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ABSTRACT 

Due to the increasing usage of complex materials in 

lightweight design the development of proper material 

models for the prediction of damage and failure within 

Finite Element simulations has become an extensive 

task. Other fields of application already have shown that 

the introduction of Soft Computing and Machine 

Learning methods can be very beneficial for getting the 

complexity under control. The contribution aims at 

sketching a systematic approach to the application of 

machine learning methods in the field of material 

modelling. The focus is put not only on the definition of 

well performing mathematical models, but also on 

process aspects of generating and maintaining the 

mathematical models within reproducible, requirement- 

driven and controlled iterative environments for 

Computer Aided Engineering. 

 

Keywords: material modelling, finite element 

simulation, soft computing, machine learning, artificial 

neural networks 

 

1. INTRODUCTION 

The Finite Element Method (FEM) is a well established 

technique in a wide range of disciplines, most 

successfully applied in mechanical engineering. In the 

automotive and aerospace industries the FEM is 

commonly used for structural design and development 

of new products. It enables modern lightweight designs 

and facilitates the development and usage of new and 

highly specialized materials (composites, advanced 

aluminium alloys, high strength steels, etc.) as well as 

joining technologies (spot welding, adhesive bonding, 

etc.). 

The quality of FEM results depends strongly on the 

availability of appropriate material models that describe 

the nonlinear behaviour and failure of these materials. 

The development and identification of new material 

models has become an increasingly complex and 

expensive process, partly as a consequence of the 

conventional approach of using purely analytical, 

physically motivated mathematical models for 

predicting material behaviour. Other fields of 

application have shown, however, that example based 

approaches, such as Machine Learning and Pattern 

Recognition, may outperform conventional methods 

and significantly reduce the development effort (Bishop 

2006). Furthermore, their superiority even increases 

with the complexity of the problem.  

At present the application of Machine Learning 

and Soft Computing methods to material modelling in 

computational mechanics, see, e.g., Lefik and Schrefler 

(2003), Hashash, Jung and Ghaboussi (2004), Aquino 

and Brigham (2006), or Kessler, El-Gizawy and Smith 

(2007), is rather marginal. The research project 

CoMModO (Complex Material Modelling Operations), 

which is funded by the Austrian Research Promotion 

Agency and the Austrian Federal Ministry of Transport, 

Innovation, and Technology under the initiative 

"ModSim Computational Mathematics" within the 

program "Research, Innovation and Technology in 

Information Technology", is intended to overcome this 

deficit. The proposed solution strategy is the smart 

combination 

  

 of Machine Learning as well as Soft 

Computing methods (example based 

modelling)  

 plus the interpretation of experimental data in 

the framework of time-series classification and 

forecasting problems 

 with an object-oriented design approach in 

order to develop a requirements-driven 

process, 
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for the modelling of material behaviour in FEM 

simulations. 

The present paper aims at giving an overview of 

several points of attack where Soft Computing and 

Machine Learning techniques can be used for achieving 

improvements in the modelling of complex material 

behaviour to be applied in Finite Element Methods.  A 

number of approaches to tackling this problem are 

summarised, which can be understood as escalating 

steps in a controlled process for developing and 

building material models. Although here applications to 

the modelling of weld spots are presented as examples 

for most of these steps, the basic CoMModO idea and 

methodology are applicable to other complex material 

types and joining technologies as well. 

 

2. ESTIMATING THE KEY FEATURES OF 

MATERIAL BEHAVIOUR 

When carrying out material tests one typically obtains a 

number of curves like the one shown in Figure 1, where 

the applied force is plotted against the displacements of 

a test specimen. In the first run we describe the curve 

via parameters that characterize its key features. In the 

case of Figure 1, these parameters could be the elastic 

stiffness, E, of the initial slope of the curve, the 

maximum force Fmax, or some integral associated with 

energies, e.g., Wmax. Such parameters may have a 

physical meaning and are often used as key parameters 

and coefficients in conventional analytical material 

models. Nevertheless, their prediction and estimation 

based on material specifications and load conditions can 

be challenging. 

 
Figure 1: Generic force-displacement curve from a 

material test. 

