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ABSTRACT 

We present an agent-based approach for solving pickup 

and delivery problems (PDP) in dynamic environments 

and show its application by bike couriers in urban 

districts. To avoid social conflicts, the focus is on the 

computation of fair allocations of orders to bike couriers 

who are paid by commission fees. We realize 

autonomous logistic processes and present a mulitagent 

system with specially adapted negotiation mechanisms. 

In addition, we apply the mulitagent-based simulation 

platform PlaSMA for modeling, simulating, and 

evaluating different transport scenarios within the 

transport infrastructure of the city of Bremen, Germany. 

The customer orders are based on real data provided by 

a German bike courier company. The results show that 

the approach indeed improves the fairness of 

distributions significantly. Finally, we present a new 

business model for a commercial online dispatching 

platform enabled by our approach. 

Keywords: Multiagent-based Simulation, Scheduling, 

Pickup and Delivery Problem, Courier and Express 

Services 

 

1. INTRODUCTION 

Transporting goods in urban districts by bike couriers 

provides many advantages. It contributes to a reduction 

of traffic and     emissions, increases the service 

quality through short transit times, and satisfies 

individual demands of customers. However, 

determining optimal routes to satisfy transport requests 

in real-world operations involves a set of practical 

complications.  For instance, to avoid social conflicts 

and increase the service quality of bike couriers there is 

an essential demand for a “fair” distribution of orders to 

couriers who are paid by commission fees. In fact, in 

high-frequency districts many customers can be served 

by a commonly favored tour. Nevertheless, unpopular 

tours have to be done as well.  

 This paper addresses the so-called Pickup and 

Delivery Problem (PDP) with special requirements that 

are introduced in Section 2. In Section 3, we provide a 

short introduction to autonomous logistic processes and 

refer to related work. In Section 4, we present a novel 

agent-based approach for solving PDPs in dynamic real-

world environments and show its application to bike 

couriers in urban districts. The participating objects and 

actors in our logistic scenarios are represented by 

intelligent software agents that act autonomously. 

Through specially adapted interaction protocols, agents 

exchange tasks with each other and improve solutions 

continuously. We show that the mechanism provides 

“fair” distributions without reducing the logistic service 

quality. 

For the purpose of evaluation, we use the 

multiagent-based simulation platform PlaSMA (Warden 

et al. 2010) for modeling and simulating different 

transport scenarios within the transport infrastructure of 

Bremen, Germany. PlaSMA is described in Section 5. 

In Section 6, we specify the experimental setup and 

compare the formally specified fairness of the routes to 

the results of a robust distance minimizing algorithm. 

The customer orders are based on real data provided by 

a German bike courier company. The results show that 

the approach improves the fairness of distributions 

significantly. Finally, we argue that the developed 

approach enables innovative business models for 

commercial online dispatching platforms that can be 

used by bike couriers and retailers to offer reliable 

deliveries as well as sustainable transportation.  

 

2. THE DYNAMIC PICKUP AND DELIVERY 

PROBLEM OF BIKE COURIERS 

The well-known pickup and delivery problem (PDP) 

(Berbeglia, Cordeau, and Laporte 2010; Parragh, 

Doerner, and Hartl 2008) is concerned with determining 

a set of minimum cost routes for a fleet of vehicles to 

satisfy customer requests for transporting objects from 

an origin to a destination. Certain scenarios involve 

additional constraints and customer demands that have 

to be considered, e.g., time windows (Dumas, 

Desrosiers, and Soumis 1991). 

  The investigated problem is a variant of the PDP. 

In logistic processes of courier, express and parcel 

services (CEP) most requests are received on their 

service day and have to be operated upon within 

minutes. The dynamics and the complexity increase 

significantly with the consecutive appearance of new 

requests as well as the incidence of unexpected events 

like changing traffic conditions.  
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 Not only the needs of the customer and of the 

logistic company have to be considered, but also the 

demands and varying capabilities of the bike couriers 

themselves, who are usually paid by commission fees 

and have an individual physical fitness. Additionally, 

the pickup and delivery stops are located in various 

districts and thereby valued differently. In inner city 

sectors more stops can be accomplished by short tours, 

whereas in outskirts only one delivery can be served by 

driving a long distance. Nevertheless, all incoming 

requests have to be serviced. Thus, there is the essential 

demand for the generation of “fair” distributions 

without privileging or overstraining any courier with 

respect to his fitness. 

