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ABSTRACT

The additive fault tolerant control (FTC) for delayed sys-
tem is proposed in this paper. To design the additive con-
trol, two steps are necessary, the first one is the estimation
of the sensor fault amplitude which is realized by using the
Luenberger observer and the second one is the addition of
the additive fault tolerant control law to the delayed sys-
tem nominal control. The nominal control law of delayed
system is designed by using the Lambert W method.

Index Terms— Additive FTC, delayed system, Lam-
bert W method, Luenberger observer, sensor faults.

1. INTRODUCTION

Time delay phenomena appear naturally in the modeling
of many systems. Actually, we remark that the majority
of industrial system controls are implemented via a nu-
merical calculator, so if a system haven’t an intrinsic time
delay, often a time delay appear via the control loop[1],
[2]. Time delay systems can be represented by delay dif-
ferential equations (DDEs), which belong to the class of
functional differential equations (FDEs), and have been
extensively studied in [3], [4], [5] and [6]. During recent
decades, the Lambert W function has been used to develop
an approach for the solution of linear time-invariant (LTI)
systems of DDEs with a single delay [7], [8]. The Lambert
W approach is used to resolve many problem such that sta-
bility [9], [10], design by state feedback [11].
Moreover to the presence of time delay, many type of fault
can affect the delayed system such as sensor fault, actuator
fault and system fault. So it’s necessary to design a control
able to tolerating potential faults in these systems in order
to improve the reliability and availability while providing
a desirable performance [12]. This field control is known
as fault-tolerant control systems ; it can maintain overall
system stability and desired performance in the event of
such failures [13-15].
This work deals with the design of an additive FTC de-
veloped in [13, 14] as extension to delayed system where
its nominal control is designed by using the Lambert W
approach.

2. DESIGN OF THE NOMINAL CONTROL OF
DELAYED SYSTEM BY USING THE MLW

METHOD

In this section we construct the nominal control of delayed
system by using the Lambert W method.

2.1. Definition of Lambert W function

Let’s x ∈ C be a solution, to determinate, of the equation
xex = y for y ∈ C , This type of equation can be resolve
by using the Lambert W functionWk such that [11,16,17]
x = Wk(y) .
With:
k branches of Lambert W function andk ∈] − ∞, +∞[,
k = 0 principal branch [11,16,17].
Consider the delayed system:

ẋ(t) = Ax(t) + Ad x(t − d) (1)

whereA andAd are n×n matrices,x(t) is an n×1 state
vector andd is a constant time delay. this can be repre-
sented by the delayed differential equation (DDE):

ẋ(t) − Ax(t) − Ad x(t − d) = 0 (2)

Let’s x(t) = eStx0 be a solution of (2) withS: matrix,
with appropriate dimension, to determinate. Replacing the
expression ofx(t) in (2) we find:

(S − A − Ade
S(−d))eStx0 = 0 (3)

by consequence we find:

(S − A − Ade
S(−d)) = 0 (4)

then:
S − A = Ade

−dS (5)

multiplying the equation (5) by(d ed Se−d A) we find:

d(S − A)(e(S−A)d) = Ad d e−A d (6)

In this step we can use Lambert W function withx =
d (S − A) andy = Ad d e−A d , by consequence the ex-
pression ofS is:

S =
1

d
W (Ad d e−A d) + A (7)
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equation (7) represent the characteristic equation for the
general time-delay system [9]. The roots of equation (2)
are the eigenvalues of the matrixS and can be used to
describe the stability of the DDE (2), which represent the
stability of general system.

2.2. Determination of the state feedback gain of de-
layed system

For a scalar DDE with state feedback as shown Eq.(8)

{

ẋ(t) = a x(t) + ad x(t − d) + bu(t)
u(t) = k x(t)

(8)

With k is the feedback gain determinate by using the Lam-
bert W method The Lambert-W function can assign the
real part of the rightmost pole exactly, by using this rela-
tion:

Re(S0 =
1

d
W0(add e−(a+bk)d) + (a + b k)) = λdesired

(9)
For example in [11], for the system (8) witha = 1, ad =
−1, b = 1 andd = 1,

Re(S0 =
1

d
W0(add e−(a+b k)d) + a + b k) = −1 (10)

Then, the resulting value ofk is−3.5978.
After the design of the nominal control of delayed system
we will determinate the additive control which can com-
pensate the sensor fault.