 

2.1. Description of Physical Parameters 

In our first process step we use Machine Learning 

methods for the definition and construction of models 

that describe such physical parameters. Assuming that a 

suitable number of test results are available, the first 

step consists in evaluating the measurements extracted 

from them. This process step can also be seen as a first 

Data Mining session on all the material data of the 

given test set. This way one gains insight into the 

necessary parameters and material specifications that 

contribute to the problem, as to which material 

properties are important for the description of physical 

parameters of the material behaviour. This first step 

constitutes a method for describing the material 

behaviour, which works at least for materials that are 

not excessively complex. 

An example of this can be seen in Figure 2, where 

the response of a model for estimating the maximum 

axial force sustained by weld spots under different 

loading conditions and for different combinations of 

sheet materials and sheet thicknesses is plotted against 

the values measured in a series of some hundred 

experiments. Each dot represents a test case. Blue dots 

indicate that the sample was used for training the 

Machine Learning model. Red and green dots denote 

test and validation samples, which were not seen by the 

model during the training and tuning phase and 

therefore can be used for validation to assess the 

generalization properties of the model. 

 

 
Figure 2: Estimates of maximum force sustained by a 

weld spot. 

 

The resulting models can be employed for 

estimating the material parameters for various 

conditions and may be inserted accordingly into the 

Finite Element material description. 

 

2.2. Process Scheme for Material Model Design 

It is a very important point that the generation and 

maintenance of the prediction models are embedded 

into a proper process scheme. 

Of course, the models cannot predict behaviour 

that has not been seen before and that is not represented 

by the test cases and the parameterisation in some way. 

However, the adaptation of the models to new data can 

be done very quickly if this behaviour is already 

described by the given or measured parameters. In case 

parameters are missing from the model one gets the 

confirmation that additional parameters are required. 

The process also automatically supports the 

identification of these parameters. In the case that some 

candidate parameters are available and measured in the 

data set, the identification of these parameters can be 

performed with the help of so called feature selection 

algorithms (Kittler 1986, Somol and Pudil 2000).  

The flow chart shown in Figure 3 represents a 

standard procedure within Data Mining processes. The 
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important issue is that it should be implemented as a 

standard procedure in material modelling as well. 

 
Figure 3: Machine Learning based process for material 

modelling. 

 

When executing a series of material tests, one 

needs a good guess of the parameters required for the 

description of the desired behaviour to start with. These 

parameters then need to be measured and collected 

consistently during the material tests. It is important to 

support this procedure at a strategic level, so that the 

test data sets collected over time and different test runs 

and organizations can be put into one common context 

and database. Then Data Mining methods can be 

applied by generating Machine Learning models. The 

general Data Mining procedures (Witten and Frank 

2005), with their accompanying validation processes, 

provide feedback about which parameters are relevant 

for describing and predicting the desired material 

behaviour. The methods give referable evidence 

whether the chosen parameters and test cases are 

sufficient or if new parameters are needed for a correct 

prediction of the material behaviour. Once the resulting 

models meet the performance goals, they can be 

implemented for daily use. When new material test data 

is available, the model predictions should be promptly 

evaluated and assessed. If the predictions do not match 

the experimental data, the models can be easily adapted 

by including the new data in further training of the 

prediction models. If the new data shows behaviour that 

cannot be described with the given parameterisation, the 

design process described above needs to be started from 

the beginning.  

Among the major advantages of the Machine 

Learning based approach are its capabilities for 

preserving and reusing given knowledge. Also, it can be 

adapted to new experience much more quickly and 

efficiently than is generally possible with purely 

analytical approaches. If models are formulated 

analytically, it commonly happens that one has to begin 

from scratch if new data does not fit the existing model 

structure, so that the danger of running into extensive 

trial and error scenarios increases with the complexity 

of the problem.  

 

2.3. Material Model Validation using Monte Carlo 

methods 

The best prediction of the key parameters is of little use 

if the underlying material model is not sufficiently 

flexible for describing the behaviour of the material 

under study. If the estimated key material parameters 

are inserted into the material model, a validation of the 

model’s performance still has to be carried out. If the 

performance goals are not met, further efforts are 

required. 

In order to assess the flexibility of a given material 

model, a standard approach is to use Monte Carlo 

Simulation (Metropolis and Ulam 1949, Rubinstein and 

Kroese 2008). In such an analysis, material model 

parameters are scattered within suitable ranges to test if 

the material model is sufficiently flexible for covering 

the behaviour measured in a set of experiments. If this 

flexibility is found to be sufficient, the rest of the 

required material model parameters that were not 

estimated in the previous step can be identified by 

means of an optimisation process, for example an 

Evolutionary Algorithm (Bäck 1996) that seeks to 

minimise the deviation from the experimental 

measurements. The search space for this optimisation 

has been covered by the exploratory Monte Carlo 

Simulation carried out before, ensuring that this 

optimisation is able to achieve the required parameter 

identification. 

