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ABSTRACT

The supply chains for perishable products are neysd
affected by significant wastes and losses. Their
management hence requires optimized approaches in
order to remove such inefficiencies. In particular
optimized warehouse management policies is a well
established research topic which has been recently
enriched with specific formulations for deteriorafi
stocks and shelf life based picking rules. In scwhtext

the proposed research aims at investigating thienapt
warehouse management policy, taking into accoumt th
effects of uncertainty by means of simulation and
approaching the effect of optimal picking rules.tie
proposed approach, on the basis of a Weibull
deterioration process, the optimal order quantiy i
calculated taking into account the deterioratiostcand

the performance of the system is analyzed taking in
account the inherent variability in the quality thfe
products entering the cold chain. The numerical
application developed confirms the effectivenesshef
model proposed.

Keywords: supply chain, perishable inventory,
simulation

1. INTRODUCTION

Perishable inventory systems are characterized by a
reduction of the value of the products with timdyiat
ultimately results in the discard of the produdisred
upon the loss of the minimal quality level requiteyg
the consumer. Due to the necessity of preservieg th
quality attributes of the products until they reatie
final market, the management of the supply chain fo
perishable products is a challenging task. In paldr
the supply chain lead time is an extremely critical
parameter influenced by the operational policied an
logistics variables enforced throughout the enthain.

In order to maximize the performance of the supply
chain such policies should be established takirig in
account exogenous parameters such as the detiniorat
rate and the demand rate of the products. Supginch
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operations should hence be timely scheduled and
properly managed in order to reach the best comigemm
between the cost of handling/transporting operation
and the quality of the product delivered. In thaqgpical
context, significant losses of products are likelypccur

due to inadequate management of the post harvest
activities including warehousing, handling and $ort
operations. Such losses not only represent an tiralus
cost, but they also constitute an ethical and
environmental concern which severely influences the
sustainability of agro-industrial supply chains.cBet
studies (Broekmeulen and Van Donselaar 2007), tepor
that perishables stand for almost one third ofghles

of the supermarket industry and approximately 15% o
the perishables are lost due to spoilage.

Deterioration processes such as spoilage are the
result of biochemical and biological phenomena sagh
respiration, lipid oxidation, microbiological
proliferation, which ultimately determine the shéfé
of the product. These phenomena are directly rklate
temperature, which in fact is the most significant
environmental factor that influences the deteriorat
rate of harvested products. The relationship beatwee
product quality in terms of shelf life (SL) and
temperature is studied extensively, e.g. by Doy96)
and Taoukis (1999). According to these studies, by
knowing the time/temperature history of a product
through the supply chain it is theoretically pobsitp
predict its remaining shelf life (RSL) at any stayjehe
supply chain. The knowledge of the deterioratide &

a product is an information which should be consde
when establishing an optimal inventory management
system, as it influences for example the operative
decisions about the replenishment policy, thenogti
order quantity and the picking policy. Traditional
warehouse management systems that are not based on
such information are typically affected by the
uncontrolled deterioration of products stored wiithe.

Optimal warehousing policies for perishable
products is a well established research field witiak
lead to significant results concerning the efficigrof



logistic throughout the supply chain. Ketzenbergl an
Bloemhof (2009) report that the knowledge of the
deterioration state in real-time allows dynamicidsien
making through the supply chain, so that produacs t
are soon to expire can be distributed locally wheles
deteriorated products can be distributed to moseadt
locations. Another important result achievable bg t
evaluation of the RSL is related to possibility of
implementing SL based logistics policies as LSFO
(Least Shelf life First Out) rather than traditibR&FO
(Firs In First Out) and LIFO (Least In First Out)les
thus improving supply chain performance, by redgcin
the fraction of deteriorated products wasted betale.
Finally it must be pointed out that the performante
the supply chain is influenced by some uncertaid an
uncontrollable factors such as the inherent variglof

the deterioration state of the products enterirgabid
chain. This is due to the harvest operations, whiety
take several hours and are generally performedooutd
where environmental conditions cannot be modified.
Even when the temperature throughout the supplincha
is perfectly controlled, the variability in the kvof
initial maturation of the products results in thregence