 

3. AUTONOMOUS LOGISTIC PROCESSES 

In the last decades, numerous efficient heuristics and 

meta-heuristics have been developed for the 

transportation domain like ant systems, tabu-search, 

simulated annealing and genetic algorithms, just to 

name a few e.g., by Bräysy and Gendreau (2005a, 

2005b) and Parragh et al. (2008). However, central 

planning and controlling in dynamic and complex 

logistic processes is increasingly difficult due to the 

requirements of flexibility and adaptability of changing 

environmental influences (Scholz-Reiter et al. 2004). 

Often one faces scenarios where it is not possible to 

acquire all relevant information for the decision making 

process centrally.  

 In autonomous logistic processes the decision 

making is shifted from central, hierarchical planning 

and controlling systems to decentralized, heterarchical 

systems (Scholz-Reiter et al. 2004). In agent-based 

processes autonomously acting software agents 

represent logistic objects, such as shipments, trucks, and 

containers (Fischer, Müller, and Pischel 1995; 

Schuldt 2011). They have the ability to interact with 

other agents by means of negotiation and 

communication mechanisms. The general problem is 

split into smaller problems that agents solve locally 

concurrent within short time windows to optimize the 

behavior of the overall system. In cooperating systems 

the agent’s goal is to pursue a globally optimized 

behavior and achieve common goals whereas in 

competitive systems each agent acts selfish to reach its 

own objectives. 

 The advantages of applying multiagent systems are 

high flexibility, adaptability, scalability, and robustness 

of decentralized systems through problem 

decomposition and proactive, reactive and adaptive 

behavior of intelligent agents (Brooks 1986; Rao and 

Georgeff 1995).  The potential of autonomous logistic 

processes is even bigger in open, unpredictable, 

dynamic and complex environments (Böse and 

Windt 2007; Kuske, Luderer, and Tönnies 2010; 

Schuldt 2011; Wessels, Jedermann, and Lang 2010; 

Windt and Hülsmann 2007). A comprehensive survey 

and the state of the art in research on autonomous 

logistic processes are provided by Hülsmann, Scholz-

Reiter, and Windt (2011), by Hülsmann and Windt 

(2007) and by Schuldt (2011). 

 Examples of multiagent systems for resource 

allocation, scheduling, optimization, and controlling 

within industrial applications are provided by Himoff, 

Rzevski, and Skobelev (2006), by Neagu, Dorer, 

Greenwood, and Calisti (2006) and by Skobelev (2011). 

 

4. EXTENDING INTERACTION PROTOCOLS 

FOR EVENHANDED DISPATCHING  

Similar to other autonomous logistic processes (Schuldt 

2011), autonomously acting, intelligent agents represent 

bike couriers and orders. Orders must be classified as 

popular or unpopular. However, the subjective value of 

an order depends on the courier (e.g., on the position, 

the currently accepted requests, and the individual 

fitness). Nevertheless, the probability to combine orders 

successfully in one tour is increasing in high-frequency 

areas. Therefore, the trading area is clustered in high-

frequency and low-frequency areas using historical 

data.  We apply a density based clustering (Ester, 

Kriegel, Sander, and Xu 1996) to determine interesting 

clusters of different sizes, diameters and shapes. The 

pickup and delivery locations of a shipment define 

whether it belongs to commonly popular orders or to 

unpopular orders.  

Whenever a new request has to be acted upon, an 

agent is created that represents the given shipment. The 

goal of the agent is to find a proper transport service 

provider for carrying the shipment from its origin to the 

destination with respect to the given time windows. 

The agent starts negotiating with other agents 

representing bike couriers. These agents are utility 

based agents that act selfish to optimize their individual 

utility function. Beside the monetary costs the agent 

considers its fitness value for computing the utility 

value of orders. 

 

Definition 1 (The Orders Revenue). Let A denote the 

set of agents,   the set of orders,             the 

monetary value of order      and        
        a 

mapping that determines the costs of agent     of 

picking up and delivering orders S       by solving a 

TSPTW. The mapping           computes the 

expected monetary revenue of orders S for Agent   by 

 

                                                             (1) 

 

Definition 2 (The Fitness of a Bike Courier). Let 

              denote the constant physical fitness 

value of the courier represented by agent   

and               a mapping determineing the total 

distance that a courier has to drive for shipping 

orders S.  The mapping f            yields the 

fitness of the courier after delivering orders S. It is 

defined as  

 

                
        

              
                               (2) 
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Definition 3 (The Bike Courier’s Utility of Orders).  

