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ABSTRACT 

In this paper we are modeling multivariate density 

functions by going back to the roots: instead of trying to 

fit a well-known copula on the data, we choose to 

generate one. Our model approximates the two 

dimensional density function using physical analogy. 

Points on the scatter plot diagram are represented by 

small balls of unit mass placed on a sheet of elastic 

sponge, and the deformation of the surface of the 

sponge caused by the balls represents the density of the 

points on the scatter plot diagram. The elasticity of the 

sponge is described by Hooke's law. The distortion of 

the sponge can be determined by using finite element 

methods. The distorted surface can be approximated by 

functions using Fourier transformation. Hence, the 

model can be extended into higher dimensions. 

 

Keywords: copulas,  multivariate data analysis, finite 

element method, goodness of fit 

 

1. INTRODUCTION 

Modeling multivariate distributions is relatively 

complicated in general, even when we are aware of the 

marginal distributions' nature. The dependency structure 

among the variables is usually described by their 

covariance or correlation matrix, however these 

measures have a great disadvantage: they only measure 

the linear dependency, not the association in general. 

There are other measures, such as Spearman's rho, or 

Kendall's tau, which do not rely heavily on linearity, but 

these measures are rather used to determine how 

monotonic the relation is among the given variables. 

But we should note, that dependency doesn't imply 

monotonicity. 

 Copulas are functions that join multivariate 

distribution functions to their one-dimensional margins. 

(Nelsen 2006 and Sklar 1959) They also take it into 

consideration that the dependency might be different on 

the edges, they provide a flexible structure, and do not 

intend to measure linearity or monotonicity. 

There are several famous copulas, which we might 

try to fit on the data. The problem is, that in some cases 

none of the famous copulas fit well – even if we take 

the parameter shifting into consideration. This was 

basically what motivated us trying to find alternatives 

for these situations. 

In section 2 we introduce our copula generating 

method, for which we are using finite element methods. 

This is a modeling technique widely used among 

engineers, but as far as we’re concerned it has no 

previous history in financial modeling. We believe, that 

the synergy of the different fields will provide with an 

interesting and promising result. In section 3 we present 

some calculations on financial data in two cases. Not 

only we would like to show how our copula fits on the 

data as one of the bests (compared to some of the 

famous copulas), but we would also like to demonstrate, 

that the conventional chi-square testing of the goodness-

of-fit is not reliable in our case. In section 4 conclusion 

follows. 

 

2. THE COPULA GENERATING METHOD 

In order to understand how our copula generation works 

let’s consider an analogy from physics. The density 

function of a given copula can be modeled by the 

distortion of an elastic lattice (sponge) when small balls 

of unit mass are placed on it. The more balls we place 

on a given point, the more the sponge sinks. Each site , 

where we decide not to put any balls  the value of this 

function is zero, or – due  to the interaction of the balls 

– close to zero. If we would like to obtain a function 

that has the characteristics of a density function (e.g. 

non-negativity) this procedure has to be reversed: 

instead of placing weights on the sponge, and pushing it 

down, we prefer to pull it up. Hence, the surface looks 

more like the surface of a density function, and fulfills 

the non-negativity criteria. 

 The distortion of the lattice can be determined by 

using finite element methods. In engineering, these 

methods are typical modeling applications of the 

distortion of statically loaded machine parts. Another 

typical application is determining the deformation of 

machine parts  and temperature distribution in them 

with a given thermal conductivity and thermal 

expansion coefficient. In this application, temperature 

dependency is omitted , however it could lead to an 

extension of modeling in 3D. 

For generating the 3D model, we used our own 

program written in C#. The Z88 Aurora is a program, 
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which is a user interface based on the Z88 engine 

(http://www.z88.de/). 

 

2.1. The parameters of the simulation 

During the simulation the behavior of the sponge can be 

characterized with the following parameters: 

 

1. The Young-modulus (E, N/mm
2
), also known 

as the elastic modulus , which is a constant in 

our model. It describes the relationship 

between the force effecting on the lattice  and 

its’ distortion, which is also known as Hooke’s 

law. However, it should be noted that not all 

materials are behaving according to Hooke’s 

law’s : e.g. amorphous materials rubber the 

distortion and the force on it does not have a 

linear dependency. 

2. The Poisson’s ratio is a dimensionless 

constant. It provides  the negative ratio of 

transverse to axial strain. 

