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ABSTRACT 
The supply chains for perishable products are nowadays 
affected by significant wastes and losses. Their 
management hence requires optimized approaches in 
order to remove such inefficiencies. In particular 
optimized warehouse management policies is a well 
established research topic which has been recently 
enriched with specific formulations for deteriorating 
stocks and shelf life based picking rules. In such context 
the proposed research aims at investigating the optimal 
warehouse management policy, taking into account the 
effects of uncertainty by means of simulation and 
approaching the effect of optimal picking rules. In the 
proposed approach, on the basis of a Weibull 
deterioration process, the optimal order quantity is 
calculated taking into account the deterioration cost, and 
the performance of the system is analyzed taking into 
account the inherent variability in the quality of the 
products entering the cold chain. The numerical 
application developed confirms the effectiveness of the 
model proposed.  
 
Keywords: supply chain, perishable inventory, 
simulation 

 
1. INTRODUCTION 
Perishable inventory systems are characterized by a 
reduction of the value of the products with time, which 
ultimately results in the discard of the products stored 
upon the loss of the minimal quality level required by 
the consumer. Due to the necessity of preserving the 
quality attributes of the products until they reach the 
final market, the management of the supply chain for 
perishable products is a challenging task. In particular 
the supply chain lead time is an extremely critical 
parameter influenced by the operational policies and 
logistics variables enforced throughout the entire chain. 
In order to maximize the performance of the supply 
chain such policies should be established taking into 
account exogenous parameters such as the deterioration 
rate and the demand rate of the products. Supply chain 

operations should hence be timely scheduled and 
properly managed in order to reach the best compromise 
between the cost of handling/transporting operations 
and the quality of the product delivered. In the practical 
context, significant losses of products are likely to occur 
due to inadequate management of the post harvest 
activities including warehousing, handling and transport 
operations. Such losses not only represent an industrial 
cost, but they also constitute an ethical and 
environmental concern which severely influences the 
sustainability of agro-industrial supply chains. Recent 
studies (Broekmeulen and Van Donselaar 2007), report 
that perishables stand for almost one third of the sales 
of the supermarket industry and approximately 15% of 
the perishables are lost due to spoilage.  

Deterioration processes such as spoilage are the 
result of biochemical and biological phenomena such as 
respiration, lipid oxidation, microbiological 
proliferation, which ultimately determine the shelf life 
of the product. These phenomena are directly related to 
temperature, which in fact is the most significant 
environmental factor that influences the deterioration 
rate of harvested products. The relationship between 
product quality in terms of shelf life (SL) and 
temperature is studied extensively, e.g. by Doyle (1995) 
and Taoukis (1999). According to these studies, by 
knowing the time/temperature history of a product 
through the supply chain it is theoretically possible to 
predict its remaining shelf life (RSL) at any stage of the 
supply chain. The knowledge of the deterioration rate of 
a product is an information which should be considered 
when establishing an optimal inventory management 
system, as it influences for example the operative 
decisions about  the replenishment policy, the optimal 
order quantity and the picking policy. Traditional 
warehouse management systems that are not based on 
such information are typically affected by the 
uncontrolled deterioration of products stored with time.  

Optimal warehousing policies for perishable 
products is a well established research field which has 
lead to significant results concerning the efficiency of 
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logistic throughout the supply chain. Ketzenberg and 
Bloemhof (2009) report that the knowledge of the 
deterioration state in real-time allows dynamic decision 
making through the supply chain, so that products that 
are soon to expire can be distributed locally while less 
deteriorated products can be distributed to more distant 
locations. Another important result achievable by the 
evaluation of the RSL is related to possibility of 
implementing SL based logistics policies as LSFO 
(Least Shelf life First Out) rather than traditional FIFO 
(Firs In First Out) and LIFO (Least In First Out) rules 
thus improving supply chain performance, by reducing 
the fraction of deteriorated products wasted before sale. 
Finally it must be pointed out that the performance of 
the supply chain is influenced by some uncertain and 
uncontrollable factors such as the inherent variability of 
the deterioration state of the products entering the cold 
chain. This is due to the harvest operations, which may 
take several hours and are generally performed outdoor 
where environmental conditions cannot be modified. 
Even when the temperature throughout the supply chain 
is perfectly controlled, the variability in the level of 
initial maturation of the products results in the presence 
of a fraction of perished products. In this paper such 
uncertainties, are taken into account by means of a 
simulation model. A Simulation method is in fact 
generally preferred when the existence of uncertainties 
makes the task of mathematical programming highly 
complicated. Simulation is the process of constructing a 
model of a real system and conducting experiments with 
such a model, with the purpose of analyzing the 
behavior of the system and evaluating different 
strategies of operation. Simulation-based optimization 
is an active research area in the field of the stochastic 
optimization. Reviews of the research on simulation-
based optimization developments can be found in 
Andradottir (1998) and Fu and Hu (1997). The effects 
of uncertainties and the large number of control 
variables that may be present in a supply chain, is the 
main reason why simulation is widely employed in 
several supply chain analysis. For example, Sezen and 
Kitapçi (2007), developed a spreadsheet simulation 
model for a single distribution channel and simulated 
three different scenarios reflecting various levels of 
demand fluctuations. Similarly, Banerjee et al. (2003) 
developed a supply chain simulation model with the 
aim to compare two different trans-shipment 
approaches. Zhao et al. (2002) investigated the complex 
relationships between forecast errors and early order 
commitments by simulating a simple supply chain 
system under uncertain demand. Finally Young et al 
(2004) addressed the problem of determining the safety 
stock level to use in the supply chain in order to meet a 
desired level of customer satisfaction using a simulation 
based optimization approach.  