of a fraction of perished products. In this papechs
uncertainties, are taken into account by means of a
simulation model. A Simulation method is in fact
generally preferred when the existence of uncerésn
makes the task of mathematical programming highly
complicated. Simulation is the process of consitngca
model of a real system and conducting experimeitts w
such a model, with the purpose of analyzing the
behavior of the system and evaluating different
strategies of operation. Simulation-based optinorat
is an active research area in the field of thelsistic
optimization. Reviews of the research on simulation
based optimization developments can be found in
Andradottir (1998) and Fu and Hu (1997). The effect
of uncertainties and the large number of control
variables that may be present in a supply chaithes
main reason why simulation is widely employed in
several supply chain analysis. For example, Serdn a
Kitapci (2007), developed a spreadsheet simulation
model for a single distribution channel and simedat
three different scenarios reflecting various levefs
demand fluctuations. Similarly, Banerjee et al.Q20
developed a supply chain simulation model with the
aim to compare two different trans-shipment
approaches. Zhao et al. (2002) investigated theptsm
relationships between forecast errors and earlyerord
commitments by simulating a simple supply chain
system under uncertain demand. Finally Young et al
(2004) addressed the problem of determining thetygaf
stock level to use in the supply chain in ordemiet a
desired level of customer satisfaction using a ftian
based optimization approach.

The purpose of the present paper is to analyze the
performance of a cold chain considering the effeéts
uncertainties and exogenous parameters such as the
demand rate and the kinetics of the deterioration
phenomena. The approach proposed allows to
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2. SHELF

determine the best compromise between product
availability and supply chain responsiveness by
establishing the optimal set of supply chain opena
parameters (stock levels) corresponding to the
deterioration rate of the product and to the
characteristics of the demand, taking into account
holding/waste costs and product quality.

Finally a sensitivity analysis is conducted through
an experimental plan in which the exogenous
parameters as well as the RSL are varied in the two
levels. A set of simulation runs is defined in white
warehouse replenishment cycle is modeled basebleon t
optimal stock level in order to determine the ofieea
variables.

LIFE MODELING
DETERIORATION PROCESS
Shelf life is defined as the time until a periskabl
product becomes unacceptable to consumers under a
given storage conditioSingh and Cadwallader 2004).
The shelf life of a product can be measured diyduyl
means of Accelerated laboratory tests, and subségue
evaluated by means of mathematical models.
Mathematical Shelf Life models typically involverse
input parameters that characterize the environrhenta
conditions (as temperature, relative humidity, )eto.
determine the consequent decrease in the quality
attributes. The modeling method based on the kirwdti
reactions states that the quality decay of the ymwbdan
be expressed through the Arrhenius law, by relatiegy
reaction rate to the temperature based on the #tadiv
Energy. In this case the following expression ca&n b
employed:

AND

K = K, * exp (— E—;) (1)
where ky is the pre-exponential factorz, is the
Activation Energy (temperature sensitivity) of the
reaction that controls food quality los® is the
universal gas constant afds the absolute temperature
(K), which may be constant or variable. Based on
equation (1) the SL of a product exposed at vagiabl
temperature can be calculated on the basis of the
following expression:

InSL =InSL, + % (2

From (2) it is possible to determine the fractidn o
the SL consumed when a product is exposed to a

constant temperature for a certain time interval
(Giannakourou 2003). The formulation is:
ti
fe=X< ©)

SL;

wheref. represents the sum of the times at each constant
temperature segment,, divided by the SL at that
temperature.

In order to preserve the quality of the produdt, al
the logistics operations involved are carried dupra-



established temperature, and a temperature control
system is enforced throughout the supply chain kvisc
thus properly defined “cold chain”. There are hoarev
some operations which cannot be included in the col
chain, like for example the harvesting operatiotmciv
must be carried out outdoor. The deterioration
phenomena which take place during these operations
are therefore responsible of a different deteriorat
level of the products entering the cold-chain ewdsen

the harvesting phase is scheduled at the same
maturation level.

