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ABSTRACT
This paper presents a servo-level controller using a quan-
tum neural network and investigates its characteristics for
control systems. A multi-layer quantum neural network
that uses qubit neurons as an information processing unit
is used to design three types of neural-network-based
servo controllers: a direct controller, parallel controller
and self-tuning controller. Computational experiments
to control a nonlinear discrete time plant are conducted
in order to evaluate the learning performance and capa-
bility of the quantum neural-network-based servo con-
trollers. The results of the computational experiments
confirm both the feasibility and effectiveness of the quan-
tum neural-network-based servo controllers.

Keywords: Quantum neural network, Qubit neuron,
Servo controller, Real-coded genetic algorithm

1. INTRODUCTION

After Feynman (1982) introduced the possibility of us-
ing quantum mechanical systems for reasonable com-
puting, Deutsch (1989) proposed the first quantum com-
puting model. Subsequently, several quantum comput-
ing algorithms (Shor 1994, Grover 1996) have been pro-
posed. Since Kak (1995) originally presented the concept
of quantum neural computing, interest in artificial neu-
ral networks based on quantum theoretical concepts and
techniques (hereafter called quantum neural networks)
increased because of the belief that quantum neural net-
works may provide a new understanding of certain brain
functions and also help solving classically intractable
problems (Ezhov and Ventura 2000). In quantum com-
puting, ’qubits’ (an abbreviation for quantum bits) are
the counterparts of the ’bits’ of classical computers, and
they are used to store the states of circuits in quantum
computations. The quantum neural network that uti-
lizes qubit neurons as an information processing unit
was proposed by Matsui, Takai, and Nishimura (2000),
where the qubit neuron model is the one in which neuron
states are connected to quantum states, and the transitions
between neuron states are based on operations derived
from quantum logic gates. The high learning capability
of the quantum neural network with qubit neurons was
demonstrated in several basic benchmark tests and appli-
cations (Mitrpanont and Srisuphab 2002; Kouda, Matsui,
Nishimura, and Peper 2005; Araujo, Oliveira, and Soares
2010; Takahashi, Kurokawa, and Hashimoto 2011). Dur-

ing the past quarter of the century, many studies about
the application of both flexibility and learning capabil-
ity of neural networks to control systems have been con-
ducted worldwide (Narendra and Parthictsarathy 1990).
Although many types of neural network-based control
systems have been proposed (Hagan, Demuth, and De Je-
sus 2002, Balderud and Giovanini 2008), the possibility
of applying quantum neural networks to servo-level con-
troller applications has not been adequately investigated.

This paper proposes a servo controller design using
a quantum neural network and investigates its character-
istics for control systems. In Section 2, a multi-layer
quantum neural network with qubit neurons is described
and designs of three types of quantum neural-network-
based servo controllers are presented (hereafter called
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Figure 1: Schematic figure of a neural-network-based
servo controller, where yd is the desired output, y is the
plant output, u is the plant input and ε is the output error
between the desired output and the plant output (top: di-
rect controller; middle: parallel controller; bottom: self-
tuning controller.)
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quantum neural servo controllers.) In this study, a direct
controller, parallel controller and self-tuning controller,
as shown in Fig. 1 are presented. In Section 3, computa-
tional experiments for controlling a discrete time nonlin-
ear plant are conducted to evaluate the feasibility of the
quantum neural network for servo-level controller appli-
cations.

2. DESIGN OF A QUANTUM NEURAL SERVO
CONTROLLER
2.1 Neural Servo Controller
In this section, the basic idea of designing neural servo
controllers is described. To design neural servo con-
trollers, the following single-input single-output discrete
time plant is considered as a controlling target plant:

y(k + d) = Fp[y(k), · · · , y(k − n+ 1),
u(k), · · · , u(k −m− d+ 1)], (1)

where y is the plant output, u is the plant input, n and
m are the plant orders, k is the sampling number, d is
the dead time of the plant and Fp(·) is the function that
expresses plant dynamics. This design uses the follow-
ing assumptions: the upper limit orders of the plant are
known and the dead time of the plant are known. The
plant output y(k) depends on the past plant input and
output. The plant orders determine the period in which
the plant output depends on them. This period is usually
shorter than the trial period. By considering the desired
plant output yd(k), the output error ε(k) can be defined:
ε(k) = yd(k) − y(k).
Direct controller: In the direct controller, the output
from the neural network un is input to the plant directly
as shown at the top of Fig. 1: u(k) = un(k). Substi-
tuting Eq. (1) into the output error and then setting it to
zero, an input vector xD(k) of the neural network can be
defined as follows:

xD(k) = [ yd(k + d) y(k) · · · y(k − n+ 1)
u(k − 1) · · · u(k −m− d+ 1) ]T. (2)