The purpose of the present paper is to analyze the 
performance of a cold chain considering the effects of 
uncertainties and exogenous parameters such as the 
demand rate and the kinetics of the deterioration 
phenomena. The approach proposed allows to 

determine the best compromise between product 
availability and supply chain responsiveness by 
establishing the optimal set of supply chain operational 
parameters (stock levels) corresponding to the 
deterioration rate of the product and to the 
characteristics of the demand, taking into account 
holding/waste costs and product quality.  

Finally a sensitivity analysis is conducted through 
an experimental plan in which the exogenous 
parameters as well as the RSL are varied in the two 
levels. A set of simulation runs is defined in which the 
warehouse replenishment cycle is modeled based on the 
optimal stock level in order to determine the operative 
variables. 

 
2. SHELF LIFE MODELING AND 

DETERIORATION PROCESS 
Shelf life is defined as the time until a perishable 
product becomes unacceptable to consumers under a 
given storage condition (Singh and Cadwallader 2004). 
The shelf life of a product can be measured directly by 
means of Accelerated laboratory tests, and subsequently 
evaluated by means of mathematical models. 
Mathematical Shelf Life models typically involve some 
input parameters that characterize the environmental 
conditions (as temperature, relative humidity, etc.) to 
determine the consequent decrease in the quality 
attributes. The modeling method based on the kinetic of 
reactions states that the quality decay of the product can 
be expressed through the Arrhenius law, by relating the 
reaction rate to the temperature based on the Activation 
Energy. In this case the following expression can be 
employed:  

 � � 	�� ∗ ��� 	
 ����    (1) 

 
where k0 is the pre-exponential factor, Ea is the 
Activation Energy (temperature sensitivity) of the 
reaction that controls food quality loss, R is the 
universal gas constant and T is the absolute temperature 
(K), which may be constant or variable. Based on 
equation (1) the SL of a product exposed at variable 
temperature can be calculated on the basis of the 
following expression: 

 �� �� � �� ��� � ���    (2) 

 
From (2) it is possible to determine the fraction of 

the SL consumed when a product is exposed to a 
constant temperature for a certain time interval 
(Giannakourou 2003). The formulation is: 

 �� � ∑ �����     (3) 

 
where fc represents the sum of the times at each constant 
temperature segment, ti, divided by the SLi at that 
temperature.  

In order to preserve the quality of the product, all 
the logistics operations involved are carried out at pre-
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established temperature, and a temperature control 
system is enforced throughout the supply chain which is 
thus properly defined “cold chain”. There are however 
some operations which cannot be included in the cold 
chain, like for example the harvesting operations which 
must be carried out outdoor. The deterioration 
phenomena which take place during these operations 
are therefore responsible of a different deterioration 
level of the products entering the cold-chain even when 
the harvesting phase is scheduled at the same 
maturation level.  

When the products enter the cold chain they are 
kept at proper temperature which is assumed to be 
perfectly controlled, the deterioration is thus function of 
time only. Several authors have faced the problem of 
modeling the dependence of the deterioration rate from 
time. The most common deterioration models are linear, 
quadratic and Weibull deterioration models. The 
Weibull deterioration model is expressed as: 

 ���� �  !�"#$     (4) 
 

where α is the scale parameter, α>0; β is the shape 
parameter β>0; t is time of deterioration, t>0. It is seen 
from equation (4) that the two-parameter Weibull 
distribution is appropriate for an item with decreasing 
rate of deterioration (β<1) only if the initial rate of 
deterioration is extremely high. Similarly, this 
distribution can also be used for an item with increasing 
rate of deterioration (1<β<2) only if the initial rate is 
approximately zero. In the present paper the 
deterioration rate of products stored is determined by 
considering a Weibull distribution and RSL of products 
leaving the warehouse is calculated with the following 
equation: 

 %��&'(� � %�� ∗ �1 
 ���    (5) 
 
The RSL at each stage of the supply chain is 

defined as the number of days a product is still available 
for consumption starting from the moment the product 
arrives at that stage of the supply chain. Van Donselaar 
and al. (2006), report that the RSL is a function of the 
SL, the distribution strategy (including e.g. decisions on 
direct delivery, cross-docking or delivery from stock at 
the retailer’s distribution channel and the shipping 
frequency) and the inventory replenishment logic (e.g. 
push or pull). 

