
A SURVEY ON PERFORMANCE MODELLING AND SIMULATION
OF SAP ENTERPRISE RESOURCE PLANNING SYSTEMS

Manuel Mayer(a), Stephan Gradl(b), Veronika Schreiber(c), Harald Kienegger(d), Holger Wittges(e) , Helmut Krcmar(f)

(a) (b) (c) (d) (e) (f) Chair for Information Systems, Technische Universitaet Muenchen,
Boltzmannstr. 3, 85748 Garching, Germany

(a) (b) (c) (d) (e) (f) {mayerm, gradl, schreibv, kienegger, wittges, krcmar}@in.tum.de

ABSTRACT
IT industry faces the need of a robust, reliable and
scalable architecture to support enterprise-scale IT
systems. One of such complex systems are enterprise
resource planning (ERP) systems. ERP systems support
company-wide processes and are considered as a critical
success factor for a reliable business operation. Despite
the importance of performance prediction of IT systems
shown in literature, there is not much work done in the
context of ERP systems. This paper presents the results
of an online survey conducted in December 2010. 36 IT
decision makers of various industries and company
sizes took part in this survey, which contained questions
about whether and to which degree performance
modelling and simulation is currently implemented in
companies, which tools are used to measure the
performance of ERP systems, and which requirements
are expected.

Keywords: performance measurement, performance
modelling, simulation, ERP systems

1. INTRODUCTION
With an increasing number of functionalities added to
systems by manufacturers and system developers,
modern computer systems are becoming more and more
complex. One problem that arises is how to choose the
right system and components for a certain problem.
According to Risse (2006), the selection process is
typically driven by different factors, such as functional
requirements, performance demands and economic
constraints. While architecture design decision-making
involves addressing functional requirements, selecting
necessary software (components) in the context of
standard software, and considering tradeoffs due to the
presence of economic constraints, questions arise about
how the system performs, how the system scales if
expected workload increases, which components might
be potential bottlenecks, and what the system evaluation
criteria would be. The objective of (technical)
performance evaluation is to give answers on these
questions and to present techniques to get the
performance values (e.g. Jain 1991; Sauer and Chandy
1981).

The literature shows the importance of
performance evaluation of IT (e.g. Robertazzi 2000).
However, there are only a few publications regarding
performance evaluation of ERP systems (Rolia et al.
2009). Therefore, the aim of this work is to analyze the
status quo of ERP performance evaluation and
prediction in companies’ data centres. For that purpose,
essential performance evaluation techniques have been
examined. Based on this knowledge, an online survey
has been developed. The focus concentrates on the
following main questions:

 Which demands do companies have regarding

performance evaluation of ERP systems?
 Is performance of ERP systems modelled and

predicted in companies, and if so, which
methods and tools are used?

 Are companies satisfied with the reliability of
current performance evaluation techniques
used?

The remainder of this work is as follows: after

giving a short overview of performance evaluation
techniques in section 2, related work concerning ERP
systems is presented in section 3. Section 4 explains the
structure of the online survey and gives a summary of
the results. Section 5 outlines interesting issues for
future work.

2. THEORETICAL BACKGROUND
According to Ferrari (1986), the field of performance
evaluation dates back to the thesis of Alan Scherr
(1965). Since then the discipline of performance
evaluation has been addressed by many different text
books, for example by Sauer and Chandy (1981) or Raj
Jain (1991). Following Hu and Gorton (1997), the
factors functionality, reliability, speed, and economic
efficiency have to be considered in conjunction with
performance. In the majority of cases, the first two
factors, functionality and reliability, are addressed by
system designers. As a result, the main focus of
performance evaluation community is speed and
economic efficiency. While speed is often described by
response time and throughput, economic efficiency

347

reflects the need to design and implement a system at
the lowest cost.

To evaluate the performance of a system, first it is
necessary to define some criteria or metrics. The right
selection of the metric depends on the scenario, for
example, in a user oriented analysis response time is of
more interest than throughput. On the other hand,
performance evaluation of networks mostly
concentrates on the throughput achieved.

Once the metrics, their relationships and effects on
performance parameters are known, it is equally
important to select a proper workload in a particular
environment. According to Jain (1991), workload types
can be divided into single instruction, instruction mixes,
kernels, synthetic programs and application
benchmarks. Single instruction, instruction mixes and
kernels are primarily used for hardware-related
performance evaluations. Synthetic programs (also
called synthetic benchmarks), such as the Zachmanntest
for SAP ERP systems (Boegelsack, Wittges, and
Krcmar 2010; Kühnemund 2007), are designed to
simulate real workloads. Their only objective is to
consume system resources, but often they are too simple
to accurately reflect real system issues, such as
unrepresentative disk or memory references.