3. The next parameter of the material is the 

density (ρ, kg/m
3
). If we place the material in 

the gravitational field, it will be distorted by its 

own weight. 

4. Thermal conductivity (λ, W/(m·K)) could also 

be taken into consideration. According to the 

second law of thermodynamics, an isolated 

system, if not already in its state of 

thermodynamic equilibrium, spontaneously 

evolves towards it. For non-evolving materials, 

this phenomenon is characterized by the 

Fourier-law. 

5. There are a few materials which have a 

negative coefficient of thermal expansion, 

which means that cooling them leads to 

expansion. An example for this phenomenon is 

water between 0 C° and 4 C°. 

 

2.2. The simulation steps 

The simulation comprises the following steps. (Based 

on Deák 1990 and Ross 1997.) 

 

2.2.1. Building the model 

As a first step we have to build the model of the shape 

that we would like to observe. The basis of the model 

relies on the nodes, which are given by their coordinates 

in 3D. These nodes determine spatial elements, which 

are usually constructed of hexahedrons or tetrahedrons. 

Eight nodes could determine a hexahedron, while six of 

them lead to a tetrahedron. 

 
 

Figure 1: A tetrahedron and a hexahedron given by their 

nodes. 

 

 In engineering there is a common practice 

regarding the model building: on those areas, where the 

forces are more concentrated there should be more 

dense sampling. 

 Most finite element softwares are capable of 

decomposing models, which originate from CAD 

programs. In our case it was more desirable to generate 

the nodes and elements  from the program. 

 

2.2.2. Boundary conditions 

Before running the simulation we have to provide the 

boundary conditions. At least one node should be 

designated, which has a fixed position. Without this 

step a static examination is unconceivable. Also, for 

each node the attacking force vectors can be given. 

 

 
 

Figure 2: A loaded rubber sheet, which is supported in 

every point and in the middle only. 

 

2.2.3. Running the simulation 

As we expected the value of the Young modulus had no 

significant effect on our simulations, and it was also 

irrelevant, whether we pushed or pulled the material. 

We found however, that the thickness of the material is 

relevant. Also, we had an interesting side-effect, which 

we decided to call the sponge-effect. 

 

 

 

Figure 3: The sponge-effect. 

Proceedings of the International Conference on Modeling and Applied Simulation, 2013 
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 

180

http://www.z88.de/
https://en.wikipedia.org/wiki/Strain_(materials_science)


 The sponge-effect can be explained again with an 

analogy deriving from physics. Consider a mattress, and 

imagine if we  sit on it. If we sit in the middle, there 

will be a big distortion in the middle, some distortion in 

the surrounding area, but almost no distortion on the 

edges. However, if we decided to sit on the edge, the 

distortion would be much bigger, as the surrounding 

area is missing, and there is no support from it. 

Therefore, if we use the same force to pull the sponge in 

the middle and on the edges, the distortion looks 

completely different. 

As the sponge-effect distorted our simulations a 

lot, we decided to obtain some corrections. Figure 3 

shows that we decided to put some extra elements 

outside our model as well, which gives some support to 

the nodes on the edges as well. 

 

3. EXAMPLES AND COMPARISON 

We applied the previously described methodology on 

two datasets, both of them are modeling dependency 

among certain financial indicators. In the first case we 

observed the stock exchange indices of London’s and 

Paris’s stock exchange market, namely the FTSE and 

FCHI. The second case is about the dependency 

between two financial assets: gold and real estate. 

 

3.1. The FTSE and FCHI dependency 

The data we used to observe the dependency between 

the English and the French market were the daily 

closing values of the indices between 01.01.2000 and 

12.31.2009, but we have only taken into consideration 

those days, where both markets were open. As a result 

we obtained 2412 pairs of data. 

 

 
 

Figure 4: The relationship between ranking numbers on 

a 20x20 crosstabulation 

 

 As we originally expected, the FTSE and FCHI 

indices have a very high positive correlation, namely 

0.968. Figure 4 represents the relationship of the 

ranking numbers on a joint histogram on a 20x20 

crosstab. There is not much difference if we use the 

original data or the ranking number. This also means 

that the Pearson’s correlation and Spearman’s rho both 

provide us with similar results and these measurements 

provide enough information about the dependency 

structure. Still, let’s observe which is the best fitting 

copula on the data. 