 
3. STOCK ROTATION SYSTEM AND EOQ 

FOR DETERIORATING ITEMS 
A warehouse management system is characterized by 
the stock management policies enforced and the 
operative parameters such as the average stock level, 
the duration of the replenishment cycle, etc.  

The FIFO policy is the policy generally employed 
for managing perishable products and it is based on the 
assumption that the obsolescence of the products is 
related to their time of arrival. In this case the products 
that arrive first have the smaller RSL and then they 

must sell first. However in agroindustrial supply chains, 
due to the variability of the quality of harvested 
products, not always their obsolescence is perfectly 
correlated to the time of arrival. In this case a quality 
attribute such as the RSL, should be more effectively 
employed to decide which product must be picked first. 
This would ensure that products that have the smaller 
quality attribute leave the warehouse first. Therefore, if 
the information about the RSL is available it would be 
possible to release the products with shortest RSL first, 
thus enforcing a LSFO picking rule. Taoukis and 
Giannakourou (1998), demonstrate that compared with 
FIFO policy, the LSFO would reduce rejected products 
and eliminate consumer dissatisfaction since the 
fraction of product with unacceptable quality consumed 
can be minimized. 

Another important decision that must be taken 
when establishing an inventory management policy 
concerns the replenishment policy. Traditional well-
known optimizing strategies such as the economic order 
quantity (EOQ) cannot be directly applied to perishable 
inventories unless the costs of deterioration is 
additionally considered. The traditional EOQ model 
aims at optimizing the holding and ordering costs 
neglecting the influence of the deterioration costs as 
well as the salvage value of products perished. For this 
reason the extension of the EOQ model to perishable 
inventories is a topic intensively treated in recent years. 
Tarun Jeet Singh and al. (2009), have built an EOQ 
model when the deterioration rate has a linear trend in 
the two cases in which shortage are allowed or not. 
Shibsankar Sana and Chaudhuri (2004), refer to an 
EOQ model including a quadratic deterioration rate. 
Ghosh and al. (2005), Begum and al. (2010), have built 
a model including deterioration costs in the case in 
which the deterioration rate follows a Weibull 
distribution. Manna and al. (2006), Nita and al.(2008), 
have determined an EOQ model by considering the 
salvage value of products and a deterioration cost when 
deterioration rate follows a Weibull distribution and 
delay in payments are permissible. 

In the present paper the EOQ model is proposed 
derived by the model proposed by Nita et al (2008). The 
model is developed using the following notations: 

 
• C is the purchase cost per unit; 
• γC is the salvage value, associated to 

deteriorated units during the cycle time, where �0 + γ - 1�; 
• h is the inventory cost per unit per time; 
• A is the ordering cost per order; 
• T is the cycle time (a decision variable). 

 
The following assumption are used: 
 
• the demand rate of R units per time is assumed 

to be deterministic and constant; 
• the system deals with a single item; 
• the replenishment rate is infinite; 
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• the lead time is zero and shortages are not 
allowed; 

• the deterioration rate of units follows the 
Weibull distribution function given by (4), 
where 0 + α - 1, β 0 1, 0 + t + T. 

• the deteriorated units can neither be repaired 
nor be replaced during the cycle time.  

Based on assumptions made and supposing that the 
decrease of inventory is only due to the demand rate and 
to the deterioration of products, the inventory level 3��� 
is governed by the differential equation: 

 45���4� � ���� ∗ 3��� 
 %,  0 + � + 6  (6) 

 
with the initial condition 3�0� � 378� � 9:3 and the 
boundary condition 3�6� � 0. 