When the products enter the cold chain they are
kept at proper temperature which is assumed to be
perfectly controlled, the deterioration is thusdtion of
time only. Several authors have faced the problém o
modeling the dependence of the deterioration nabe f
time. The most common deterioration models araline

quadratic and Weibull deterioration models. The
Weibull deterioration model is expressed as:
(1) = apth™ (4)

where a is the scale parameten>0; (3 is the shape
parametef>0; t is time of deterioration, t>0. It is seen
from equation (4) that the two-parameter Weibull
distribution is appropriate for an item with desieg
rate of deteriorationp&l) only if the initial rate of
deterioration is extremely high. Similarly, this
distribution can also be used for an item with @éasing
rate of deterioration (I«2) only if the initial rate is
approximately zero. In the present paper the
deterioration rate of products stored is determibgd
considering a Weibull distribution and RSL of praothu
leaving the warehouse is calculated with the foilav
equation:
RSLeyit = RSLx (1 — f¢) (5)
The RSL at each stage of the supply chain is
defined as the number of days a product is stdilaile
for consumption starting from the moment the praduc
arrives at that stage of the supply chain. Van Blas
and al. (2006), report that the RSL is a functidrine
SL, the distribution strategy (including e.g. démis on
direct delivery, cross-docking or delivery from ctoat
the retailer's distribution channel and the shigpin
frequency) and the inventory replenishment logig.(e
push or pull).

3. STOCK ROTATION SYSTEM AND EOQ

FOR DETERIORATING ITEMS
A warehouse management system is characterized by
the stock management policies enforced and the
operative parameters such as the average stock leve
the duration of the replenishment cycle, etc.

The FIFO policy is the policy generally employed
for managing perishable products and it is basethen
assumption that the obsolescence of the products is
related to their time of arrival. In this case fireducts
that arrive first have the smaller RSL and thenythe
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must sell first. However in agroindustrial supphas,
due to the variability of the quality of harvested
products, not always their obsolescence is peyfectl
correlated to the time of arrival. In this case ualdy
attribute such as the RSL, should be more effegtive
employed to decide which product must be pickest.fir
This would ensure that products that have the small
quality attribute leave the warehouse first. Theref if

the information about the RSL is available it woblel
possible to release the products with shortest fRSt,
thus enforcing a LSFO picking rule. Taoukis and
Giannakourou (1998), demonstrate that compared with
FIFO policy, the LSFO would reduce rejected product
and eliminate consumer dissatisfaction since the
fraction of product with unacceptable quality comsa

can be minimized.

Another important decision that must be taken
when establishing an inventory management policy
concerns the replenishment policy. Traditional well
known optimizing strategies such as the econonderor
guantity (EOQ) cannot be directly applied to peatsie
inventories unless the costs of deterioration is
additionally considered. The traditional EOQ model
aims at optimizing the holding and ordering costs
neglecting the influence of the deterioration comss
well as the salvage value of products perished.titier
reason the extension of the EOQ model to perishable
inventories is a topic intensively treated in recgsars.
Tarun Jeet Singh and al. (2009), have built an EOQ
model when the deterioration rate has a lineardtiaen
the two cases in which shortage are allowed or not.
Shibsankar Sana and Chaudhuri (2004), refer to an
EOQ model including a quadratic deterioration rate.
Ghosh and al. (2005), Begum and al. (2010), havié bu
a model including deterioration costs in the case i
which the deterioration rate follows a Weibull
distribution. Manna and al. (2006), Nita and alq@))
have determined an EOQ model by considering the
salvage value of products and a deterioration whgn
deterioration rate follows a Weibull distributiomda
delay in payments are permissible.

In the present paper the EOQ model is proposed
derived by the model proposed by Nita et al (2008
model is developed using the following notations:

e Cisthe purchase cost per unit;

e yC is the salvage value, associated to
deteriorated units during the cycle time, where
O<y<1);

* his the inventory cost per unit per time;

e Ais the ordering cost per order;

e Tisthe cycle time (a decision variable).

The following assumption are used:

e the demand rate of R units per time is assumed
to be deterministic and constant;

e the system deals with a single item;

e the replenishment rate is infinite;



e the lead time is zero and shortages are not
allowed;

» the deterioration rate of units follows the
Weibull distribution function given by (4),
where0 <a<1,>21,0<t<T.

» the deteriorated units can neither be repaired
nor be replaced during the cycle time.

Based on assumptions made and supposing that the

decrease of inventory is only due to the demarelaad
to the deterioration of products, the inventoryele@(t)
is governed by the differential equation:

aQ(

dtt)—i-H(t)*Q(t)—R, 0<t<T

(6)

with the initial conditionQ(0) = Q,,. = EOQ and the
boundary conditio (T) = 0.