 Both in this case and the next one we fitted the 

independence copula along with Clayton’s and 

Gumbel’s copulas (the formulas can be found in table 

1), and of course our one. For those copulas that require 

a parameter estimation (Clayton’s and Gumbel’s) we 

applied the maximum likelihood estimation using Excel 

Solver. As a result we ended up with a theta value of 

7.540 for Clayton’s copula, and 4.331 for Gumbel’s. 

 

Table 1: CDF of the fitted copulas 

Copula name Bivariate formula of the CDF 

Independence    

Clayton’s (   {           })
    

 

Gumbel’s    ( [{    ( )}  {    ( )} ]
 

 ) 

 

It should be noted, that instead of providing a 

figure of the cumulative distribution function of the 

copulas we decided to represent the expected values. 

This way it is easier to compare the results with the 

original data. 

 To calculate the expected value of each cell we 

used the following formula (i denotes the number of 

row, and j stands for the number of column, k is 

dimension of the crosstab, n denotes the number of data 

pairs, and F stands for the cumulative distribution 

function of the given copula): 

 

  ( (
 

 
 
 

 
)    (

   

 
 
 

 
)    (

 

 
 
   

 
)    (

 

 
 
 

 
)) 

 

Figure 5-8 show the results of the fitting.  

 

 
 

Figure 5: The expected values based on the 

independence copula 

 

 
 

Figure 6: The expected values based on Clayton’s 

copula (θ = 7.540) 
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Figure 7: The expected values based on Gumbel’s 

copula (θ = 4.331) 

 

 
 

Figure 8: The expected values based on our copula 

 

 It is not easy to decide by looks which is the best 

fitting copula on these data. However it is quite visible, 

that the independence copula’s case seems to be the 

worst one. 

 With the statistical testing we encountered a major 

difficulty, which was the fact, that the conventional chi-

square method requires an expected value of at least 5 

in each cell to be able to perform the test. In general if 

this criterion isn’t met, the suggestion is to merge some 

of the cells, until the test can be calculated. In this case 

however – as the data are basically in the diagonal – 

even the 3x3 representation is inadequate for the 

statistical testing. 

 The goodness-of-fit testing of copulas is still a hot 

topic, and there is not yet an obvious answer how it 

should be done. (As an example see Berg 2007, Dobric 

and Schmid 2005, Lowin 2001, Patton 2006, Quessy 

2005). This paper does not have an agenda to provide 

an answer to this question hence we only calculated the 

chi-square test (if it was possible) and the average sum 

of squares of the errors. In the previous case it should 

also be noted, that we disregarded the test’s requirement 

regarding the minimal expected value (because of the 

previously described phenomenon), but this caused 

major distortion in the test value in those cases where 

the expected value was close to zero. If it was even 

zero, the test couldn’t even be calculated. This was 

basically the reason why we decided to observe the 

average sum of square of the errors instead. Table 2-7 

represent the results, and the best ones are highlighted. 

 It should also be noted, that the results vary if we 

change the numbers of cells in the crosstabs. In this case 

we did the calculations on a 3x3, a 5x5 and a 20x20 

crosstab.  

 

 

 

Table 2: Chi-square results (3x3 crosstab) 

Fitted copula Chi-square df p-value 

Independence 3 720,0 8 0,000 

Clayton’s 140,2 7 0,000 

Gumbel’s 239,6 7 0,000 

Our one 2 078,7 7 0,000 

 

Table 3: Chi-square results (5x5 crosstab) 

Fitted copula Chi-square df p-value 

Independence 5 957,5 24 0,000 

Clayton’s 348,3 23 0,000 

Gumbel’s 384,0 23 0,000 

Our one N/A N/A N/A 

 

Table 4: Chi-square results (20x20 crosstab) 

Fitted copula Chi-square df p-value 

Independence 11 923,3 399 0,000 

Clayton’s 1 616,0 398 0,000 

Gumbel’s 2 939,0 398 0,000 

Our one N/A N/A N/A 

 

Table 5: Average Sum of Squares (3x3 crosstab) 

Fitted copula Average Sum of Squares 

Independence 110 773,1 

Clayton’s 3 462,6 

Gumbel’s 6 259,7 

Our one 65 873,2 

 

Table 6: Average Sum of Squares (5x5 crosstab) 

Fitted copula Average Sum of Squares 

Independence 22 991,0 

Clayton’s 2 230,3 

Gumbel’s 2 319,8 

Our one 2 922,5 

 

Table 7: Average Sum of Squares (20x20 crosstab) 

Fitted copula Average Sum of Squares 

Independence 179,7 

Clayton’s 52,2 

Gumbel’s 84,5 

Our one 75,3 

 

 This case was a difficult one, as none of the fitted 

copulas were good enough to fit according to the chi-

square test results. However, the figures we presented 

can be quite persuasive, that the expected values 

generated based on Clayton’s, Gumbel’s and our 

copula, are all pretty close to the original data. 