An example of such an analysis is presented in 

Figure 4, which shows several performance parameters 

for the resulting Monte Carlo samples (black dots) and 

some results from material tests (red dots). The cloud of  

 
Figure 4: Validating a model by means of a Monte 

Carlo Simulation approach. 
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black dots identifies the region of parameter space that 

can be reached with a given analytical model. In the 

example shown, the analytical model lacks sufficient 

flexibility for concurrently reaching the material test 

results for several key parameters. It can be concluded 

that this analytical model is not capable of satisfactorily 

reproducing the targeted material behaviour. 

 

3. EXAMPLE BASED DESCRIPTION  

In the case of complex material behaviour, analytical 

approaches may reach their limitations in providing 

suitable descriptions or models, and example based 

approaches like Machine Learning may in principle be 

the better choice or at least a valuable complement. For 

example, the universal approximation properties shown 

by Artificial Neural Networks allow the reproduction of 

any given functional relationship (Hornik, Stinchcombe 

and White 1989), as long as a sufficient number of 

neurons are used in the hidden layer(s).  

3.1. Interpretation as a Time-Series Problem 

In order to extract the maximum information out of 

experimental data, the problem is formulated as a time 

series prediction. From this point of view, each one of 

the samples constituting, for example, an experimental 

force-displacement curve can be seen as a training 

example for the Machine Learning models. 

This different view of the problem helps in 

overcoming the main counterargument used against 

Machine Learning models as well, namely that such 

approaches require excessive amounts of data and 

numbers of tests for proper models to be trained. This 

line of reasoning comes from the practical use and 

mindset of Design of Experiments approaches, where 

the main features of the results are already determined 

by the choice of the model’s structure in the beginning. 

The test data are then only set up and used for fixing 

some coefficients of the predetermined assumption. 

When using analytical models, most aspects of their 

behaviour are already predetermined by the choice of 

ansatz functions.  

With the interpretation as a time series problem the 

rate effects and path dependent behaviour become 

conceptually uncomplicated, too. Historic values, 

accumulated signal features or special filter values can 

be introduced as input parameters in an easy way. A 

further alternative is using recurrent Artificial Neural 

Networks for the incorporation of history dependent 

behaviour. 

 

3.2. Example based description of weld spot 

behaviour 

For the special case of modelling the behaviour of weld 

spots, the force-displacement curves obtained in some 

hundred experimental tests were used to train a neural 

network that models the responses of specimens that 

were obtained by spot welding sheets of different 

compositions and thicknesses and were subjected to 

different load cases. The quality of one of the resulting 

“global” models can be seen in Figure 5. There, the 

black lines are the measured results from the material 

tests, whereas the red lines and red and green crosses 

depict validation and test curve samples that were not 

used in the training process. Note that this figure shows 

only 20 out of about hundred similar curves with 

comparable performance, the generalization properties 

of the neural network being excellent in this case. 

 
Figure 5: Example based training of a global model of a 

spot weld specimen.  

 

Despite being very satisfactory, these results do not 

provide a solution to the problem of modelling the 

material behaviour of weld spots, because the load-

displacement curves in Figure 5 pertain to whole 

specimens (and thus include the responses of the two 

sheets plus some influence of the testing apparatus) 

rather than to the weld spots.  

 

3.3. Classification and Hybrid Modelling 

Another way of benefiting from the advantages of 

Machine Learning approaches in the modelling of 

material behaviour can take the form of using them only 

for some components of an existing analytical model. 

For example, the indication of the presence of damage 

or the classification of the damage mode may be done 

via a time series classification model. Such a model 

may take as inputs strain and stress states, with some 

history values, and a number of additional material and 

load specifying parameters, to return values 1 or 0, 

indicating whether or not a given integration point 

shows damage. It is then up to the analytical model, into 

which the classification model is embedded, to make 

appropriate use of this information.  

The advantage of this approach is the fact that 

normally classification problems are technically much 

easier to solve than regression problems. However, in 

practice the onset of damage is very difficult to detect in 

material tests. In addition, care must be taken of the 

issue that the measured curves incorporate the effects of 

damage, whereas damage classifiers require data that is 

free of damage.  