Parallel controller: In the parallel controller, the plant
input is composed of the outputs obtained from the neural
network un and a conventional controller uc as shown in
the middle of Fig. 1: u(k) = un(k)+uc(k). Substituting
Eq. (1) into the output error and then setting it to zero, an
input vector xP (k) of the neural network can be defined
as follows:

xP (k) = [ yd(k + d) y(k) · · · y(k − n+ 1)
un(k − 1) · · · un(k −m− d+ 1)
uc(k) · · · uc(k −m− d+ 1) ]T. (3)

Self-tuning controller: In the self-tuning controller,
the plant input is calculated by a conventional feedback
and/or feedforward controller and its parameters are ad-
justed by the neural network as shown at the bottom of
Fig. 1. When a digital PID control law is utilized as the

conventional controller, the plant input is defined as fol-
lows:

u(k) = u(k − 1) +KP (k){ε(k) − ε(k − 1)}
+KI(k)ε(k)

+KD(k){y(k) − 2y(k − 1) + y(k − 2)}, (4)

where KP (k), KI(k) and KD(k) are the proportional
gain, integral gain and differential gain, respectively. In
this controller, the gain parameters are given by the neu-
ral network as follows: KP (k) = un1(k), KI(k) =
un2(k) and KD(k) = un3(k). Substituting Eq. (1) into
the output error and then setting it to zero, an input vector
xS(k) of the neural network can be defined as follows:

xS(k) = [ yd(k + d) y(k) y(k − 1) y(k − 2)
· · · y(k − n+ 1) u(k − 1) · · ·

u(k −m− d+ 1) ε(k) ε(k − 1) ]T. (5)

2.2 Multi-layer Quantum Neural Network with
Qubit Neurons
In quantum computing, the two quantum states express
one bit of information: |0〉 ∈ C corresponds to the clas-
sical computer’s bit 0 and |1〉 ∈ C corresponds to bit
1. Here the symbol | 〉 is a part of the Dirac notation.
The qubit state |ψ〉 maintains a coherent superposition
of states: |ψ〉 = a |0〉 + b |1〉, where a and b are com-
plex numbers called probability amplitudes that satisfy
|a|2 + |b|2 = 1. The operations of the rotation gate and
controlled NOT gate in quantum computations can be ex-
pressed by the quantum state rewritten using the phase φ.
The rotation gate, which is a phase-shift gate that trans-
forms the phase of quantum states, can be expressed as
f(φ1 + φ2) = f(φ1)f(φ2), where f(φ) = eiφ (i is an
imaginary unit). The controlled NOT gate, which is the
phase reverse operation defined with respect to the con-
trolled input parameter γ, can be given by f(π

2 γ − φ),
where γ = 1 and γ = 0 correspond to reversal rota-
tion and non-rotation, respectively. Although the phase
of the probability amplitude of the quantum state |1〉 is
reversed when γ = 0, this case can be treated as non-
rotation because its observed probability is invariant. By
considering these gates, the state of the j-th qubit neuron
model in the r-th set zr

j is defined as follows:
zr
j = f [

π

2
δr
j − arg(vr

j )]

vr
j =

∑
l

f(θr
l,j)f(zr−1

l ) − f(λr
j)

. (6)

Here, δr
j is the reversal parameter corresponding to the

controlled NOT gate, θr
l,j is the phase parameter corre-

sponding to the phase of the rotation gate and λr
j is the

threshold parameter having a range [0, 1].
The multi-layer quantum neural network is designed

by combining qubit neurons in layers. In the input layer
(indicated by superscript r of I), the network input xl in
the range [0, 1] is first converted into quantum states with
a phase in the range [0, π

2 ], and then the output, given
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by zI
l = f(π

2xl), is fed into the neurons present in the
hidden layer (indicated by superscript r of H). In the
hidden and output layers, the outputs from neurons are
given by Eq. (6). By considering the probability of the
state in which |1〉 is observed from the j-th neuron in the
output layer (indicated by superscript r of O), the output
from the network uQNj is defined as follows:

uQNj (ω, x) = |Im(zO
j )|2. (7)

Here, the vector ω is composed of parameters θr
l,j , δr

j and
λr

j (r = I,H,O), and the vector x is composed of input
xl. In practical applications, the outputs from the quan-
tum neural network are converted from the range [0, 1]
into the range [unmin , unmax ] with a gain and shift fac-
tors: unj = c0(uQNj −uQN0) where c0 is the gain factor,
and uQN0 is the shift factor.