Taking series expansion and ignoring second and 
higher power of α (assuming α to be very small), the 
solution of the differential equation (6) using the 
boundary condition 3�6� � 0 is given by: 

 3��� � % ;6 
 � � <�"=$ 	>6" 
 �1 � !��"? � <"�@AB	"=$ C(7) 

 
that expresses the inventory level at each generic instant 
t The number of units that deteriorate during a cycle can 
be calculated as: 
 D � 3 
 %6 � 	 <�@AB"=$      (8) 

 
The cost of deterioration (CD) is:  

 ED � 	 <F�@AB"=$       (9) 

 
The salvage value (SV) is: 
 �G � 	 <HF�@AB"=$                  (10) 

 
The per cycle inventory holding cost (IHC) is: 
 IJE � K ∗ L 3���M� � K% ;�NO �	 <"�@AN�"=$��"=O�C��           (11) 

 
The ordering cost is: A               (12) 
 
The total cost per cycle is: 

 6E�6� � ED 
 �G � IJE � P               (13) 
 

and the Total Cost per Time Unit is: 
 6EQ�6� � RFS#�T=UVF=W	X�                (14) 

 
By deriving (14) with respect to T and solving it the 
optimal cycle time is determined and by equation (7) 
the corresponding optimal order quantity is calculated. 

 

4. DESIGN OF SIMULATION EXPERIMENTS 
In this paragraph the effect of the uncertainties on the 
warehouse management systems is addressed. 
According to Gong (2009) the uncertainty faced by 
warehouse systems can be classified in: sources outside 
the supply chain, sources in the supply chain but outside 
the warehouse, sources inside the warehouse, and 
sources within warehouse control systems. According to 
the variance structure of uncertainties, we classify 
uncertainty sources as unpredictable events like strikes, 
floods, and hurricanes, which usually are rare events, 
predictable events like demand seasonality, and internal 
variability like variance of order waiting time for 
batching. External uncertainty sources usually are more 
unpredictable, and will often bring higher variance to 
warehouse operations. On the other hand, inside 
uncertainty sources usually are more predictable and 
only bring low variance to warehouse operations. 

In the present study the attention is focused on 
sources outside the warehouse but that affect warehouse 
management. They include predictable events like 
demand fluctuations  and variability of RSL of products 
entering the warehouse.  

In traditional warehouse management systems, 
where the picking policies used are based on arrival 
time of SKUs (FIFO) and no information management 
system is adopted, such uncertainties have a strong 
impact in terms of quality of products leaving the 
warehouse.  

The purpose of this paper is to study the effect of 
these uncertainties by evaluating the RSL distribution of 
the products leaving the warehouse when the two 
policies LSFO and FIFO are applied. The study of 
warehouse system is carried out with the methodology 
of design of simulation experiments.  

The simulation model is used to take into account 
the effect of the fluctuation in demand and variability of 
RSL of products entering the warehouse on the 
performance. Finally a sensitivity analysis is carried out  
consisting on a three factors experimental plan in which 
the RSL of products entering the warehouse, the 
demand rate and the deterioration rate vary on two 
levels. The response of the experimental plan, 
consisting in the average RSL of products leaving the 
warehouse has been determined. The results obtained  
show how the information about the RSL of the product 
can improve the operational and tactical management 
decisions thus increasing the quality of the products 
delivered.  

An experimental plan is generally designed to 
estimate how changes in the input factors affect the 
results, or responses, of the experiment. While these 
methods were developed with physical experiments in 
mind (like agricultural or industrial applications), they 
can fairly easily be used in computer-simulation 
experiments as well, as described in more detail in Law 
and Kelton (2000). In fact, using them in simulation 
presents several opportunities for improvement that are 
difficult or impossible to use in physical experiments. In 
such situation the most suitable tool to know the system 
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behavior is the computer based-simulation experiment. 
The design of simulation experiments starts by building 
the experimental plan including all parameters that 
affect the system behavior, thus the model simulation is 
realized to represent the actual system, and finally each 
configuration of the experimental plan is executed 
through simulation model and average measures of 
interest are calculated. 

An important result achievable from an 
experimental plan is related to the possibility of 
estimating the main effect of each factor in the plan, 
defined as the average difference in response when this 
factor moves from its low level to its high level. 
Furthermore the interaction between the factors if it 
seems to be present can be determined to know if the 
effect of one factor might depend in some way on the 
level of one or more other factors.  

As mentioned above when an experimental plan 
must be executed the simulation can result very helpful 
to substitute the physical experiment thus resulting in a 
very inexpensive tool. Any computer based simulator 
aims to mirror the behavior of the real system that it 
represents. To achieve this goal, the different decision 
processes along the operational cycle, the replenishment 
cycle and the picking policy of a warehouse in this case, 
must be accurately reproduced. Keeping this in mind, 
the simulation model presented here is built through a 
discrete event simulator. Discrete event simulation 
concerns the modeling of a system as it evolves over 
time by a representation in which system variable 
changes instantaneously at separate points in time – the 
ones in which an event occurs.  