Taking series expansion and ignoring second and
higher power ofa (assuminga to be very small), the
solution of the differential equation (6) using the
boundary conditio (T) = 0 is given by:

aﬁtﬁ+1

Q(t)=R[T—t+;—+T1 (1% — @+ pref) + L

@

that expresses the inventory level at each geiresiant
t The number of units that deteriorate during degan
be calculated as:

aRTAH1

D=Q—RT="=" 8
The cost of deterioration (CD) is:
acRTA+1

D= = ©)
The salvage value (SV) is:

_ ozyCRT'B+1
SV = v (10)
The per cycle inventory holding cost (IHC) is:

_ T _ T2 aBTh+?
IHC—h*fO Q(t)dt = hR [?+ m (12)
The ordering cost i (12)
The total cost per cycle is:

TC(T) = CD — SV +IHC + A (13)

and the Total Cost per Time Unit is:

TC (T)__[CD—mLHHc+A] (14)
L (T) = =722

T

By deriving (14) with respect to T and solving litet
optimal cycle time is determined and by equatiop (7
the corresponding optimal order quantity is caltada
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4. DESIGN OF SSIMULATION EXPERIMENTS

In this paragraph the effect of the uncertaintiastie
warehouse management systems is addressed.
According to Gong (2009) the uncertainty faced by
warehouse systems can be classified in: sourcegdeut
the supply chain, sources in the supply chain btgide

the warehouse, sources inside the warehouse, and
sources within warehouse control systems. Accortiing
the variance structure of uncertainties, we clgssif
uncertainty sources as unpredictable events lifdeest
floods, and hurricanes, which usually are rare tyen
predictable events like demand seasonality, aredriat
variability like variance of order waiting time for
batching. External uncertainty sources usuallyraoee
unpredictable, and will often bring higher variartce
warehouse operations. On the other hand, inside
uncertainty sources usually are more predictablé an
only bring low variance to warehouse operations.

In the present study the attention is focused on
sources outside the warehouse but that affect waseh
management. They include predictable events like
demand fluctuations and variability of RSL of puots
entering the warehouse.

In traditional warehouse management systems,
where the picking policies used are based on arriva
time of SKUs (FIFO) and no information management
system is adopted, such uncertainties have a strong
impact in terms of quality of products leaving the
warehouse.

The purpose of this paper is to study the effect of
these uncertainties by evaluating the RSL distitioubf
the products leaving the warehouse when the two
policies LSFO and FIFO are applied. The study of
warehouse system is carried out with the methogolog
of design of simulation experiments.

The simulation model is used to take into account
the effect of the fluctuation in demand and vatigbof
RSL of products entering the warehouse on the
performance. Finally a sensitivity analysis is tafrout
consisting on a three factors experimental plawhich
the RSL of products entering the warehouse, the
demand rate and the deterioration rate vary on two
levels. The response of the experimental plan,
consisting in the average RSL of products leavimg t
warehouse has been determined. The results obtained
show how the information about the RSL of the pridu
can improve the operational and tactical management
decisions thus increasing the quality of the prdgluc
delivered.

An experimental plan is generally designed to
estimate how changes in the input factors affeet th
results, or responses, of the experiment. Whilesdhe
methods were developed with physical experiments in
mind (like agricultural or industrial applicationghey
can fairly easily be used in computer-simulation
experiments as well, as described in more detdibiw
and Kelton (2000). In fact, using them in simulatio
presents several opportunities for improvement dnat
difficult or impossible to use in physical experime In
such situation the most suitable tool to know ty&tesm



behavior is the computer based-simulation experimen
The design of simulation experiments starts bydaug)

the experimental plan including all parameters that
affect the system behavior, thus the model simarais
realized to represent the actual system, and firedth
configuration of the experimental plan is executed
through simulation model and average measures of
interest are calculated.

An important result achievable from an
experimental plan is related to the possibility of
estimating the main effect of each factor in thanpl
defined as the average difference in response wten
factor moves from its low level to its high level.
Furthermore the interaction between the factord if
seems to be present can be determined to knoweif th
effect of one factor might depend in some way an th
level of one or more other factors.

As mentioned above when an experimental plan
must be executed the simulation can result vergfakl
to substitute the physical experiment thus resylima
very inexpensive tool. Any computer based simulator
aims to mirror the behavior of the real system fthat
represents. To achieve this goal, the differenisitat
processes along the operational cycle, the repiemast
cycle and the picking policy of a warehouse in tase,
must be accurately reproduced. Keeping this in mind
the simulation model presented here is built throag
discrete event simulator. Discrete event simulation
concerns the modeling of a system as it evolves ove
time by a representation in which system variable
changes instantaneously at separate points in-tithe
ones in which an event occurs.