Before going more deeply into the issues of 

example based models for weld spot behaviour, 

however, a short discussion of some general aspects of 

weld spot models for FE analysis will be presented in 

Section 4. 

 

4. WELD SPOT MODELS  

Finite Element models of weld spots fall into two 

groups. On the one hand, detailed models have been 
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proposed, see, e.g., Lamouroux et al. (2007), which are 

outside the scope of the present discussion. On the other 

hand, “simplified” weld spot models have been 

developed explicitly for use in large scale analysis, such 

as crash simulations. Such models must combine 

computational efficiency, the capability of handling 

nonlinear behaviour with sufficient accuracy for general 

load paths, and features that facilitate automatic mesh 

generation. The latter issue leads to the demand of 

supporting the use of non-congruent meshes for the 

sheets to be joined by spot welding. 

The present work is based on the Finite Element 

code ABAQUS/Explicit (SIMULIA, Providence, RI), 

which comes with a simplified weld spot model in the 

form of the FASTENER option. This combines 

connector elements, which allow modelling various 

types of nonlinear material behaviour including 

plasticity, damage and failure, with coupling constraints 

for consistently handling a mesh-independent 

connection to the sheets, which are modelled by shell 

elements. Material responses of weld spots are 

introduced in terms of forces and displacements, i.e., 

they do not describe a material behaviour in the strict 

sense, but rather a “structural behaviour” of the weld 

spot and the closely neighbouring regions of the sheets 

(for brevity, however, the expression “material 

behaviour” is used throughout the present work). The 

path dependences of plasticity and damaged behaviour 

are handled via status variables, damage indicators and 

damage evolution algorithms. The resulting, highly 

robust material descriptions are complex analytical 

models in the sense of Section 3, and their parameters 

must be identified from suitable experiments.  

Such experiments involve testing to destruction 

standardized test specimens, such as the KS-II specimen 

(Hahn et al. 2000) shown in Figure 6, which consists of 

two U-shaped sheets that are joined, e.g., by a spot 

weld. When suitable fixtures are employed, a universal 

testing machine can be used to carry out tests for 

different load cases, such as normal, shear and mixed 

loading as well as peeling.   

 

 
Figure 6: KS-II test specimen used for characterising 

weld spots. 

 

The results of experiments of this type are global 

force-displacement curves that contain contributions 

from the weld spot, the test fixtures and the metal 

sheets, with the latter dominating the displacement 

responses in most cases. If the sheets are very stiff, such 

data can provide reasonable approximations to the 

behaviour of the weld spot proper. In general, however, 

these global force-displacement curves characterise the 

behaviour of the whole test setup rather than the local 

responses of the weld spot.  

Therefore, the global results cannot be used 

directly for describing the material behaviour of any 

type of weld spot model. This also holds true for FE-

based simplified weld spot models of the type discussed 

above, considerably complicating their practical use. In 

analogy, when a neural network is trained with the 

global force-displacement curves, as is the case for the 

approach introduced in Section 3.2 and the data shown 

in Figure 5, the resulting model in general does not 

represent the local behaviour of the weld spot and 

cannot be used in Finite Element models of the latter.  

Some additional complications have to be kept in 

mind. On the one hand, radial loading at the global level 

(i.e., keeping constant the direction of the force acting 

on the specimen) does not necessarily imply locally 

radial loading of the weld spot due to geometrical 

effects of the deformation of the sheets. On the other 

hand, the weld spot model not only must be capable of 

describing the failure of the weld spot proper (e.g., 

“nugget fracture” or “nugget pullout”) but also failure 

of the sheets in the immediate vicinity of the weld spot 

(“sheet tearing”).  

To overcome the issue of global vs. local 

behaviour, a solution in the form of introducing an 

indirect training procedure is proposed, which accounts 

for the differences between behaviour at the local 

(element) and the global (component) levels. 

 

5. INDIRECT TRAINING OF A NEURAL WELD 

SPOT MODEL FOR RADIAL TENSILE 

LOADS WITHIN A FINITE ELEMENT 

SIMULATION  

In order to account for the complex and nonlinear 

behaviour of weld spots, the local material description 

in the connector part of an ABAQUS FASTENER is to 

be modelled by a neural network. This neural network is 

to be trained with the only data available, the global 

load-displacement curves obtained from a series of 

experiments. Once trained, the neural network is 

expected to reproduce the behaviour encoded in these 

data. 