Finally, after choosing the metrics and workload,
the right evaluation technique is fundamental to get
significant results. Most authors in literature, for
example Heidelberger and Lavenberg (1984) or Jain
(1991), distinguish between three different techniques
for performance evaluation: measurement, analytic
modelling and simulation. Ferrari et al. (1983) merge
analytic modelling and simulation as one technique,
since both require the construction of a system model.
The selection of the right technique depends on the
design stage of the system.

Compared to other performance techniques,
measurement provides the highest accuracy at highest
cost, but can only be used after the system has been
built. There are different purposes for system
measurement: to get information to characterize and
model workloads, to validate system models, and to get
insights into system behaviour to improve system
performance. Typically, a monitoring tool is used for
data collection. Snodgrass (1988) defined monitoring as
"the extraction of dynamic information concerning a
computational process, as that process executes". The
main challenge in monitor design is to minimize the
observation impact to the performance behaviour of the
system, since a monitor requires a certain amount of
resources every time it is activated. (Ferrari, Serazzi,
and Zeigner 1983)

Following Trivedi, Haverkort, Rindos and Mainkar
(1994), analytic modelling can be used at very early
design stages but provides only a limited accuracy.
Jonkers (1994) divides performance modelling
formalisms into two classes: deterministic and
probabilistic. In deterministic models, all quantities
such as timing parameters are fixed, while probabilistic
models allow some degree of uncertainty. The latter

enable the solution of models that would otherwise be
analytically intractable, due to the assumption of certain
time distributions. Well-known representatives of
probabilistic models are Markov Chains (Trivedi 1982;
Trivedi et al. 1994), Petri Nets (Peterson 1981) and
Queuing Networks (Bolch et al. 2006; Kleinrock 1976a;
Kleinrock 1976b; Lazowska et al. 1984; Tijms 2003)

Higher accuracy but associated with higher costs
can be achieved with simulation. In summary,
simulation imitates the operation of a real-world process
or system over time (Banks et al. 2004). A simulation
can take place at any point in the life-cycle of the
product. A major advantage of simulation over analytic
modelling is that it can be used to create very detailed,
accurate models. The other side of the coin is the fact
that detailed models are often time consuming and
difficult to design. A wide variety of simulation types
exist and can be categorized in stochastic or
deterministic and static or dynamic simulation (Jain
1991).

3. RELATED WORK

According to Rolia et al. (2009), there is not much
work done in the context of performance evaluation and
prediction of ERP systems. Rolia et al. (2009)
investigate response time behaviour of a SAP ERP
system using Layered Queuing Networks (LQN)
models. The workload is composed by a fixed mix of
sales and distribution requests. The requests are
repeated cyclically 20 times, which corresponds to
experiment duration of about 40 minutes. The results
presented show that the LQN model offered mean
response time predictions within 15% of measured
values for a wide range of load levels. Gradl et al.
(2010) pursue a similar approach for ERP business
process modelling. A case study of an existing
production planning process shows how LQN models
can be exploited as a performance analysis tool.

Seelig et al. (2008) discuss performance evaluation
techniques by comparing the results of one analytic and
one simulative approach. The environment used in this
work is a SAP Web Service application. The authors
conclude that the simulation approach is suitable even
in a very early stage of software development, enabling
the software architect to identify potential hotspots prior
to actually implementing the software components. On
the other hand, quantitative models not only validate the
simulation results, but also enable the architect to
evaluate variants of the modelled component without
much additional effort.

An evolutionary model generation for ERP
performance simulation is presented by Tertilt et al.
(2010). In performance models, some of the
components in complex ERP systems are handled as
black boxes (e.g. due to intellectual property). To
increase the prediction accuracy of these components,
an evolutionary algorithm is used. First results of the
prototypical implementation showed the feasibility of
the depicted approach as long as the data used for
modelling was equally distributed. However, if the

348

measured performance data is unbalanced, the error
increases significantly.