A simulation model takes the form of a set of
assumptions concerning the operations of the system
These assumptions are expressed in mathematical,
logical, and symbolic relationships between éndities
or objects of interest, of the system. Some of ghes
assumptions can comprise those situations in wizh
or more input in the model are random variablethia
case the outputs provided by the model can be
considered only as an estimates of the true clexisiit
of the model. Once developed and validated a model
can be used to investigate a wide variety of “wiffiat
questions about the real-world system. Potential
changes to the system, defined through the expatahe
plan, can be first simulated, in order to predioit
impact on system performance.

Most experimental designs are based on an
algebraic regression-model assumption about the way
the input factors affect the outputs. It is assurtteat
the independent variables are continuous and
controllable by experiments with negligible errors.
Furthermore it is required to find a suitable
approximation for the true functional relationship
between independent variables and the response
surface. If all variables are assumed to be mebkyra
the response surface can be expressed as follows:

(15)

y= f(xl; X2,y we ....xk)
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The goal is to optimize the response variaple
Usually a second-order model is utilized in resgons
surface methodology as explained in Raissi (2009).

y=Bot+ TEiBigi+ X Bugt + T Bijgig; + €
(16)

where thep; coefficients are unknown and must be
estimated somehow, angd is a random error term
representing whatever inaccuracy such a model might
have in approximating the actual simulation-model
responsegy. The parameters of the model are estimated
by making simulation runs at various input values
according, for example, with the experimental plan,
recording the corresponding responses, and them usi
standard least-squares regression to estimate the
coefficients. In simulation, an estimated response-
surface model can serve several different purposms.

use them as a proxy for the simulation, and veigkdy
explore many different input-factor-level combirets
without having to run the simulation. And you cotig

to optimize (maximize or minimize, as appropriate
fitted model to give you a sense of where the lgmait-
factor-combinations might be. For more details see
Kelton (2003).

When an experimental design is executed the
quality control of the measures obtained is of
fundamental importance to ensure a desired precisio
about average measures of variables of interest Th
means that the average measures determined by each
configuration of the experimental plan actually
represent the estimate of the expected value (BY) f
this measure. For this reason, depending on the
precision desired for the measure under analysis, a
certain number of replication of the model must be
executed.

If the variablesX, of interest can be considered
mutually independent and identically distributetD]l
with meanyu and finite variances®, we can use the
simple meanX, to estimate the mean. Clearly, the
classical case arises whenever we use independent
replications to do estimation. In the classicalecabke
sample meal,, is a consistent estimator of the mean
by the law of large numbers (LLN). Then there is no
bias and the MSE coincides with the variance of the
sample meangZ, which is a simple function of the
variance of a single observatii

J— _ 2
0% = MSE (X,) = = (17)
Moreover, by the central limit theorem (CLTY,

is asymptotically normally distributed as the sasnpl
sizen increases, i.e.,

n'/2[X, - u] » N(0,0?%) asn — o, (18)
whereN(a,b)is a normal random variable with mean
and varianceb, and — denotes convergence in



distribution. We thus use this large-sample thetary
justify the approximation:

o2

P(Xn <x)= P(N (ll;_) < x) =p[N@OD < x—pu

n o2
n

(19)

Based on this normal approximation, acj100%
confidence interval fop based on the sample me&n
is:

[0 =2 () %o 22 () (20)
where
P (—z% < N(0,1) < +z§) =1-a 1)

and o denotes the error (width of confidence interval
divided by the estimated mean) admitted in the
measure. The statistical precision is typicallyodieed

by either the absolute width or the relative widfrthe
confidence interval, denoted bw,(a) and w(a),
respectively, which are:

2Zao

wo (@) = —= (22)
B 22%0'

wy(@) = 2 (23)

For specified absolute width or relative width of
the confidence intervak, and for specified level of
precisiona, the required sample sing(e,a) or n,(¢,a) is
then

4azzé

ng(e,a) = —= (24)
402z

n.(€,a) = ,42_522 (25)

For detailed discussion about statistic aspect refe
to Whitt (2005). Generally to calculate how many
replications are needed for the precision requéteiirst
a certain number of replication of each configunatare
run, the confidence interval and initial level g&pision
are determined. Thus the number of replication is
calculated through equation (24) by fixing the dexbi
precision.