As noted above, extracting the local behaviour of 

weld spots from measurements of the global responses 

lies at the root of a major complication in the use of 

simplified weld spot models. The most common 

expedient in such situations is to make recourse to 

involved calibration methods for finding suitable 

parameters for the weld spot model. In contrast, a 

systematic indirect training process applicable to weld 

spot models is proposed in the following, in which the 

material behaviour is described by neural networks. In 

this process the neural network model for the weld 

spots’ material behaviour is embedded in a Finite 

Element simulation during training and thus contributes 

to predicting the global behaviour of the whole 

component of which the spot weld is a part. Comparing 
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the results of a given simulation with the experimental 

data obviously allows assessing the performance of the 

full model. Because the local behaviour of the weld 

spot, described by the neural network, is the only 

variable part of the global model of the sample, the 

latter’s performance allows drawing conclusions on the 

performance of the local model. On this basis, in turn, 

the weights and biases of the neural network can be 

updated, i.e., training can be carried out. 

In a first step, discussed in the following, the use of 

the neural network model is restricted to globally radial 

and monotonic load cases, so that issues of the path 

dependence of plasticity and damaged behaviour are of 

little relevance. The extension of the approach to non-

radial and non-monotonous load paths is ongoing work.  

Even though this problem may sound very specific 

to weld spots and their test configurations, the problem 

pattern is generic and occurs in many types of material 

tests, namely that the material behaviour cannot be 

measured directly at the same level of interface as, 

required for the Finite Element formulation. Once we 

find a method for training Machine Learning models not 

for their direct output but for the effect of their output at 

a higher level of abstraction (such as the behaviour of 

the whole test configuration), the problem is formulated 

in a way that any type of test can be used to train the 

models.  For the special case of weld spots this may 

imply testing not only specimens with a single weld 

spot but also test structures containing several ones, so 

that a sufficient variety of load paths can be sampled 

 

5.1. Integration into the Finite Element Simulation 

as User-Defined Element 

As mentioned above, in ABAQUS/Explicit the standard 

tool for modelling weld spots is the FASTENER option, 

within which the proper place for integrating new 

material descriptions ‒ including models based on 

neural networks ‒ are the connector elements. At 

present, however, ABAQUS/Explicit does not provide a 

user subroutine interface for specifying the mechanical 

behaviour of connectors, so a workaround had to be 

used. This took the form of combining kinematics 

appropriate for weld spots, as defined by SIMULIA’s 

BUSHING connector type, with a user defined element 

(VUEL) having two nodes with three translational and 

three rotational degrees of freedom each. The neural 

network was integrated as a code sequence within this 

VUEL. To complete the FASTENER surrogate, the 

weights of the coupling constraints to the shells are 

required, which can be extracted from the output of an 

analysis employing a standard FASTENER. Bushing 

kinematics was provided by SIMULIA as linked 

functions. 

The task of the neural network implemented within 

the user defined element consists in returning a set of 

suitable generalized force increments for any set of 

increments of the generalized displacements passed in 

from the Finite Element code. Here, both force and 

displacement vectors are given in the connector’s local 

coordinate system.  Because an explicit time integration 

scheme was chosen, there is no need for providing 

Jacobians.  

Within this framework, the weights and biases of 

the neural network can either be specified as parameters 

within the user defined element or they can be provided 

via the ABAQUS input file. Both of these options fully 

support dynamic updating in the course of training of 

the neural network.  

 

5.2. Assessment of Model Performance 

For the task at hand the performance of a given neural 

network model is assessed by comparing the force-

displacement curve measured in a suitable experiment 

with the one predicted by a model of the whole sample 

which incorporates the VUEL containing the neural 

network. The task of the performance assessment 

function is to formalise the computation of such a 

performance, i.e., to provide an algorithm for 

computing a performance value that correlates with how 

well the simulated material behaviour used for the weld 

spot allows matching the experimental measurements. 

Performance is assessed by combining several 

criteria, each one focusing on a specific aspect of the 

general performance. The assessment criteria used are 

the following: 

 

 Difference between experimental and 

simulated force-displacement curves using a 

mean squared error (MSE), evaluated at 

discrete points chosen with consideration of 

the shape of the curve. 

 Agreement in terms of maximum force: The 

simulation should predict a similar value for 

the maximum force as the one measured in the 

experiment. 

 Agreement in terms of displacement at 

maximum force: The simulation should 

achieve the maximum force at a similar value 

of total displacement as measured in the 

experiment. 