The mapping u:         determines the utility of 

orders S for agent  . The mapping u is defined as 

 

                                                                  (3) 

 

where r        and f         are defined 

in Definition 1 and Definition 2, respectively. 

   
In transport logistics the costs of an order are commonly 

based on the additional distance that has to be driven by 

the courier for picking up and delivering the auctioned 

shipment. To compute the distance, the agent has to 

solve the Traveling Salesman Problem with Time 

Windows (TSPTW) (Dumas, Desrosiers, Gelinas, and 

Solomon 1995). We adapted the well established 

Solomon I1 insertion heuristic (Solomon 1987) to solve 

the TSPTW while supplementary considering the 

essential sequence constraints. The algorithm is not 

optimal, but is often applied because it obtains quite 

good solutions in a short time. Figure 1 shows the main 

procedure.  

 

Input: The pickup stop, the delivery stop,  

the current path 

Output:  A path containing the pickup and the  

delivery stop, if no path exists it returns null      

 

Procedure InsertionHeuristic(pickup,delivery,path) 

begin 

1: path   Insert(pickup, path) 

2: path   Insert(delivery, path) 

3: if (isEmpty(path)) then 

4:  path   Insert(delivery, path) 

5:        path   Insert(pickup, path) 

6: end if 

7: return path 

end  

Figure 1: The Procedure of the Insertion Heuristic. 

 

Figure 2 shows the insertion procedure. The new stop is 

inserted between all other stops in the current path 

successively. The subroutine append(x,y,z) appends 

stop x in path y before stop z and returns a new list. 

Within the subroutine checkTimeAndSeqConstraints() 

we check for all orders, if the delivery stop is behind the 

pickup stop as well as all time window constraints. The 

cost() function returns the distance of the path by 

summing up the weights of all edges. 

 

Input: The stop to insert, the current path 

Output: A path containing the new stop,  

if no path exists it returns an empty path   

 

Procedure Insert(stop, path) 

begin 

1: newPath   empty 

2: for all (stop) s   path do 

3:  tempPath   append(stop,path,s) 

4:  if(checkTimeAndSeqConstraints(tempPath) ∧ 

          (isEmpty(newPath) ∨ 
   cost(newPath) > cost (tempPath))) then 

5:        newPath   tempPath 

6:  end if 

7: end for 

8: return newPath 

end  

Figure 2: The Insert Procedure. 

 

Figure 3 shows the improvement procedure. Each stop 

of the current path is removed with the subroutine 

remove() and reinserted using the insert procedure. As a 

result, we have an anytime algorithm that finds better 

solutions the more time it keeps running. It returns a 

valid solution if it is interrupted. If no further 

improvement is possible, the current path is returned. In 

the worst case, the improvement algorithm creates all 

permutations of the stops (O(n!)). In order to reduce the 

worst case complexity, we integrated the abort() 

subroutine to stop the procedure after a defined number 

of cycles and to return the best valid solution. 

 

Input: The current path 

Output: An optimized path                              

 

Procedure ImprovementHeuristic(path) 

begin 

1: tempPath   empty 

2: while cost(path) > cost(tempPath) || abort() do 

3:  if (isEmpty(tempPath)) then 

4:   tempPath   path 

5:  end if 

6:  path   tempPath 

7:  for all (stop) s   tempPath do 

8:   remove(s,tempPath) 

9:   insert(s, tempPath) 

10:  end for 

11: end while 

12: return path 

end  

Figure 3: The Improvement Procedure. 

 

To ensure that autonomous selfish agents generate fair 

distributions, we developed a stable interaction 

protocol.  

 

Definition 4 (The Fairness of a distribution). The 

surjective mapping             maps an order 

    to an agent     or to the symbol  , if   is not 

allocated to any agent. It creates a partition of all 

elements    . Let dom(d) denote the domain of d. 

The inverse mapping  

 

                                            (4) 

 

defines all orders            of an agent  . The 

standard deviation σ of each participant’s individual 

utility  

 

                                                              (5) 
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determines the fairness of a distribution. The fairest 

distribution minimizes the standard deviation σ with 

 

                        .                                    (6) 

 

For sure, it is not a valid solution if all orders   are 

allocated to  , although Equation 5 and Equation 6 are 

zero. 