 

3.2. The gold and real estate dependency 

In this case 2043 pairs of data have been observed for a 

10 year period again. This case the dependency was not 

that obvious, the Pearson’s correlation coefficient was 

only -0.442. But if we look at the data we can find 

certain groups on the scatter-dot diagrams. Figure 9 

represents the original data and the rankings as well, 

whereas figure 10 presents the joint histogram on a 

20x20 crosstabulation. 
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Figure 9: The relationship between the original data and 

the ranking numbers 

 

 
 

Figure 10: The relationship between ranking numbers 

on a 20x20 crosstabulation 

 

 As the maximum likelihood estimation didn’t bring 

any results for neither Clayton’s nor Gumbel’s theta, we 

decided to use -0.2 for the first, and 1 for the second one 

(these estimations had pretty good results for the sum of 

the log-likelihoods). This resulted, that the Gumbel 

copula was identical to the independence one. The fitted 

copulas can be seen on figure 11-14. 

 

 
 

Figure 11: The expected values based on the 

independence copula 

 

 
 

Figure 12: The expected values based on Clayton’s 

copula (θ = -0.2) 

 

 
 

Figure 13: The expected values based on Gumbel’s 

copula (θ = 1) 

 

 
 

Figure 14: The expected values based on our copula 

 

 It is quite visible, that in this case our copula is the 

closest to the original data. Once again, we tried to 

obtain the conventional chi-square test to verify this 

statement, but we found that if we want to follow the 

rules, a 3x3 crosstab is the biggest that we can use. In 

this case however the test could really be applied, as the 

expected value in each cell was over 5 in all cases. Still, 
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none of the fitted copulas were good enough to accept 

the null hypothesis. Table 8-13 represent the results. 

 

Table 8: Chi-square results (3x3 crosstab) 

Fitted copula Chi-square df p-value 

Independence 796,8 8 0,000 

Clayton’s 1 291,7 7 0,000 

Gumbel’s 796,8 7 0,000 

Our one 1 344,3 7 0,000 

 

Table 9: Chi-square results (5x5 crosstab) 

Fitted copula Chi-square df p-value 

Independence 1 605,3 24 0,000 

Clayton’s 2 278,3 23 0,000 

Gumbel’s 1 605,3 23 0,000 

Our one 1 652,6 N/A N/A 

 

Table 10: Chi-square results (20x20 crosstab) 

Fitted copula Chi-square df p-value 

Independence 5 470,1 399 0,000 

Clayton’s 8 717,2 398 0,000 

Gumbel’s 5 470,1 398 0,000 

Our one N/A N/A N/A 

 

Table 11: Average Sum of Squares (3x3 crosstab) 

Fitted copula Average Sum of Squares 

Independence 23 725,8 

Clayton’s 35 301,4 

Gumbel’s 23 725,8 

Our one 4 969,3 

 

Table 12: Average Sum of Squares (5x5 crosstab) 

Fitted copula Average Sum of Squares 

Independence 6 195,0 

Clayton’s 8 039,9 

Gumbel’s 6 195,0 

Our one 3 443,8 

 

Table 13: Average Sum of Squares (20x20 crosstab) 

Fitted copula Average Sum of Squares 

Independence 82,5 

Clayton’s 91,2 

Gumbel’s 82,5 

Our one 80,0 

 

 As the chi-square testing is very unreliable, we 

prefer to make a decision on the average sum of squares 

of errors. In this case our copula seems to provide with 

the best solution. However, the goodness-of-fit testing 

for copulas is still an interesting topic with a lot of open 

questions. 

 

4. CONCLUSION 

Even though the results are not conclusive (because of 

the unreliability of the testing), we believe that the 

copula generation method we presented could be widely 

applied. It is flexible enough to fit even on those data, 

where other copulas cannot find any relationship among 

the data. Also, as we have referred to it, it could be 

extended into higher dimensions. 
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