2.3 Training by Real-coded Genetic Algorithm
The training of the quantum neural servo controller is
performed by searching the optimal parameters θr

l,j , δr
j

and λr
j of the quantum neural network so as to mini-

mize the cost function, J(ω) = 1
2

∑
k ε

2(k). A back-
propagation algorithm, which is based on the steepest
descent method to minimize the cost function: ωp+1 =
ωp − η

∂J(ωp)
∂ωp

where η is the learning factor and p is the
iteration number, can be applied for training the quan-
tum neural servo controller. However, its learning occa-
sionally falls into a local minimum, and the information
of a plant Jacobian ∂y

∂u is required in order to calculate
the derivative of the cost function. In this study, a real-
coded genetic algorithm (Akimoto, Sakuma, Ono, and
Kobayashi 2009) is utilized in training the quantum neu-
ral servo controller. Thus, the parameter values of the
vector w are used directly as gene parameters of an in-
dividual. The real-coded genetic algorithm is composed
of a multi-parental crossover and a generation alterna-
tion model. A real-coded ensemble crossover is used
as the multi-parental crossover. The real-coded ensem-
ble crossover is a generalization of the enhanced uni-
modal normal distribution crossover, and has some prob-
ability distribution in the multi-parental crossover opera-
tion in order to avoid the asymmetry and bias of children
distribution. In the real-coded ensemble crossover, the
new individuals (children), gc, are generated using multi-
parental individuals, gj (j = 1, 2, · · · , N +K: N is the
dimension of the problem; in this study it is the dimen-
sion of the vector w):gc = g0 +

∑N+K
j=1 νj(gj − g0),

where g0 indicates the center of gravity of the parents
and νj is the stochastic variable that follows the proba-
bility distribution ϕ(0, 1

N+K ). In a generation alterna-
tion model, the just generation gap which replaces par-
ents with children completely in every generation, is uti-
lized. In the just generation gap, the numbers of pop-
ulation, parents and children are recommended to be
(15 ∼ 50)N , N +K and 10N , respectively. To evaluate
the individuals, a fitness function of the q-th individual at
the p-th generation is defined by the reciprocal of the cost
function J(ωq

p).

3. COMPUTATIONAL EXPERIMENTS
The quantum neural servo controllers are numerically in-
vestigated using a discrete time nonlinear plant in the
computational experiments. The equation of the plant in
which the second-order system is dominant is as follows:

y(k + 1) = Fs[−
3∑

i=1

aiy(k − i+ 1)

+
2∑

i=1

biu(k − i+ 1) + cnony
2(k)], (8)

where a3 and cnon are the coefficients of the parasitic
term and the nonlinear term and the function Fs(·) has
the nonlinear characteristic of saturation:

Fs(x) =

 1 (x ≥ 1)
x (−1 < x < 1)
−1 (x ≤ −1)

In the experiments, the values of plant parameters were
set to a1 = −1.3, a2 = 0.3, b1 = 1, b2 = 0.7, a3 = 0.03
and cnon = 0.2 (Yamada 2010).

In designing the quantum neural servo controller,
the plant was assumed to be a linear second order plant:
d = 1, n = 2 and m = 1. Thus, the number of qubit
neurons in the input layer was 4, 6 and 7 for the direct
controller, parallel controller and self-tuning controller,
respectively. In each controller, the number of qubit neu-
rons in the hidden layer was set to 4. In the parallel
controller, P-control law was utilized as a conventional
controller: uc = KP ε(k), where KP = 0.5 in the com-
putational experiment. The training conditions were as
follows: the dimension of the problem N were 30, 38
and 54 for the direct controller, parallel controller and
self-tuning controller, respectively, The value of K was
1, total number of generations was 2000 and probabil-
ity distribution ϕ was uniform in the range [-1, 1]. In
the training process, the desired plant output yd(k) was
a rectangular wave in order to take account of frequency
richness. The number of samples within one cycle of the
rectangular wave was 50 and the amplitude of the wave
was changed randomly in the range [-0.5, 0.5]. In the
open test, the desired plant output, the rectangular wave,
had an amplitude of ±0.4 and the number of samples
within one cycle varied from 50 to 60, 30 and 40 in order.