A simulation model takes the form of a set of 
assumptions concerning the operations of the system. 
These assumptions are expressed in mathematical, 
logical, and symbolic relationships between the entities, 
or objects of interest, of the system. Some of these 
assumptions can comprise those situations in which one 
or more input in the model are random variable. In this 
case the outputs provided by the model can be 
considered only as an estimates of the true characteristic 
of the model. Once developed and validated a model 
can be used to investigate a wide variety of “what if” 
questions about the real-world system. Potential 
changes to the system, defined through the experimental 
plan, can be first simulated, in order to predict their 
impact on system performance.  

Most experimental designs are based on an 
algebraic regression-model assumption about the way 
the input factors affect the outputs. It is assumed that 
the independent variables are continuous and 
controllable by experiments with negligible errors. 
Furthermore it is required to find a suitable 
approximation for the true functional relationship 
between independent variables and the response 
surface. If all variables are assumed to be measurable, 
the response surface can be expressed as follows:  

 Y � ���$, �O, …… . �]�               (15) 
 

The goal is to optimize the response variable y. 
Usually a second-order model is utilized in response 
surface methodology as explained in Raissi (2009). 

 Y � 	!� �	∑ !(^( � ∑ !((^(O � ∑ !(_^(^_ � `	](a$](a$](a$
 (16) 

 
where the βj coefficients are unknown and must be 
estimated somehow, and ε is a random error term 
representing whatever inaccuracy such a model might 
have in approximating the actual simulation-model 
response y. The parameters of the model are estimated 
by making simulation runs at various input values 
according, for example, with the experimental plan, 
recording the corresponding responses, and then using 
standard least-squares regression to estimate the 
coefficients. In simulation, an estimated response-
surface model can serve several different purposes. You 
use them as a proxy for the simulation, and very quickly 
explore many different input-factor-level combinations 
without having to run the simulation. And you could try 
to optimize (maximize or minimize, as appropriate) the 
fitted model to give you a sense of where the best input-
factor-combinations might be. For more details see 
Kelton (2003).  

When an experimental design is executed the 
quality control of the measures obtained is of 
fundamental importance to ensure a desired precision 
about average measures of variables of interest. This 
means that the average measures determined by each 
configuration of the experimental plan actually 
represent the estimate of the expected value (EV) for 
this measure. For this reason, depending on the 
precision desired for the measure under analysis, a 
certain number of replication of the model must be 
executed. 

If the variables Xn of interest can be considered 
mutually independent and identically distributed (IID) 
with mean µ and finite variance σ2, we can use the 
simple mean bcdddd to estimate the mean. Clearly, the 
classical case arises whenever we use independent 
replications to do estimation. In the classical case, the 
sample mean Xfddd is a consistent estimator of the mean µ 
by the law of large numbers (LLN). Then there is no 
bias and the MSE coincides with the variance of the 
sample mean, σfOddd, which is a simple function of the 
variance of a single observation Xn:  

 gcOddd � h�9	�bcdddd� � iNc                (17) 

 
Moreover, by the central limit theorem (CLT), Xn 

is asymptotically normally distributed as the sample 
size n increases, i.e., 

 �$/ORbc	dddd– 	lX → n�0, gO� as � → ∞,             (18) 
 

where N(a,b) is a normal random variable with mean a 
and variance b, and → denotes convergence in 
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distribution. We thus use this large-sample theory to 
justify the approximation: 

 

o�bdc + �� p o 	n 	l, iNc � + �� � oqn�0,1� + '#r
stNu 		v 

(19) 
 
Based on this normal approximation, a (1-α)100% 

confidence interval for µ based on the sample mean Xfddd 
is: 

 ;bdc 
 wxN 	 i√c	� , bdc � wxN 	 i√c	�C              (20) 

 
where  
 o 	
wxN + n�0,1� + 	�wxN� � 1 
               (21) 

 
and α denotes the error (width of confidence interval 
divided by the estimated mean) admitted in the 
measure. The statistical precision is typically described 
by either the absolute width or the relative width of the 
confidence interval, denoted by wa(α) and wr(α), 
respectively, which are: 

 

z{� � � O|xNi√c                 (22) 

 

z}� � � O|xNir√c                  (23) 

 
For specified absolute width or relative width of 

the confidence interval, ε, and for specified level of 
precision α, the required sample size na(ε,α) or nr(ε,α) is 
then  

 

�<�~,  � � �iN|xNN�N                 (24) 

 

�}�~,  � � �iN|xNNrN�N                  (25) 

 
For detailed discussion about statistic aspect refer 

to Whitt (2005). Generally to calculate how many 
replications are needed for the precision required at first 
a certain number of replication of each configuration are 
run, the confidence interval and initial level of precision 
are determined. Thus the number of replication is 
calculated through equation (24) by fixing the desired 
precision. 