3. DESIGN OF THE ADDITIVE CONTROL

The fault accommodation is based on the addition of an ad-
ditive controluad to the nominal control lawu. To design
the additive control, two steps are necessary, the first one
is the estimation of the sensor fault amplitude and the sec-
ond one is the addition of the additive fault tolerant control
law to the nominal control of delayed system.

3.1. Sensor fault amplitude estimation

When a sensor fault affects the closed loop system the
tracking error between the reference input and the mea-
surement will no longer be equal to zero. In this case, the
nominal control law tries to bring the steady-state error
back to zero. Hence, in the presence of sensor fault, the
control law must be prevented form reacting. This can be
achieved by cancelling the fault effect on the control input
[13, 14].
A Luenberger observer [1], [18] will be used to estimate
the sensor fault amplitude which affects the delayed sys-
tem. Consider the linear time invariant LTI delayed sys-
tem:

{

ẋ (t) = Ax (t) + A d x (t − d) + B u (t)
y (t) = C x (t)

(11)

If the number of outputs is greater than the number of con-
trol inputs, the designer of the control law selects the out-
puts that must be tracked and breaks down the output vec-
tor y(t) as follow:

y (t) = Cx (t) =

(

C1

C2

)

x (t)=

(

y1 (t)
y2 (t)

)

(12)

The feedback controller is required to cause the output
vectory1 (t) ∈ <p(p ≤ r) to track the reference input
vectoryr such that in steady-state:

yr (t) − y1 (t) = 0 (13)

To achieve this objective, an integrator vectorε̇ (t) is added
which satisfy the following relation:

ε̇ (t) = yr (t) − y1 (t) (14)

With: ε (t) =
∫

(yr (t) − y1 (t)) dt

figure (1) represent the adding of integrator and the dia-
gram of estimation and compensation of sensor fault.
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Figure 1. Diagram of additive fault tolerant control.

So the nominal control represented by (8) becomes:

u (t) = k x (t) + ε (t) (15)

The closed loop system becomes:

{

Ẋ (t) = A f X (t) + A df x (t − d) + Gyr (t)
y (t) = Cf X (t)

(16)

with:






























X (t) =

[

x (t)
ε (t)

]

, A f =

[

(A + B k) B

−C 0

]

,

A df =

[

Ad

0

]

=

[

Adf1

Adf2

]

,

Cf =
[

C 0
]

, G =

[

0
1

]

.

For sensor faults, the output equation given in (11) is bro-
ken down according to (12), and can be written as:

y (t) = C x (t) + F f (t) =

(

y1 (t)
y2 (t)

)

(17)
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If the delayed system is observable the Luenberger ob-
server can be written as follow:

˙̂
X (t) = A f X̂ (t) + A df x̂ (t − d) + Gyr (t)

+ L (y (t) − ŷ (t)) (18)

ŷ (t) = Cf X̂ (t)

Where:L: observer gain,̂y (t) , x̂ (t − d) andX̂ (t) are re-
spectively estimated output, delayed estimated state vector
and augmented estimated state vector. Then we define the
observation errore (t) = X (t) − X̂ (t), so the error dy-
namic of this relation is governed by this equation:

ė (t) = Ẋ (t) −
˙̂

X (t)

= A f X (t) + A df x (t − d) + Gyr (t)

−

[

A f X̂ (t) + A df x̂ (t − d) + Gyr (t) (19)

+ L (y (t) − ŷ (t))]

ė (t) = M e (t) + A df x̃ (t − d) − L F f (t)

with:






M = A f − LCf =

[

M11 M12

M21 M22

]

x̃ (t − d) = x (t − d) − x̂ (t − d)

Knowing that in steady state whereė (t) = 0, then we can
write this equation:

ė (t) = 0 = M e (t) + A df x̃ (t − d) − L F f (t) (20)

And by consequence:

L F f (t) = M e (t) + A df x̃ (t − d) (21)

In our caseF is scalar and equal to 1, the gain of observer

L =
[

L1 L2

]T
is designed by using the augmented

system, thenLF is not invertible, for this reason we make
the following decomposition:

L 1 F f̂ (t) = M11 x̃ (t) + M12 ε̃ (t) + A df1 x̃ (t − d)
(22)

Then the expression of the sensor fault amplitude is given
by this equation:

f̂ (t) = (L 1 F )
−1

(M11 x̃ (t) + M12 ε̃ (t)
+A df1 x̃ (t − d))

(23)

3.2. Compensation of sensor fault

The compensation for sensor fault effect on the closed-
loop system can be achieved by adding a new control law
to the nominal one [13, 14]:

u (t) = k x (t) + ε (t) + uad (t) (24)

