers. Taverna is used to create scenarios using the

PRODIGE application through workflow showing the

behaviour of the users involved in the scenario such as

customer who will apply for delivery of a point to

another, managers who will validate and create the tour,

and the drivers who will drive trucks.

Figure 4: Taverna workflow to setup the PRODIGE

system.

3.3. G-DEVS Workflow Model

In a previous work [Zacharewicz, 2011b] several G-

DEVS models were introduced to represent the

behaviour of the various actors of the PRODIGE

system.

The main components of the PRODIGE workflow

have been proposed in G-DEVS models For instance

the smartphone has been described. It detail the

behaviour of the smartphone and in particular it précises

how this device is reacting from its environment. In this

approach the synchronization was given by an HAL

RTI.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

189

Figure 5 Workflow main components

3.4. G-DEVS Clock and Sorting Model

In this paper the interoperability is assumed by the

Taverna engine that calls the services and links the

different applications. Nevertheless this tool does not

provide time synchronization. Two options have been

envisaged. The first was using a RTI to build an HLA

federation [Al-Zoubi, 2011]. This option requires

reusing an existing RTI that can set up a simulation

rapidly but this kind of configuration can cause

overheads in the communication like discussed earlier.

Because [Zacharewicz, 2011] already uses G-

DEVS models and simulators to simulate the behaviour

of several components in the PRODIGE environment,

the idea proposed in this research is to define a G-

DEVS model dedicated to be the clock of the

PRODIGE workflow. This model will define the

ordering of the actions regarding their time. It also can

be considered as the time driver of the simulation. In

other terms G-DEVS, that is originally designed to run

event driven simulation, is used in that case to run a

time driven simulation.

In detail, in this paper we propose a G-DEVS

model that collects messages, sorts them and triggers

right on time the services call to the PRODIGE server

or forward the message to the G-DEVS models that

simulate the behaviour of the PRODIGE components

recalled in the Figure 5. This model can receive

messages both from the server as a service answer or

from a G-DEVS model that send an output message as a

simulation result of a local behaviour. The messages

received from the server are service answers. They

possess time stamp information to be used by the clock

model to add the message at the right place in the

queue. Then depending on the execution state of the

clock it will sort the message and direct it to the proper

receiver. The state of the clock can be processing a

message or being available. In the first case, the

approach is inspired from the conservative algorithm of

[Chandy 79]. It is based on the DEVS/HLA algorithm,

proposed in [Zacharewicz 2008], in particular if a

message is arriving late. The message temporary blocks

the simulation but will not be ignored. Then simulation

is unblocked to process the next message. The receiver

can be the server. In that case it prepares an output

message. This output message is addressed to Taverna

that transforms it to service call and then triggers the

PRODIGE server. If the message is addressed to a G-

DEVS model to trigger component behaviour, the

message is directly sent to the appropriate G-DEVS

component using the coupled model structure. In the

second case (no input event to be treated) the state is

transient and after a definite life time it automatically

goes to another state. During transition to this state, an

output message is generated in order to give the order to

refresh the positioning of the trucks and product to the

server according to the roadmap and geographical

information extracted from Google maps. During the

setting of the simulation the pace can be tuned in order

to accelerate the simulation execution. Also at any

simulation time the execution can be stopped to show a

particular case.

3.5. Interoperability

The interoperability between G-DEVS workflow model

and invoked application such as PRODIGE are ensured

by the Taverna workflow. Figure 6 presents the

sequence diagram of the Taverna workflow, G-DEVS

workflow and PRODIGE application. The Taverna

workflow represents an experimentation scenario that is

executed automatically by the Taverna Engine to test

the PRODIGE application and is represented by the first

column of the sequence diagram. The G-DEVS

workflow model represents the workflow of a smart

device sending every 30 seconds a couple of GPS

coordinates to simulate truck movement. The G-DEVS

simulation is represented by the last two columns of the

sequence diagram. Finally, PRODIGE is represented by

the second column.

The sequence is expressed as follow:

1. The Taverna workflow scenario invokes the

PRODIGE application to setup a new round.

2. The Taverna workflow scenario invokes and

initializes the G-DEVS simulation that will create

in turn the workflow model.

3. The Taverna workflow scenario executes the G-

DEVS workflow. The G-DEVS simulation engine

interacts with the workflow model (sendEvent).

4. The Taverna workflow scenario gets in return what

is needed by the G-DEVS workflow to continue its

execution (i.e. the next destination of the truck).

5. The Taverna workflow scenario invokes the

PRODIGE application to request the next

destination of the truck associated with the smart

device simulated by the G-DEVS workflow.

6. The Taverna workflow scenario continues the

execution of the G-DEVS workflow by passing the

next destination event to the G-DEVS simulation.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

190

Figure 6 Interoperability sequence diagram.

4. FRAMEWORK

We have implemented the architecture and concept

described in the previous section. Figure 7 represents

the solution framework.

The top M&S box illustrates the virtual

experiment while the bottom Real System box

illustrates the real experiment. The virtual experiment is

defined using Taverna workflow and DEVS simulation.

The Taverna workflow mimics the behaviour of

managers, clients and drivers while the DEVS

simulation mimics the behaviour of smart devices.

Communication between Taverna and DEVS are done

through Web services thanks to RISE. The Taverna

workflow communicates with the real PRODIGE

application and Google Maps in the Cloud through Web

service. The real experiment needs real human to

manage the PRODIGE application (manager, clients)

and drive trucks (divers). Communication between

human and PRODIGE are done using a light web

application (manager, client) or a mobile application on

smart device (driver).

Figure 7 PRODIGE and simulation framework

architecture.