The goal of this study is to show that applying an 
EOQ model for perishable product (taking into account 
the deterioration rate of its) and moving from the FIFO 
policy to the LSFO policy it is possible to improving 
warehouse performance. To achieve this goal the 
optimal order quantity (EOQ) is determined depending 
on some uncertainty sources that are internal the supply 
chain but sometimes uncontrollable as demand rate and 

deterioration rate. Thus a sensitivity analysis consisting 
in a three factorial experimental plan is presented in 
which each factor varies on two quantitative levels. 

Experimental plan has been replicated to ensure a 
desired precision in the measures. To execute the 
experimental plan the simulation tool has been chosen 
as enabling the modeling of a real-life system. The 
simulation tool allows to model the system behavior 
when some stochastic input as RSL of products entering 
the warehouse are present, to determine RSL of 
products leaving the warehouse that represent the 
response of the experimental plan proposed. 

 
5. PROPOSED METHODOLOGY 
The study here presented focuses on the postharvest 
operations of perishable products that are transferred 
from the field to the refrigerated warehouse where they 
are before being shipped to the final retailer.  

The first step carried out concerns the 
determination of the optimal warehouse management 
policy.  

Initially the problem of determining the optimal 
batch size is considered, taking into account the 
deterioration cost of the product. It is in fact well known 
that traditional optimal policies such as the Economic 
Order Quantity (Wilson 1934) model which do not take 
into account deterioration costs, result in batch sizes 
which are generally unfeasible for perishable goods. 
According to the methodology here proposed the 
optimal order size is determined by equation (7) on the 
basis of the model reported in Section 3, and the TCu is 
determined by equation (14).  

Once the optimal batch size is determined, the 
proposed analysis focuses on the evaluation of the 
expected RSL of the products as they leave the 
warehouse after storage. This is carried out by 
considering an initial RSL value attributed to the 
products harvested as they enter the warehouse. Due to 
the inherent variability to the maturation level, the 
uncontrollable environmental conditions, and the 
variable duration of the harvesting operations, the RSL 
of the products entering the warehouse presents an 
intrinsic variability, it has therefore been modeled by 
means of a stochastic random variable. Such uncertainty 
has been taken into account in the analysis of the 
storage system by means of a simulation approach, 
considering the RSL of the products entering the 
warehouse, the demand rate, the deterioration rate as 
input parameters and evaluating the RSL of the products 
leaving the warehouse as the output parameter. Such 
output value is calculated in each run on the basis of the 
initial RSL and considering the deterioration of the 
products during the storage time, which is assumed to 
follow a Weibull function.  

Thus the effect of the system parameters on the 
output variable has been explored by means of a 
simulation experiments plan specifically designed. The 
experimental plan has been replicated to ensure a 
desired precision of the measures obtained. Finally the 
effect of a shelf-life based picking rule has been 
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compared to the traditional FIFO rule generally 
employed for perishable goods and a sensitivity analysis 
has been performed.  

 
6. EXPERIMENTAL APPLICATION  
In this paragraph a numerical application is proposed, 
based on experimental data. In particular a warehouse is 
considered for the allocation of a perishable product 
characterized by a Weibull deterioration model having 
α=0.2, β=1.5. The optimal batch size is determined 
considering A=50€, R=16 SKUs/day and 
h=0.1€/SKU/period. The product cost (C) has been 
considered equal to 0.5 €/SKU and the salvage value of 
the perished product is γC=0.01€/SKU.  

Products that remain unsold at the end of the 
generic warehouse cycle are considered perished and 
thus sold at their salvage value. 

In such conditions the TCu is of 22.51€ which 
corresponds to a cycle time of 3.7 days. The optimal 
order quantity has been determined by equation (7) and 
is equal to 93 SKUs. The EOQ and the related optimal 
TCu for different values of α is reported in Figure 1, and 
the corresponding Inventory level I(t) is reported in 
Figure 2. Such figures confirm that the optimal order 
size warehouse decreases when α increases. 

 

 
Figure 1: Optimal Order Quantity and Optimal Total 
Cost per Time Unit for several value of α 
 

 
Figure 2: Trend of Inventory level for several value of α 

 
For the same values of α and β the TCu is reported 

in Figure 3 which shows that the cycle time related to 
the minimum total cost per unit time decreases when the 
α increases. 

 

 

 
Figure 3: Cycle Time for different value of α 

 
Once the optimal order size has been determined 

the effect of the inherent variability in the RSL of the 
products entering the warehouse has been addressed. In 
this study the RSL of the batches entering the 
warehouse has been assumed to be a stochastic random 
variable distributed according to a Normal density 
probability function with the following parameters: 
N(µSL=24 days, бSL=3.5). A simulation model has hence 
been generated in order to determine the distribution 
function of the RSL values of the products leaving the 
warehouse after the storage period, taking into account 
the deterioration process.  