The output and the integrator are affected such that:






y (t) = C x (t) + F f (t)
ε (t) = ε (t) + fε (t)
fε (t) =

∫

(−F f (t)) dt

(25)

If C = 1, by using (24) and (25) we can write the control
law as follow:

u (t) = k x (t)+ k F f̂ (t)+ ε (t)+ fε (t)+uad (t) (26)

The effect of sensor fault, in control and by consequence
in system, can be compensated by using the fault ampli-
tude estimation and by calculating the additive control as
follow:

uad (t) = − k F f̂ (t) − fε (t) (27)

4. SIMULATION EXAMPLE

4.1. Estimation and compensation of sensor fault

Consider the linear time invariant delayed system:
{

ẋ (t) = −x (t) − x (t − d) + u (t)
y (t) = x (t)

(28)

With: d = 1s.
The state feedback control determined by using the rela-
tion (9) leads to the numerical value of gaink = −21.86,
this gain is obtained by placing -3 as desired eigenvalue of
S.
The closed loop-system augmented by integrator becomes:






















Ẋ (t) =

[

−22.86 1
−1 0

]

X (t) +

[

−1
0

]

x (t − d)

+

[

0
1

]

yr (t)

y (t) =
[

1 0
]

X (t)
(29)

Then the nominal control law take this form:

u (t) = −21 . 86 x (t) + ε (t) (30)

To estimate the sensor fault amplitude we use the Luen-
berger observer represented by (18). The observer gainL

is determined such that the poles of(Af − LCf) equal
20 times of the ones of(Af ). So the numerical value of

L is: L =
[

838 398
]T

It’s clear that the matrixF is
scalar and the gainL is a vector, so(LF ) is not invertible,
for this reason we use the decomposition represented by
equation (22). Let us now examine the influence of sensor
fault on the delayed system and the way to compensate for
their effect. We will consider the type of sensor fault as
a bias. The value of sensor fault is initialized to zero and
it’s switched to 0.1 at momentt = 400s, then the output
equation of system (28) becomes:

yf (t) = y (t) + 0.1 (31)

The input reference is equal to:yr (t) = 0.5.
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Figure 2. Sensor fault estimation.

Figure 2 shows that the observer can estimate the am-
plitude of sensor fault.
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Figure 3. Time delay system output with and without fault
compensation.

Figure 3 shows the time evolution of the output of de-
layed system in the occurrence of sensor fault. It’s clear, in
the curve of the output with compensation, that the addi-
tive control added to the nominal control can compensate
the effect of sensor fault.
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Figure 4. Time delay system control with and without
fault compensation.

Figure 4 shows that the control law takes its steady
value after compensation of sensor fault, but at a fault oc-
currence time the control law effect an important devia-
tion. This deviation due to the important value of the ob-

server gain and it is relative to the dynamic of same de-
layed system. The deviation can be accepted if we haven’t
constraints in the control law.

4.2. Effect of observer gain value to the compensation

In this section we present the effect of the observer gain
value of the fault compensation error.
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Figure 5. Time delay system output with fault compensa-
tion for different value of observer gain.

a: Case ofL determinate such that the poles value of(Af−

LCf ) equal 20 times of the ones of(Af ).
b: Case ofL determinate such that the poles value of
(Af − LCf) equal 3 times of the ones of(Af ).

It’s clear that if the value ofL is more important, the error
of compensation tend to zero.
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Figure 6. Time delay system control with fault compen-
sation for different value of observer gain.

a: Case ofL determinate such that the poles value of(Af−

LCf ) equal 20 times of the ones of(Af ).
b: Case ofL determinate such that the poles value of
(Af − LCf) equal 3 times of the ones of(Af ).

In other part, if the value ofL is more important the de-
viation of control in the occurrence of fault is more im-
portant. The optimal case is choose according to the de-
sired performance, for example, if we haven’t constraints
in the control law we can choose the case (a), but if the
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control law had a saturation we must reduce the value of
L by accepting an error of fault compensation, this case
we encouraged to study the fault tolerant control with con-
straints.

5. CONCLUSION

In this paper we have treated the fault tolerant control of
time-delayed system by using the Luenberger observer to
estimate the fault amplitude. An additive control is added
to the nominal control law determinate by using Lambert
W approach to compensate the effect of fault.
We note that the use of observer provoke a deviation in the
control evaluation at time of fault occurrence this we en-
courage to study the fault tolerant control with constraints.
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[13] H. Noura, Méthode d’accommodation aux défauts:
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