4.1. Scenario PRODIGE

We created several data input sets as well as several

workflows to simulate different situations and

experience the PRODIGE solution before placing it

onto market. Packages must be picked up and delivered

regarding the two following situations:

 the delivery time windows are wide

enough for it to be feasible with a single

truck;

 the delivery time windows overlap and

several trucks are needed to make the

delivery on time.

Those two situations are done using the same generic

workflows. We built another workflow to take into

account hazards such as traffic jam or truck failure.

Indeed, in those cases the workflow must take into

account specific decision that could involve building

new delivery.

4.2. Execution Example

Main experimentation workflow takes as input a

XML configuration file that describes the whole

experimentation. The workflow plays the role of all the

actors (manager, clients, and drivers) and fills the

PRODIGE system. Then, the workflow execute in

parallel tours for each driver involved. The workflow

retrieves the information needed on Google Maps and

using G-DEVS simulation to mimic the behaviour of a

real truck. The result of the execution of this workflow

is directly visible in the PRODIGE web application on

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

191

which you can view the current path of a truck making

its tour in the region of Bordeaux, France as shown on

Figure 8 . We can also imagine an experiment mixing

virtual truck and real truck since there is no difference

from the PRODIGE platform perspective.

5. CONCLUSION

This work has permitted to introduce a new platform for

simulation of logistics and transportation. It recalled

existing works that already proposed to use the G-

DEVS formalism for the description of the logistic

platform components. Then, it introduces the Taverna

tool that will be the interoperability link to connect the

services and the simulation components. Then it

describes the G-DEVS model that has been proposed to

serve as the clock ordering component in the system

since the TAVERNA and more generally the services

do not address the time synchronization consideration.

The main demonstration of this paper was to show the

interest of interoperability in such simulation. Here the

approach was still pragmatic but the future works will

propose to make the G-DEVS Clock model more

generic to be reused in several service handling tools.

Figure 8 PRODIGE Web application.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

192

ACKNOWLEDGEMENT

This research was partially funded by the

PRODIGE project. PRODIGE is a French National

Research Agency funded project (ANR-09-VTT-09-01)

Nov@log labelled.

REFERENCES

Chandy, K. M., & Misra, J. (1979). Distributed

simulation: A case study in design and verification

of distributed programs. Software Engineering,

IEEE, (5), 440-452.

Chen, D., Doumeingts, G. 2003. European Initiatives to

develop interoperability of enterprise applications

- basic concepts, framework and roadmap, Journal

of Annual reviews in Control, 27, no.2, 151-160.

Giambiasi N., Escude B., Ghosh S. (2000) GDEVS A

Generalized Discrete Event Specification for

Accurate Modeling of Dynamic Systems. SCS Tr,

17(3) 120-134.

Richardson, L., & Ruby, S. (2007). RESTful web

services. O'Reilly Media, Incorporated.

Weske, M. (2012). Business Process Management

Archi-tectures. Business Process Management,

333-371.

Ribault, J., & Wainer, G. (2012, March). Using

workflows and web services to manage simulation

studies (WIP). Proceedings of the 2012

Symposium on TMS/DEVS Integrative M&S

Symposium (p. 50).

Ribault, J., & Wainer, G. (2012, May). Simulation

Processes in the Cloud for Emergency Planning.

In Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012) (pp. 886-891).

IEEE Computer Society.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C.,

Pocock, M. R., Li, P., & Oinn, T. (2006). Taverna:

a tool for building and running workflows of

services. Nucleic acids research, 34(suppl 2),

W729-W732.

Tan, W., Missier, P., Madduri, R., & Foster, I. (2009).

Building scientific workflow with taverna and

bpel: A comparative study in cagrid. In Service-

Oriented Computing–ICSOC 2008 Workshops

(pp. 118-129). Springer Berlin/Heidelberg.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000).

Theory of modeling and simulation: Integrating

discrete event and continuous complex dynamic

systems. Ac. Pr.

Kuhl, F., Dahmann, J., & Weatherly, R. (2000).

Creating computer simulation systems: an

introduction to the high level architecture. Prentice

Hall PTR.

PSL, NIST, “R ationale”. National Institute of Standards

and Technology (NIST). 5/10/2003, last updated

1/15/2007.

Roque M., Vallespir B., Doumeingt G. 2006,

“UEML:Coherent Languages and Elementary

Constructs Determination”, Network-Centric

Collaboration and Supporting Frameworks, IFIP

International Federation for Information

Processing Volume 224, , pp 23-30

Al-Zoubi, K., & Wainer, G. (2010, December).

Managing simulation workflow patterns using

dynamic service-oriented compositions.

Proceedings of the 2010 Winter Simulation

Conference (WSC), (pp. 765-777). IEEE.

Al-Zoubi, K., & Wainer, G. (2010, December). Rise:

Rest-ing heterogeneous simulations

interoperability. In Simulation Conference (WSC),

Proceedings of the 2010 Winter (pp. 2968-2980).

IEEE.

Zacharewicz G., Frydman C., Giambiasi N. (2008) G-

DEVS/HLA Environment for Distributed

Simulations of Workflows. Simulation 84(5): 197-

213

Zacharewicz G.; Labarthe O.; Chen D.; Vallespir B.

(2011a) “A Multi Agent/HLA Platform for

Enterprises Interoperability: Short-Lived Ontology

Based. Electronic Supply Network Coordination

in Intelligent and Dynamic Environment:

Modeling and Implementation, IGI Global, pp.

319-346,

Zacharewicz G., Deschamps J.C., François J., (2011b).

Distributed platform for advanced freight

transportation systems, Computers in Industry 62,

6 597-612.

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

193