The simulation model thus generated has been 
employed to determine the performance of the system 
and to analyze the effect of different storage policies 
and picking rules. In particular, in the warehouse system 
considered three fundamental factors have been selected 
which affect warehouse performance. Such parameters 
are RSL of the incoming products, the demand rate and 
the deterioration rate. Based on the assumptions made 
in section 4 a three factors experimental full plan has 
been generated in which each factor varies on two 
levels, thus resulting in 23=8 configurations, as shown 
in Table 1.  

 
Table 1: Experimental Plan 

Scenario 
RSL 

(Days at 
10°C) 

θ 
(Unit/unit 

time) 

R 
(Batch/Day) 

1 20 0.3 16 
2 24 0.3 16 
3 20 0.6 16 
4 24 0.6 16 
5 20 0.3 24 
6 24 0.3 24 
7 20 0.6 24 
8 24 0.6 24 

 
This experimental plan reports the input 

parameters used in the simulation model to get the 
response in terms of the warehouse performance.  

The influence of two different policies FIFO and 
LSFO has also been investigated. This aspect has been 
modeled by ranking the products according to their 
RSL, once they are stored in the warehouse, and by 
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using such rank in the picking list, when the LSFO 
policy is adopted. On the contrary, when the traditional 
FIFO policy is adopted, the products leave the 
warehouse based on their arrival order, products 
entering the warehouse the same day are therefore 
undistinguishable: they are thus inserted in the picking 
list randomly. In other words, when the LSFO policy is 
adopted, products inside the warehouse can be ranked 
even when they enter the warehouse in the same time. 
This ranking is clearly determined by the stochastic 
variation in the RSL of the incoming products. 

The simulation model hence aims to determine the 
average RSL of products when they leave the 
warehouse, when the FIFO and LSFO policies are 
applied. To build the two simulation models the 
following assumptions and notation has been used: 
the interarrival time of the batches is deterministic and 
equal to (EOQ-Total perished)/Demand rate. For each 
configuration the EOQ quantity arriving at the 
warehouse is determined by equation (7) based on the 
demand rate and the deterioration rate reported in Table 
1. The EOQ corresponds to one batch. For each SKU in 
the batch is assigned a RSL value within the normal 
distribution; the RSL of the products entering the 
warehouse decreases with time each day the stocks are 
held in the warehouse. The RSL at the shipping time is 
then determined based on equation (5), by fixing Ea 
equal to 59.7 Kj mol-1 (which is the activation energy of 
CO2 production for the avocado fruit, Fonseca 2001) 
and by considering that the storage temperature is equal 
to 10°C. 

To ensure that the values determined by the 
simulation satisfy the principles of quality control, a 
required precision has been fixed equal to 95%. Thus 10 
warehouse replenishments cycles corresponding to 10 
replications of the simulation have been carried out in 
the two cases in which LSFO and FIFO are applied and 
the confidence interval for each measure of interest has 
been determined. Then the equation (24) has been 
employed to calculate the number of replications 
needed in the two cases. The number of replications 
necessary to ensure the desired precision for each of the 
measures of interest for the experimental plan is 23 
equivalent to 8*23=184 tests for each of the two 
scenarios (FIFO and LSFO). The performances of the 
warehouse system for the two policies under study are 
illustrated in Table 2 and Figure 4.  

 
Table 2: Results of the Experimental Plan 

Scena
rio 

Average RSL 
(Days) 

бRSL (Days) 

Average 
Number of 

products with 
a RSLexit equal 

to Average 
RLSexit ±1 

 
LSFO FIFO LSFO FIFO LSFO FIFO 

1 16.835 16.862 1.442 3.596 75 30 
2 20.835 20.862 1.442 3.596 75 30 
3 17.424 17.429 1.416 3.391 46 29 

4 21.424 21.429 1.416 3.391 45 29 
5 18.008 18.034 1.996 3.273 57 32 
6 22.008 22.034 1.996 3.273 57 32 
7 18.420 18.426 1.936 3.144 56 30 
8 22.420 22.426 1.936 3.144 56 30 

Avera
ge 

value 
19.672 19.6875 1.697 3.35 58.375 30.25 

 

 
Figure 4: Average Number of products leaving the 
warehouse and their RSL for the two picking policies in 
each scenario of the Experimental Plan 

 
For both the FIFO and the LSFO policy, in each 

test configuration and for each run, the number of 
products leaving the warehouse with the same RSLexit 
has been calculated. The average of such values in the 
23 runs has finally been determined and reported in 
Table 2. The results show that the average RSLexit of 
products leaving the warehouse is the same for both 
LSFO and FIFO policies, while the average standard 
deviation differs substantially (in the FIFO policy is 
more than two times higher than LSFO). In any case, as 
expected, the best value of the response is obtained 
when the RSL of the incoming products is at its high 
level, the deterioration rate is at its low level and the 
demand rate is at its high level (Scenario 6 of the 
experimental plan). Table 2 also shows that when the 
LSFO policy is applied a greater number of products 
have a RSL about equal than the average RSL value ±1 
compared to the case in which the FIFO policy is 
applied allowing an improving in quality of 46.64%. 