 We extended the Vickrey auction (Vickrey 1961) 

by introducing a currency for bidding on shipments. 

Every agent α gets a fixed start-up budget   
  that he 

may use for bidding at time 0. The function         

defines the utility value of order ω by agent α at time t 

similarly to Definition 3 with respect to already 

accepted orders. The bid is computed by the following 

equation: 

 

          
                     

 

  
      

 .                    (7) 

 

Consequently, the agent can at most bid the maximum 

amount of its current balance.  

 The winning agent         is determined by the 

shipment agent with 

 

                            .              (8) 

 

 

While using the Vickrey auction the winning agent has 

to pay the second highest bid: 

 

                    
        .               (9) 

 

Bidding the true valuation is the dominant strategy in 

private value Vickrey auctions for every participant 

(Shoham and Leyton-Brown 2009, S.319). Thus, the 

negotiation process is stable and no agent has any 

incentive to reveal false valuations and manipulate the 

negotiation process. Consequently, it is not possible for 

an agent to manipulate the outcome of a negotiation for 

its own purposes. Additionally, it must be guaranteed 

that agents can also increase their individual credit 

balance. To subsidize the transport of unpopular service 

requests, they get a higher amount of money for 

handling unpopular orders than for popular ones: 

 

           
                      

          
                    (10) 

 

The reward motivates the couriers to accept also 

unpopular orders to increase their credit balance. In 

addition, it prevents that one agent purchase only 

popular orders by auction if the budget reduces to zero.  

  

Theorem 1 (Upper bounds of     and   ). The highest 

utility value of an order is the upper bound for    and 

  .  

 

Proof. “A solution x is Pareto efficient – i.e., Pareto 

optimal – if there is no other solution x’ such that at 

least one agent is better off in x’ than in x and no agent 

is worse off in x’ than in x.” (Sandholm 1999, S.202). 

An advantage of using the Vickrey auction is that every 

order is auctioned “Pareto efficient to the bidder that 

values it the most” (Sandholm 1999, S.213). If    and    

are higher than the maximum utility value of an order, 

Equation 7 will not intervene the result. The mechanism 

is transformed into the standard Vickrey auction. Thus, 

the agents positioned in high-frequency areas will get 

the most popular orders because their additional costs 

are lower than the cost of other agents. Consequently, a 

Pareto efficient and cost minimized solution is 

constituted, which maximizes the social welfare (the 

total sum of all agent’s utility).    

 

Theorem 2 (Lower bounds of     and   ). The lowest 

utility value of an order is the lower bound for    and 

  . Otherwise, the negotiation maximizes neither the 

social welfare (the total sum of all agent’s utility) nor it 

will lead to fair allocations. 

 

Proof. The order is not sold to the bidder, who values it 

at most, if Equation 7 reduces the bid because of an 

insufficient budget. Consequently, the social welfare is 

not optimized. If    and    are always lower than the 

minimum computed utility value, the budget of all 

agents reduces monotonously and converges to zero. As 

a result, the allocation will not lead to fair allocations, 

but the orders are sold successively without considering 

the potential for allocating efficient solutions. 

 

It addition, the initial budget   
  has to be sufficient low 

that it impacts the allocation. To support waiting 

couriers who are working but not processing any order, 

they are rewarded by receiving a small amount w for 

each waiting unit. 

 However, the theorems hold only for the auctioned 

item in the actual situation. If another shipment is 

auctioned afterwards, the situation can change 

significantly and earlier profitably valued orders can be 

rendered worse. In addition, the complexity is 

aggregated by the high degree of dynamics that result 

from unexpected events like changing traffic conditions 

and delays. To adapt tours and timetables in respect to 

the current situation, we apply the Vickrey auction 

iteratively to exchange tasks between the agents. In this 

case the auctioneer is also a service provider and can 

optionally refuse a deal. To avoid this problem, the 

auctioneer only accepts a transaction if he receives the 

profit that he would gain by serving the request by itself 

from the winner of the auction. 

 

5. EVALUATION USING MULITAGENT-

BASED SIMULATION 

Multiagent-based simulation (MABS) combines 

concepts of mulitagent systems and qualitative 

simulation. Applying MABS for evaluating multiagent 

systems before their deployment in real applications is 

an accurate cost and time reducing method (Schuldt, 

Gehrke, and Werner 2008). This holds especially for 
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scenarios with run-time agent interactions that cannot 

be predicted in advance (Jennings 2001). 