Besides the analytic and simulative approaches
mentioned, different efforts have been made to measure
performance of ERP systems. Jehle (2010) analyzes the
performance behaviour of a portal system by SAP.
Performance measurements are effected on identically
configured test systems, both on native and virtualized
environments. The results show that under certain
circumstances a virtualized environment even increases
the performance of the portal system being studied,
namely, if the test workload is moderate and causes
excessive Input/Output (I/O) loops. Similarly,
Boegelsack, Wittges, and Krcmar (2010) investigate the
scalability and performance of a virtualized SAP system
on the basis of a quantitative approach and gives
recommendations how to configure a SAP system for
heavy workload. It is also shown that the average
performance of a SAP system increases if a container-
based virtualization solution is used, and decreases with
a Xen-based virtualization solution.

4. SURVEY PREPARATION AND RESULTS
To understand whether and to which degree
performance evaluation is currently implemented in
companies, an online survey has been conducted. The
main questions mentioned above can be broken down as
follows:

 Which demands do companies have

concerning performance evaluation of ERP
systems?

 Do companies evaluate the performance of
ERP systems? If so,
 Which methods and metrics are used?
 Which parts or layers of their systems are

evaluated?
 Which tools are used?

 Are companies satisfied with currently used
methods?

 How big is the interest in this topic?
 What are the benefits expected?

Based on these questions, the basic structure shown in
Figure 1 forms the backbone of the questionnaire.

Demands,
Satisfaction

Performance
Evaluation in
Organizations

Existing
Methods

Existing Tools

Performance
Evaluation of
ERP Systems

Conclusions,
Future Work

Figure 1: Research Model

4.1. Structure
Besides introduction and conclusion, the final version
of the survey contains four blocks of questions

concerning performance evaluation of ERP systems.
The first one deals with questions about the general
performance evaluation of ERP systems in
organizations, the second one with questions about the
concrete system, and the last two ones contain questions
about demographic data of organizations and persons
responding to the survey.

4.2. Data Collection and Demographics
The online survey was initiated on two big internet
platforms in December 2010 and continued for a 6-
weeks period until January 2011. The chosen platforms
were the German-speaking SAP User Group (DSAG)
and the SAP Developer Network (SDN).

These two platforms were chosen for the survey
due to the composition of their members. Both are
specialized platforms to SAP ERP systems. We
received 36 fully completed and usable questionnaires
from 116 participants, which equals to a return rate of
31.03%. This sample is not as big as we had expected,
but still sufficient for a reliable evaluation. Due to the
limit theorem, the normal distribution is sufficiently
exact for a sample of n > 30 (e.g. Pal and Sarkar 2005).

The industry most represented was IT services
(25%), followed by public administration (19.44%),
manufacturing (11.11%), banks, assurances and
financial services (11.11%), automotive (8.33%),
mechanical engineering and construction (8.33%), and
others (16.68%). Companies with less than 2000
employees represented almost 60% of the participating
organizations. Most answers were received from IT
consultants (33.33%), followed by IT managers
(27.78%) and IT project leaders (27.78%). 97% of the
participants of the survey are long year veterans
regarding ERP systems. It can be expected that these
results are based on a high level of experience.

4.3. Results
The survey shows that more than 97% of the
interviewed persons are very open-minded to
performance evaluation of ERP systems. About two-
thirds of the participants believe that performance
evaluation is very important. All participants measuring
performance use common metrics, namely, response
times (100%), capacity utilization (100%), and
throughput (37.5%).

4.3.1. Demands, Expectations
The participants were asked about their demands on
performance evaluation of ERP systems. The result is
shown in Figure 2.

To get a better understanding of which factors are
most important for the respondents, the response
options A (not important at all) to E (highly important)
were given weights from 0 to 4. Result F (no answer
given) is also given the weight 0. Subsequently, the
percentages have been multiplied by the weight and
normalized.

349

A A A A A A AB B B B B B BC C C C C C CD D D D D D DE E E E E E EF F F F F F F0

5

10

15

20

25

L1 L2 L3 L4 L5 L6 L7

N
u

m
b

er
 o

f R
es

p
on

d
en

ts

Demands

A
B
C

D
E
F

Figure 2: Demands on Performance Evaluation of ERP
Systems

The result showed that L1 (to improve the system
quality) and L3 (identification of critical system
components) are most important for the respondents,
closely followed by the requirement L7, to increase
efficiency. Two other demands, which were not
included in the poll, but were added by the respondents,
are operational safety and system stability.

4.3.2. Performance Evaluation of ERP Systems in

Organisations
For the further course of the questionnaire it was
important to check if companies already evaluate the
performance of their ERP systems (see Figure 3).