The goal of this study is to show that applying an
EOQ model for perishable product (taking into actou
the deterioration rate of its) and moving from EHEO
policy to the LSFO policy it is possible to improgi
warehouse performance. To achieve this goal the
optimal order quantity (EOQ) is determined depegdin
on some uncertainty sources that are internalupplg
chain but sometimes uncontrollable as demand rade a
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deterioration rate. Thus a sensitivity analysissisting
in a three factorial experimental plan is presented
which each factor varies on two quantitative levels
Experimental plan has been replicated to ensure a
desired precision in the measures. To execute the
experimental plan the simulation tool has been ehos
as enabling the modeling of a real-life system. The
simulation tool allows to model the system behavior
when some stochastic input as RSL of products iegter
the warehouse are present, to determine RSL of
products leaving the warehouse that represent the
response of the experimental plan proposed.

5. PROPOSED METHODOLOGY

The study here presented focuses on the postharvest
operations of perishable products that are trareder
from the field to the refrigerated warehouse whaey

are before being shipped to the final retailer.

The first step carried out concerns the
determination of the optimal warehouse management
policy.

Initially the problem of determining the optimal
batch size is considered, taking into account the
deterioration cost of the product. It is in factiM@own
that traditional optimal policies such as the Ecuim
Order Quantity (Wilson 1934) model which do noteak
into account deterioration costs, result in batdes
which are generally unfeasible for perishable goods
According to the methodology here proposed the
optimal order size is determined by equation (7t
basis of the model reported in Section 3, andTi@gis
determined by equation (14).

Once the optimal batch size is determined, the
proposed analysis focuses on the evaluation of the
expected RSL of the products as they leave the
warehouse after storage. This is carried out by
considering an initial RSL value attributed to the
products harvested as they enter the warehousetdDue
the inherent variability to the maturation levehet
uncontrollable environmental conditions, and the
variable duration of the harvesting operations, R&1
of the products entering the warehouse presents an
intrinsic variability, it has therefore been modklby
means of a stochastic random variable. Such uncgrta
has been taken into account in the analysis of the
storage system by means of a simulation approach,
considering the RSL of the products entering the
warehouse, the demand rate, the deterioration aate
input parameters and evaluating the RSL of the yortsd
leaving the warehouse as the output parameter. Such
output value is calculated in each run on the bafsike
initial RSL and considering the deterioration ok th
products during the storage time, which is assuined
follow a Weibull function.

Thus the effect of the system parameters on the
output variable has been explored by means of a
simulation experiments plan specifically designéde
experimental plan has been replicated to ensure a
desired precision of the measures obtained. Firthfly
effect of a shelf-life based picking rule has been



compared to the traditional FIFO rule generally
employed for perishable goods and a sensitivityyaisa
has been performed.

6. EXPERIMENTAL APPLICATION

In this paragraph a numerical application is prepoios
based on experimental data. In particular a warsdh@i
considered for the allocation of a perishable pobdu
characterized by a Weibull deterioration model hgvi
0=0.2, p=1.5. The optimal batch size is determined
considering A=50€, R=16 SKUs/day  and
h=0.1€/SKU/period. The product co¢C) has been
considered equal to 0.5 €/SKU and the salvage \a@lue
the perished product ££=0.01€/SKU.

Products that remain unsold at the end of the
generic warehouse cycle are considered perished and
thus sold at their salvage value.

In such conditions thélC, is of 22.51€ which
corresponds to a cycle time of 3.7 days. The optima
order quantity has been determined by equatiomufd)
is equal to 93 SKUs. The EOQ and the related optima
TC, for different values o# is reported in Figure 1, and
the corresponding Inventory levé{t) is reported in
Figure 2. Such figures confirm that the optimal esrd
size warehouse decreases whencreases.
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For the same values afandf the TC, is reported
in Figure 3 which shows that the cycle time related
the minimum total cost per unit time decreases when
a increases.
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Once the optimal order size has been determined
the effect of the inherent variability in the RSE the
products entering the warehouse has been addrdssed.
this study the RSL of the batches entering the
warehouse has been assumed to be a stochastiarrando
variable distributed according to a Normal density
probability function with the following parameters:
N(usi=24 daysps =3.5). A simulation model has hence
been generated in order to determine the distahuti
function of the RSL values of the products leavihg
warehouse after the storage period, taking int@atc
the deterioration process.