 Agreement in terms of displacement at failure: 

The simulation should predict a similar value 

for the displacement at total failure of the weld 

spot as the one measured in the experiment.  

 Characteristics of the local curve can be taken 

into account as well, for example maximum 

force reached, convexity, etc. 

 

 For each one of these assessment criteria, an error 

value normalised to the interval [0, 1] is generated, with 

0 denoting the most desirable outcome, i.e. 

corresponding to the best performing model. Then a 

single scalar error measure is obtained from these 

normalised errors by means of a weighted average. This 

allows for a dynamic adjustment of the relative 

importance of some of the assessment criteria with 

respect to others. 

 Once a performance assessment function has been 

defined, it can be used as objective function for an 

optimisation process that considers the weights and 
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biases of the neural network as optimisation variables 

and seeks to minimize the error value. This optimisation 

constitutes, indeed, the training of the neural network. 

 

5.3. Indirect Training of the Neural Material Model 

In general, the training of a neural network can be 

understood as the solution of an optimisation problem 

in which values of weights and biases are sought, which 

minimize the network error obtained by comparison of 

the network’s response and the available targets. By 

minimizing the network error through this optimisation, 

the neural network is trained to reproduce the behaviour 

represented by the target data. 

The same interpretation can be applied when the 

network’s response cannot be directly compared to the 

available target values. In such cases, the definition of a 

suitable performance assessment function that is able to 

map the local (element) network responses into global 

(component) curves comparable to the targets turns out 

to be the key to make this kind of training feasible. 

The performance function requires an additional 

step to map the local network responses to global curves 

that are comparable to the targets, hence the name 

"indirect training" for this kind of process. In the case of 

the neural connector model, the Finite Element 

simulation of the whole specimen is part of the 

performance assessment function, as shown in Figure 7. 

 

 
Figure 7: Schematic indirect training process. 

 

 In order to solve a generic optimisation problem, 

two steps must be performed: 

 

1. Initialisation: Find one or more suitable initial 

points to start the optimisation from. 

2. Optimisation: Apply an optimisation algorithm 

to find a point that minimises or maximises the 

objective function, starting from the given 

initial point(s). 

 

 In most applications, the initialisation step turns out 

to be at least as important as (and sometimes even more 

challenging than) the optimisation step itself in order to 

find an optimum of the objective function. 

The heuristics used to initialise the neural network 

weights and biases comprised a pure random weight 

initialisation and the neural network specific Nguyen-

Widrow rule (Nguyen and Widrow 1990), which takes 

into account network topology and ranges of inputs in 

providing initial values for the network weights and 

biases. 

Depending on how many optima a given algorithm 

is designed to find, local and global optimisation 

methods can be distinguished. A local optimisation 

algorithm is able to find the local optimum closest to 

the current initial point. Other local optima, potentially 

better, cannot be found by a local optimisation 

algorithm. If a single optimum is known to exist, for 

example in the case of a convex objective function, a 

local optimisation algorithm may find the (unique) 

global optimum. For this reason, local optimisation is 

sometimes called convex optimisation. On the other 

hand, a global optimisation algorithm is designed to 

find several local optima and, from them, return the 

global optimum. These algorithms are often based on a 

population of quasi-independent agents that search for 

the global optimum, taking advantage of swarm 

intelligence based approaches.  

As to the optimisation methods used for indirect 

training, the Nelder-Mead simplex algorithm (Lagarias, 

Reed, Wright and Wright 1998) was used for local 

optimisation, because it is a derivative-free method that 

does not require numerical estimates of the gradient of 

the objective function, which in the present indirect 

training setting includes the whole Finite Element 

simulation of the specimen. For global optimisation 

tasks genetic algorithms (Goldberg 1989) and evolution 

strategies (Bäck 1996) were used, all of which are 

derivative-free as well. 

 

5.4. Software Framework for Indirect Training 

For the sake of flexible testing of many different 

combinations of optimisation algorithms and 

initialisation heuristics, a generic optimisation software 

framework was devised that allows a very flexible 

replacement of the different modules thanks to its 

modular architecture. 

In this software framework, problems and solvers 

are distinguished and kept independent from one 

another. A problem comprises a description of the 

search space (dimension, variable ranges, etc.) and an 

implementation of the objective function. A solver 

comprises an implementation of an initialisation 

strategy and an implementation of an optimisation 

algorithm. Applying a given solver to a given problem 

returns a solution, i.e., the optimum found by the solver 

starting from the specified initialisation of the objective 

function described in the problem.  