 PlaSMA (Warden et al. 2010) is a simulation 

middleware that extends the well-known JADE 

framework (Bellifemine, Caire, and Greenwood 2007) 

which implements the standards for agent interaction 

and communication defined by the IEEE Foundation 

for Intelligent Physical Agents (FIPA). PlaSMA 

provides a discrete time simulation that ensures a 

correct conservative synchronization with time model 

adequacy, causality and reproducibility (Schuldt et 

al. 2008). The GUI provides information about time 

progression and the current simulated processes, e.g., 

how many active agents are registered at the platform as 

well as the positions of the physical objects.  

The physical world within the simulation 

environment is modeled as directed graph. Nodes 

represent traffic junctions or logistic sources and sinks 

while edges represent different types of ways, e.g., 

roads, motorways, trails, and waterways. They have 

additional parameters that determine the maximum 

allowed velocity and the traffic density on an edge. If 

the edge is denoted with a high traffic density, the 

maximum possible velocity is reduced respectively. To 

simulate dynamics of the environment and the 

appearance of unexpected events (e.g., accidents and 

changing traffic conditions), the values can vary during 

simulation runs. 

In order to model sound panning and controlling 

processes in the logistic domain, we extended PlaSMA 

to import transport infrastructures from OpenStreetMap
 

(see: www.openstreetmap.org) (OSM) databases. This 

enables the integration of high detailed graphs with up 

to 300,000 edges and 150,000 nodes. After clipping a 

user defined map section and choosing relevant types of 

edges (e.g., roads, waterways, highways and railways) 

several preprocessing procedures are started to reduce 

the complexity of the overall graph without effects on 

the granularity of the infrastructure model. For example, 

redundant nodes as well as nodes that are only 

important to mark the course of the roads are deleted. 

The result is a directed graph which includes 

information about the real world speed limits, the 

distance as well as the type of an edge.  

 Particularly within large infrastructures 

determining the shortest path between nodes is an 

essential, costly, and time-consuming procedure within 

the decision making process of an agent (see Section 4). 

Consequently, we implemented Dijkstra’s single-source 

shortest paths search (Dijkstra 1959) that is realized by 

a memory-efficient joint representation of graph and 

radix heap nodes (Ahuja, Mehlhorn, Orlin, and 

Tarjan 1990). Therefore, we can guarantee that the 

search is optimal and has linear time complexity. 

To induce meaningful results, the simulation 

platform supports batch runs for the evaluation of a set 

of scenarios as well as multiple runs of a certain 

scenario with varying random seeds for the reproducible 

generation of random variables. In each run individual 

performance indicators are measured and saved in a 

database. Thus, they can be verified with an arbitrary 

spreadsheet program. 

Further detailed information about the PlaSMA 

Simulation framework is provided, e.g., by Gehrke and 

Ober-Blöbaum (2007) and by Warden et al. (2010) as 

well as on the corresponding website 

http://plasma.informatik.uni-bremen.de. 

 

6. RESULTS 

In several preliminary scenarios we determined 

plausible values for an appropriate start-up budget and 

the amount of money an agent receives for transporting 

popular or unpopular orders. Thereby, we respected the 

upper and lower bounds deduced from Theorem 1 and 

Theorem 2. Afterwards, the evenhanded mechanism 

was evaluated by the comparison with a distance 

minimizing algorithm.  

6.1. Experimental Setup 

In this investigation we modeled the road network of 

the City of Bremen, Germany (see Figure 4). The whole 

modeled transport infrastructure of Bremen contains 

2,103 Nodes and 4,448 Edges. 

 

 

 
Figure 4: The Picture Shows a Part of the Transport 

Infrastructure.  

 

The costs of handling a specific task are equal to the 

additional distance in kilometers, which must be driven 

by the courier. Accordingly, we assume that the revenue 

for delivering an order is twice the distance in 

kilometers between its origin and destination. This 

assumption reflects real pricing systems. The maximum 

possible velocity of the couriers is set to 19 kilometers 

per hour and the fitness value          to 30 for all 

agents that represent bike couriers. With respect to 

Definition 2, it implicates the realistic assumption that 

the fitness of each courier is half as much after driving 

30 kilometers. 

 To investigate the fairness of the mechanism, we 

compared the computed allocations with solutions that 

were computed by a distance minimizing algorithm. 