The simulation model thus generated has been
employed to determine the performance of the system
and to analyze the effect of different storage qed
and picking rules. In particular, in the warehosgstem
considered three fundamental factors have beentedle
which affect warehouse performance. Such parameters
are RSL of the incoming products, the demand rate a
the deterioration rate. Based on the assumptiorde ma
in section 4 a three factors experimental full plas
been generated in which each factor varies on two
levels, thus resulting in®28 configurations, as shown
in Table 1.

Table 1: Experimental Plan

RSL 0 R
Scenario (Iig})/(s: )at (Ut?:;/:)mt (Batch/Day)
1 20 0.3 16
2 24 0.3 16
3 20 0.6 16
4 24 0.6 16
5 20 0.3 24
6 24 0.3 24
7 20 0.6 24
8 24 0.6 24
This experimental plan reports the input

parameters used in the simulation model to get the
response in terms of the warehouse performance.

The influence of two different policies FIFO and
LSFO has also been investigated. This aspect has be
modeled by ranking the products according to their
RSL, once they are stored in the warehouse, and by



using such rank in the picking list, when the LSFO 4 21.424 | 21.429 | 1.416 3.391 45 29
policy is adopted. On the contrary, when the tiaddl 5 18.008 | 18.034 | 1.996 3.278 57 32
FIFO policy is adopted, _the _products leave the| g 22008 | 22.034 | 1.996 3.278 57 32
Warehouse based on their arrival order, product 7 18420 | 18.426 | 1.936 3.144 56 30
entering the warehouse the same day are therefor

undistinguishable: they are thus inserted in tlekipg 8 22.420 | 22.426 | 1.936 3.144 56 30
list randomly. In other words, when the LSFO polisy Avera

adopted, products inside the warehouse can bedanke 9 | 19.672 | 19.6875 1.697 3.35 58.3730.25
even when they enter the warehouse in the same time value

This ranking is clearly determined by the stoclasti N N

variation in the RSL of the incoming products.

The simulation model hence aims to determine the
average RSL of products when they leave the
warehouse, when the FIFO and LSFO policies are
applied. To build the two simulation models the
following assumptions and notation has been used:
the interarrival time of the batches is determinisind
equal to (EOQ-Total perished)/Demand rate. For each
configuration the EOQ quantity arriving at the
warehouse is determined by equation (7) based ®n th
demand rate and the deterioration rate reportdchivie
1. The EOQ corresponds to one batch. For each $KU i
the batch is assigned a RSL value within the normal
distribution; the RSL of the products entering the
warehouse decreases with time each day the stoeks a
held in the warehouse. The RSL at the shipping tene
then determined based on equation (5), by fixing E
equal to 59.7 Kj mat (which is the activation energy of
CO, production for the avocado fruit, Fonseca 2001)
and by considering that the storage temperatuegus
to 10°C.

To ensure that the values determined by the
simulation satisfy the principles of quality cortra
required precision has been fixed equal to 95%sTlIu
warehouse replenishments cycles corresponding to 10
replications of the simulation have been carriet iou
the two cases in which LSFO and FIFO are appliet an
the confidence interval for each measure of intenas
been determined. Then the equation (24) has been
employed to calculate the number of replications
needed in the two cases. The number of replications
necessary to ensure the desired precision for efitte
measures of interest for the experimental plan3s 2
equivalent to 8*23=184 tests for each of the two
scenarios (FIFO and LSFO). The performances of the
warehouse system for the two policies under study a
illustrated in Table 2 and Figure 4.

Table 2: Results of the Experimental Plan

Average

Number of
Scena| Average RSL products with
ro (Days) Ors (Days) a RSl equal
to Average

RLS.i £1

LSFO FIFO | LSFQO FIFO| LSFO | FIFO

1 16.835 | 16.862 | 1.442 3.596 75 30
2 20.835 | 20.862 | 1.442 3.596 75 30
3 17.424 | 17.429 | 1.416 3.391 46 29
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Figure 4: Average Number
warehouse and their RSL for the two picking pofdie
each scenario of the Experimental Plan

of products leaving the

For both the FIFO and the LSFO policy, in each
test configuration and for each run, the number of
products leaving the warehouse with the same RSL
has been calculated. The average of such valudggin
23 runs has finally been determined and reported in
Table 2. The results show that the average RSif
products leaving the warehouse is the same for both
LSFO and FIFO policies, while the average standard
deviation differs substantially (in the FIFO policy
more than two times higher than LSFO). In any case,
expected, the best value of the response is olstaine
when the RSL of the incoming products is at itshhig
level, the deterioration rate is at its low leveldathe
demand rate is at its high level (Scenario 6 of the
experimental plan). Table 2 also shows that when th
LSFO policy is applied a greater number of products
have a RSL about equal than the average RSL vdlue
compared to the case in which the FIFO policy is
applied allowing an improving in quality of 46.64%.