For the indirect training of neural networks to be 

used as material models of a user-defined element 

within a Finite Element simulation of a spot weld 

specimen, the objective function was obtained by the 

following steps: 

 

1. Set the current values of weights and biases in 

the neural network based user-defined element.  

2. Perform a Finite Element simulation of the 

specimen using this parameterization of the 

user-defined element. 

3. Compare the force-displacement curves 

obtained from this simulation with the 
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corresponding experimental measurements by 

means of the performance assessment function 

discussed above. 

4. Return a value for the objective function based 

on the performance assessment function. 

 

This software framework has been implemented 

using MATLAB (MathWorks Inc., Natick, MA), so that 

the existing and readily available MATLAB 

implementations of several optimisation algorithms 

(Optimization Toolbox, Global Optimization Toolbox) 

and initialisation heuristics for neural networks (Neural 

Network Toolbox) can be used. 

    

5.5. Results from Indirect Training 

In order to provide a proof of concept, an indirect 

training setup as presented above was tested against a 

synthetic problem for which both local and global load-

displacement responses are known. The global 

behaviour for this test case was obtained by a Finite 

Element simulation, in which the local force-

displacement behaviour was described by the standard 

ABAQUS FASTENER model for weld spots. This 

global force-displacement curve was then used as target 

for the indirect training of a neural material model.  

Selected results of the indirect training process can 

be seen in Figure 8 andFigure 9, where two different 

optimisation algorithms were used together with the 

Nguyen-Widrow weight initialisation rule. For both 

cases a feed-forward neural network topology with 5 

neurons in the hidden layer was employed. As the plots 

show, such an indirect training setup can give rise to 

valid models of the responses of both weld spot and 

specimen. As shown by the examples this approach is 

well able to cover the gap between local and global 

behaviour in the case of a weld spot model. 

 

 
Figure 8: Global and local responses of a synthetic weld 

spot obtained by training with the Nelder-Mead simplex 

algorithm. 

 

In general, local optimisation methods, such as the 

Nelder-Mead simplex algorithm, tend to reach slightly 

better solutions as long as the initialisation already 

shows an acceptable performance. Global optimisation 

methods, such as Evolution Strategies, may perform 

marginally worse, but in general show a higher 

probability of finding an acceptable solution, being less 

dependent on the quality of the initialisation. 

 

 
Figure 9: Global and local responses of a synthetic weld 

spot obtained by training with an Evolution Strategies 

algorithm. 

 

When a model describing an actual weld spot, or 

any other kind of complex material or joint, is to be 

developed using this approach, the actual targets for the 

training process must, of course, be measurements 

obtained from appropriate experiments. 

 

6. SUMMARY 

The contribution discussed several approaches to using 

Machine Learning methods for material modelling 

within Finite Element simulation. A controlled process 

is sketched that ranges from the estimation and 

prediction of key feature parameters via descriptions of 

specimen behaviour at a global level to the use of 

Artificial Neural Networks for the direct description of 

material behaviour at the element level, escalating the 

use of Machine Learning models in dependence on the 

complexity of the material behaviour to be modelled.  

For the example of weld spots a neural element 

model could be trained by introducing a scheme of 

indirect training. This approach allows evaluating the 

performance of the Machine Learning model at a higher 

abstraction level of the system, e.g., by using 

measurements involving the full test configuration. As a 

first step, the feasibility and prospective advantages of 

the approach were demonstrated for monotonous, 

globally radial loading. The generalization to arbitrary 

loads was under development at the time of writing the 

paper. 

 

7. VISION AND OUTLOOK 

The last major open issue in the presented approach is 

the extension to arbitrary loading conditions and 
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histories. Once this is achieved, the method can be 

extended and applied to any kind of material behaviour, 

e.g., to the failure of CFRP and other composite 

structures, adhesives, etc, 

This new approach requires changing the way of 

developing and carrying out material tests, which will 

have to represent operationally relevent loading 

conditions rather than test cases defined explicitly for 

identifying some specific material parameters. This is 

expected to allow avoiding the complexity trap of an 

exponential increase of development effort with 

increasing complexity of the target behaviour, which 

tends to bedevil analytical models. The interim results 

reported here support the assessment that this goal can, 

in fact, be reached. 
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