Therefore, we implemented a distance minimizing 

algorithm that is based on our approach. However, this 

requires totally cooperating agents that accept every 

order even if it is less profitable for themselves. A 

currency is not needed. As a result, the orders are sold 

by the use of the standard Vickrey auction to the bike 

courier, who minimizes the total costs, which are equal 
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to the driven distances. Thus, the first shipments will 

probably be served by one courier, because the 

additional costs are likely lower than the costs of the 

other couriers that are waiting at the depot. The 

negotiation protocol for changing orders during 

operations is adapted accordingly.  In order to 

implement reactive behavior in both mechanisms, each 

agent starts a negotiation with another arbitrary bike 

agent consecutively in every minute. 

 The customer orders in the simulated scenarios are 

based on real customer orders of a representative week 

provided by a German bike courier company. The data 

include the origin, the destination, the time windows, 

and the dispatching time. We simulated a whole week 

with more than 1000 orders that have to be dispatched. 

The number of orders varied between 155 and 273 each 

day.  

 

6.2. Parameter Optimization  

We started simulating several preliminary scenarios 

with varying values for   ,   , and the start-up budget 

  
 . We observed that the parameters    and    adjust 

the influence of the mechanism. If higher values are 

used, the influence of the mechanism is lower. As a 

result, the total distance of all couriers is decreasing, 

while it does not lead to fair allocations. Choosing low 

values we observed the same effect which is described 

in Theorem 2. The tours are neither fair nor do they 

have a short distance. The same effect could be 

observed by varying the start budget   
 , respectively. 

The best results within the infrastructure of Bremen 

were obtained with the values      ,       and 

  
  = 10. With these values the mechanism computed 

fair allocations with an adequate total distance. The 

parameters scale with the distances an agent must drive. 

Consequently, they are dependent on the infrastructure 

of the catchment area. 

 

6.3. Comparison of fairness  

To evaluate the approach, we compared the generated 

distribution of both algorithms. We simulated different 

scenarios with five to ten couriers working 

concurrently. 

 

Figure 5: The Black Bars Show the Revenue of 10 Bike 

Couriers After One Week using the Evenhanded 

Dispatching Approach, while the White Bars Depicts 

the Revenues using the Distance Minimizing 

Algorithm. 

 

Figure 5 shows the revenue of the bike couriers after a 

whole week. Respectively, Figure 6 depicts the covered 

distances. While the maximum pay gap in distance 

minimized distributions is 75.7%, the highest difference 

in evenhanded allocations is only 22.6%. Additionally, 

the maximum difference in covered kilometers varies 

up to 72.0% using the distance minimizing algorithm 

and up to 30.1% using the evenhanded approach. 

Indeed, after one week the pay gaps using distance 

minimizing algorithms are significantly higher than 

using the evenhanded approach.  

 

 
Figure 6: The Black Bars Show the Covered Distances 

of 10 Bike Couriers After One Week using the 

Evenhanded Dispatching Approach, while the White 

Bars Depict the Covered Distances using the Distance 

Minimizing Algorithm. 

 

 
Figure 7: The Black Bars Show the Bike Courier’s 

Utility of Orders of 10 Bike Couriers After One Week 

using the Evenhanded Dispatching Approach, while the 

White Bars Depicts the Utility Values using the 

Distance Minimizing Algorithm. 

 

Figure 7 shows the bike courier’s utility of all orders 

defined by Definition 3 of the whole week. As the 

fitness value affects the utility value, we computed the 

utility value for each day and summed up the results. 

The utility values are used to determine the fairness of 

the distribution with respect to Definition 4. While the 

average standard deviation σ of each participant’s 

individual utility value is 1153.82 utility units using the 
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distance minimizing algorithm, it is only 226.69 units in 

the evenhanded allocation. The obtained results reveal 

deviations higher than 80.36% concerning the fairness 

of the allocations.   
 However, Figure 6 indicates that the total distance 

increases from 3672,78 km to 6038,24 km and every 

courier has to drive more kilometers than in the distance 

minimized distribution. Therefore, we investigated 

separate days individually. Figure 8 shows that the 

evenhanded approach is even significant fairer after one 

day in contrast to the distance minimizing algorithm. In 

addition, it shows that courier No. 8 has to drive nearly 

half of the distance of the entire week on one day.  