Based on the experimental plan realized an
analysis of the factors has been conducted to méeter



their impact on the response in the two cases iictwh
LSFO and FIFO policies are applied. Results araveho
in Table 3 and 4.

Table 3: Factorial Analysis for LSFO and FIFO pylic

LSFO Effect Coefficient T P
Constant 19.6718 893.41 0.00
RSL 4.0 2.0 90.83 0.000
0 0.5008 0.2504 11.37 0.000
R 1.0847 0.5424 24.63 0.000
FIFO
Constant 19.6875 895.64 0.00
RSL 4.0 2.0 90.99 0.00(0
0 0.4794 0.239 10.90 0.000
R 1.0846 0.5423 24.67 0.000

Table 4 ANOVA for LSFO and FIFO policy

ANOVA
LSFO DF SS
Main Effects 3 34.8548
Residual Error 4 0.0155
Total 7 34.8703
FIFO
Main Effects 3 34.8121
Residual Error 4 0.0155
Total 7 34.8275

Results show that in both cases the initial RSk ,th
demand rate and the deterioration rate has pdsitive
influence on the response. In both cases the effieicth
contributes mostly to improving the performance is
initial RSL. The ANOVA analysis shows that the thre
main factors are responsible for the 99.9% of tialt
variance.

Based on coefficients shown in Tables 3 the
response surface are determined for the experitnenta
plan with equation (16) by considering only thesffir
order terms. The two response surfaces referred
respectively to LSFO and FIFO responses are:

y = 19.67 + 2RSL + 0.2509 + 0.542R + ¢ (26)

and

y =19.68 + 2RSL + 0.2399 + 0.542R + € (27)

The high value of R-Sqg equal to 99.9% for LSFO
and FIFO shows that the linear model obtained tith
two response surfaces actually represents theiomlat
between the predictors (initial RSL, deterioratite
and demand rate) and the response (R¥HLThis result
can be employed to investigate the behavior of the
response without the need of to run further sinmest
thus allowing to gain fast information about the
warehouse system behavior when the input parameters
vary.
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7. CONCLUSIONS

The optimal management of supply chain for perihab
products is a relevant research topic which hasnthc
gained attention due to the poor sustainabilityseéh
systems. Agri-Food supply chains are in fact affddiy
several inefficiencies which typically result inhégh
industrial cost and in an ethical and social comcer
Since deterioration phenomena are generally infladn
by the temperature, the logistic operations areiedhr
out in refrigerated conditions, in the so-calleddco
chain. Ensuring a specified temperature through the
supply chain, however, does not ensure the avoahc
deteriorated products through the supply chaingesin
other important supply chain parameters such as the
order quantity or the lead times have a strongcefi@

the performance of the chain. Finally, some unaerta
parameters are involved in the process, which rbast
taken into account. Optimizing the performanceafhs
systems is hence a complex task, which involvesaal g
knowledge of the deterioration processes in order t
properly assess the deterioration costs. In thiepa
simulation model is proposed to evaluate the
performance of a warehouse system for perishable
products taking into account the effect of the
uncertainties which typically affect the supply hdn
particular, a mathematical model is employed to
determine the optimal stock level and the effect of
shelf-life based picking policy on the performarafe
the supply chain. The results of the experimentah p
proposed show that in the case considered the gevera
RSLei: of products leaving the warehouse is about the
same for both LSFO and FIFO policies, while the
average standard deviation differs substantiattytkie
FIFO policy is about two times higher than LSFO).
When the LSFO policy is applied, thus, a greater
number of products have a Rglabout equal than the
average RSl value +1 to compared to the case in
which the FIFO policy is applied allowing an
improvement in the quality of 46.64%. The effect of
input parameters has been studied emphasizingtae r
of the deterioration rate as the factor which thesin
influences the response. Finally the response citias
been built representing a tool able to predict the
warehouse behavior for any variation of the input
factors considered allowing the optimization of
perishable warehouse management policies.
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