Based on the experimental plan realized an 
analysis of the factors has been conducted to determine 
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their impact on the response in the two cases in which 
LSFO and FIFO policies are applied. Results are shown 
in Table 3 and 4.  

 
Table 3: Factorial Analysis for LSFO and FIFO policy 
LSFO Effect Coefficient T P 

Constant  19.6718 893.41 0.00 
RSL 4.0 2.0 90.83 0.000 
θ 0.5008 0.2504 11.37 0.000 
R 1.0847 0.5424 24.63 0.000 

FIFO     
Constant  19.6875 895.64 0.00 

RSL 4.0 2.0 90.99 0.000 
θ 0.4794 0.239 10.90 0.000 
R 1.0846 0.5423 24.67 0.000 
 
Table 4 ANOVA for LSFO and FIFO policy 

ANOVA 
LSFO DF SS 

Main Effects 3 34.8548 
Residual Error 4 0.0155 

Total 7 34.8703 
FIFO   

Main Effects 3 34.8121 
Residual Error 4 0.0155 

Total 7 34.8275 
 
Results show that in both cases the initial RSL ,the 

demand rate and the deterioration rate has positively 
influence on the response. In both cases the effect which 
contributes mostly to improving the performance is 
initial RSL. The ANOVA analysis shows that the three 
main factors are responsible for the 99.9% of the total 
variance.  

Based on coefficients shown in Tables 3 the 
response surface are determined for the experimental 
plan with equation (16) by considering only the first 
order terms. The two response surfaces referred 
respectively to LSFO and FIFO responses are: 

 Y � 19.67 � 2%�� � 0.250� � 0.542% � ~								    (26) 
 
and  
 Y � 19.68 � 2%�� � 0.239� � 0.542% � ~						      (27) 
 
The high value of R-Sq equal to 99.9% for LSFO 

and FIFO shows that the linear model obtained with the 
two response surfaces actually represents the relation 
between the predictors (initial RSL, deterioration rate 
and demand rate) and the response (RSLexit). This result 
can be employed to investigate the behavior of the 
response without the need of to run further simulations 
thus allowing to gain fast information about the 
warehouse system behavior when the input parameters 
vary. 

 

7. CONCLUSIONS 
The optimal management of supply chain for perishable 
products is a relevant research topic which has recently 
gained attention due to the poor sustainability of such 
systems. Agri-Food supply chains are in fact affected by 
several inefficiencies which typically result in a high 
industrial cost and in an ethical and social concern. 
Since deterioration phenomena are generally influenced 
by the temperature, the logistic operations are carried 
out in refrigerated conditions, in the so-called cold 
chain. Ensuring a specified temperature through the 
supply chain, however, does not ensure the avoidance of 
deteriorated products through the supply chain, since 
other important supply chain parameters such as the 
order quantity or the lead times have a strong effect on 
the performance of the chain. Finally, some uncertain 
parameters are involved in the process, which must be 
taken into account. Optimizing the performance of such 
systems is hence a complex task, which involves a good 
knowledge of the deterioration processes in order to 
properly assess the deterioration costs. In this paper a 
simulation model is proposed to evaluate the 
performance of a warehouse system for perishable 
products taking into account the effect of the 
uncertainties which typically affect the supply chain. In 
particular, a mathematical model is employed to 
determine the optimal stock level and the effect of 
shelf-life based picking policy on the performance of 
the supply chain. The results of the experimental plan 
proposed show that in the case considered the average 
RSLexit of products leaving the warehouse is about the 
same for both LSFO and FIFO policies, while the 
average standard deviation differs substantially (in the 
FIFO policy is about two times higher than LSFO). 
When the LSFO policy is applied, thus, a greater 
number of products have a RSLexit about equal than the 
average RSLexit value ±1 to compared to the case in 
which the FIFO policy is applied allowing an 
improvement in the quality of 46.64%. The effect of 
input parameters has been studied emphasizing the role 
of the deterioration rate as the factor which the most 
influences the response. Finally the response surface has 
been built representing a tool able to predict the 
warehouse behavior for any variation of the input 
factors considered allowing the optimization of 
perishable warehouse management policies.  
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