As a reference for comparing the results of the quan-
tum neural servo controller, the following conventional
multi-layer neural network that uses sigmoid functions as
an information processing unit was utilized to design the
neural servo controller (hereafter called sigmoid neural
servo controller).

uMNj (w, x) = s[
∑

i

w2jis(
∑

l

w1il
xl)], (9)

where xl is the input to the lth neuron in the input layer,
uMNj is the output of the jth neuron in the output layer,
wijl

(i = 1, 2) is the weight that includes the thresh-
old, s(·) is the sigmoid function, and the vectors w and
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Figure 2: Example of neural servo controllers’ training process (left: quantum neural servo controller; right: sigmoid neural
servo controller; top: direct controller; middle: parallel controller; bottom: self-tuning controller.)
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Figure 3: System response controlled by the direct neural servo controller (left: quantum neural servo controller [J = 0.224];
right: sigmoid neural servo controller [J = 0.243]; top: desired and plant outputs; bottom: plant input.)

x are composed of the weight wijl
(i = 1, 2) and in-

put xl respectively. The learning of the sigmoid neu-
ral servo controller is performed by the real-coded ge-
netic algorithm in order to minimize the cost function,
J(w) = 1

2

∑
k ε

2(k). The training conditions used here
were the same as that in the quantum neural servo con-
troller. The number of neurons in the hidden layer was
set to 6 in each controller so that the dimension of the
problem in the sigmoid neural controller was almost the
same as that in the quantum neural controller. Thus N
was 31, 41 and 58.

Figure 2 shows an example of the training process.
Here, the horizontal axis represents the generation and
the vertical axis represents the cost function. As shown
in Fig. 2, the cost function decreased as the generation

progressed. Although the averaged cost functions are al-
most same in the quantum neural servo controller and the
sigmoid neural servo controller, the cost functions of the
sigmoid neural servo controller with the best individual
are smaller than those of the quantum neural servo con-
trollers in the direct and parallel controllers.

Figures 3, 4 and 5 are examples of responses con-
trolled by the direct controller, parallel controller and
self-tuning controller, respectively, after the neural servo
controller’s training converged. In each controller, the in-
dividual that has the best fitness function was used. Be-
cause the plant output tracks the desired output, as shown
in each figure, the quantum neural servo controllers can
achieve the control task of making the nonlinear plant
follow the desired output. By comparing the three types
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Figure 4: System response controlled by the parallel neural servo controller (left: quantum neural servo controller [J =
0.695]; right: sigmoid neural servo controller [J = 7.631]; top: desired and plant outputs; bottom: plant input.)
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Figure 5: System response controlled by the self-tuning neural servo controller (left: quantum neural servo controller [J =
5.779]; right: sigmoid neural servo controller [J = 5.336]; top: desired and plant outputs; middle: control input; bottom:
PID gain parameters.)

of quantum neural servo controllers, we observe that the
direct controller has the lowest cost function in the open
test. In the direct controller, the control performance of
the quantum neural servo controller is almost the same as
that of the sigmoid neural servo controller. In the parallel
controller, shown in Fig. 4, the output from the quantum
neural network is dominant in the plant input (the output
from the conventional controller is almost zero). In the
self-tuning controller, although the gain parameters are
tuned by the output from the quantum neural network,
as shown in the bottom of Fig. 5, the output error in-
creases rather than the direct and parallel controllers be-
cause the control performance depends on the PID law.
These results indicate the feasibility of the quantum neu-

ral servo controllers and show that the real-coded genetic
algorithm has an advantage in the learning of the quan-
tum neural servo controller because it does not require
the Jacobian information of the plant in the training pro-
cess.

4. CONCLUSION

This paper presented a servo controller designs using a
quantum neural network and investigated their charac-
teristics for control systems. The multi-layer quantum
neural network that uses qubit neurons as an information
processing unit was used to design three types of neural-
network-based servo controller: the direct controller, par-
allel controller and self-tuning controller. Computational
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experiments to control the nonlinear discrete time plant
were conducted in order to evaluate the learning perfor-
mance and capability of the quantum neural servo con-
trollers. The results of the computational experiments
confirmed both the feasibility and effectiveness of the
quantum neural servo controllers.
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