 

 
Figure 8: The Black Bars Show the Driven Distances of 

10 Bike Couriers After One Day using the Evenhanded 

Dispatching Approach, while the White Bars Depict the 

Driven Distances using the Distance Minimizing 

Algorithm. 

 

Other results from scenarios with less bike couriers (not 

shown in diagrams) pinpoint that the reduction of bike 

couriers lead to a decreasing number of orders operated 

within the guaranteed time windows.  

 

6.4. Discussion 

Several simulated scenarios based on real customer 

orders revealed that distance minimizing algorithms are 

not applicable for the dispatching of bike couriers who 

are paid by commission fees on a daily basis. The 

results show that the utility, the driven distances as well 

as the revenue of the couriers are unequally distributed 

and varying significantly using the distance minimizing 

algorithm. In contrast, our approach creates fair 

distributions if we compare the effort as well as the 

individual revenue of all couriers. In addition, the 

fairness as specified in Definition 4 indicates that the 

evenhanded approach computes fair distributions. 

 However, the driven distances of the whole week 

are higher for all couriers. Nevertheless, the results 

show that it is reasonable to cover larger distances in the 

entire week, if the total distance is equally distributed 

over the days. The courier does not prefer driving the 

most kilometers on one day while waiting for requests 

on all other days. He would pass over his physical limits 

on one day. Moreover, the intention of a courier is to 

carry shipments and not to wait at the central depot and 

earn even less money. The reduction of operating 

couriers is not reasonable because customer requests 

cannot be determined in advance and must be serviced 

within short time windows. In real scenarios, cost-

intensive external carriers are instructed to deliver the 

orders in time, if not enough couriers are available. 

Autonomous logistic processes based on 

mulitagent technology ensure a high flexibility and 

adaptivity in dynamic environments.  In addition, it 

allows the modeling of a system with heterogeneous 

agents having individual capabilities. For instance, the 

maximum possible velocity and the fitness of 

represented couriers may differ. 

In summary, the evenhanded approach enables a 

fair allocation of orders to bike couriers by a multiagent 

system with autonomous selfish acting agents with a 

reasonable increase of the driven distances.  

 

7. CONCLUSION AND OUTLOOK 

In this paper we presented a new approach to generate 

fair distributions for the dynamic pickup and delivery 

problem (PDP) and showed its application to bike 

couriers. 

The mulitagent-based simulation platform PlaMSA 

served to evaluate the approach within the transport 

infrastructure of Bremen. We dispatched real customer 

requests provided by a German bike courier company. 

The results reveal that applying distance 

minimizing algorithms is not pertinent, whereas our 

fairness approach motivates couriers and distributes the 

effort as well as the revenue equally to the bike couriers 

with respect to their fitness. 

Automated evenhanded dispatching enables new 

business models for commercial internet dispatching 

platforms of bike couriers implementing autonomous 

logistic processes. Couriers can register themselves with 

the agent system by their mobile application for 

receiving orders. Afterwards, the mulitagent system 

computes evenhanded allocations of orders to bike 

couriers and suggests routes while taking into accout 

the dynamics of the environment. Therefore, the 

approach enables large scale online dispatching 

platforms which can be used by couriers and retailers to 

offer reliable deliveries as well as sustainable 

transportation.  

 With respect to new transport visions and the 

increasing usage of e-bikes for the transport of heavy 

goods the relevance of automated dispatching platforms 

for logistic transport service providers paid by 

commission fees is increasing. 

To decrease the total effort and distribute the 

revenue equally, also profit sharing methods for freight 

carriers may be considered (e.g., Krajewska, Kopfer, 

Laporte, Ropke, and Zaccour 2007). However, profit 

sharing concepts changes the pricing system and 

couriers are not paid by commission fees anymore. 

Consequently, this effects the agent’s strategies as well 

as their incentive to deliver shipments. 

Further investigations will focus on the integration 

of traffic simulation within the PlaSMA simulation 

framework as well as on modeling and simulation of 
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unexpected events to evaluate the evenhanded 

mechanism in dynamic environments. Another point of 

interest is how a heterogeneous fleet affects the fairness 

of a distribution. We seek to carry over techniques well-

proven in autonomous logistic processes such as team 

formation and cooperation of selfish acting agents. 

In order to develop new potential for horizontal 

cooperation, extra change depots in inner city districts 

where couriers can exchange shipments are of special 

interest.  
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