Figure 3: Performance Evaluation of ERP Systems in
Organisations

About 86% of participants’ companies have already
evaluated performance of ERP systems at least once.
On the other hand, those who use performance

evaluation on a regular basis for most or all of their
systems are clearly underrepresented with only about
33% of the participants.

In this context, it would be interesting to see,
whether there are dependencies between these results
and the company size or IT budgeting. Unfortunately,
the sample size does not allow giving statistically
relevant statements. The participants that are not
evaluating the performance abandon it due to not
enough resources (60%) or competencies (40%).

4.3.3. Established Tools
Only half of the participants of the online survey are
using tools and methodological approaches to measure
performance. All considered companies use inherent
tools of the ERP system. The survey did not ask for the
reason, but it can be assumed that these ERP integrated
tools are used not only to avoid potential compatibility
problems and version release dependencies when using
third party tools, but also to avoid additional licensing
costs.

Another question about tools is shown in Figure 4.
It has been asked, how flexible these tools are in respect
of application field, functionality and modifications.

Figure 4: Flexibility of Performance Tools

More than 58% of the respondents are not or only
partially satisfied with the flexibility of the product. As
we had seen before, all of them are using ERP inherent
performance tools, although the given answers indicate
that they are not satisfied with the flexibility of their
tools. Normally, one would assume that the customer
would consider switching to a different tool in such
cases. But it seems that the assumption taken above is
backed by this result. In addition, the assumption is also
supported by the fact that only 12.50% had switched the
performance tool in the past.

In conclusion, the respondents use the offered ERP
integrated tools and products but are not really satisfied.
Interestingly, the major dissatisfaction comes with the
suitability for performance measurements of future
workload characteristics (e.g. with increased loads).

Legend:
L1 Improvement of the system‘s quality
L2 Flexibility
L3 Identification of critical components of the system
L4 Cost reduction
L5 Gaining of strategic advantages in competition
L6 Reduction of risk
L7 Increase of efficiency
A Not important at all
B Nice to have but not really important
C Important for some systems/parts only
D Important for most systems/parts
E Highly important for every System/part
F No answer given

350

4.3.4. Established Methods
The next question concentrated on methods used for
performance evaluation purposes. Here, multiple
answers were possible, because the organizations might
use different methods in different phases in the life
cycle of an ERP system, or they could use different
methods to compare these results and thus get a
probably more reliable overview of system’s
performance.

Figure 5: Methods Used for Performance Evaluation

Figure 5 shows that almost 70% of the respondents are
using workload tests, 25% use analytical models and
31.25% use simulations. One of the reasons might be
the concentration on performance behaviour of the
current system configuration, without the intention to
further investigate alternative scenarios with different
workloads. In addition, we asked the participants about
the drawbacks of their currently used methods. Most of
them said that on the one hand these methods are not
entirely flexible and on the other hand there is no end-
to-end view across all layers.

In retrospect, interesting aspects for future data
acquisitions are the reasons why there are no further
tools other than ERP integrated instruments used or
developed, and which functional improvements and
additions are required to cover all aspects to entirely
evaluate performance of the whole system and software
stack.

4.3.5. User Satisfaction
Another important question concerned with the
satisfaction of reliability, namely, the robustness of
tools versus failures and the reliability of performance
results.
As shown in Figure 6, no respondent is absolutely
satisfied with reliability. This confirms the already
gained knowledge about the weaknesses of currently
used tools. Surprisingly, one-third of the respondents,
who all measure performance regularly and most likely
did not switch the tools in the past, question the
reliability. The lack of confidence correlates to the
results about functional weaknesses of currently used
tools.

Figure 6: User Satisfaction Concerning Performance
Evaluation Reliability

5. CONCLUSIONS AND FURTHER RESEARCH
The survey shows that almost all participants (97%) are
open-minded to performance evaluation of ERP
systems and 86% of them currently measure
performance at least for some components or systems.
All of them measure the performance in the phase of
operation and maintenance. Almost 70% use workload
tests to measure performance, 25% are using analytical
models, and 33% are using simulations. Performance
predictions for increasing workloads are rarely made.
This is reasoned by functional weaknesses of the tools
used.

Interestingly, only ERP inherent and no third party
or own developed tools are used. These integrated tools
only partially satisfy the demands of the participants.
Although only the minority of participants is satisfied
with the reliability of performance evaluation results,
almost no one has changed the method or tool used, due
to the lack of know-how, resources, and high
implementation costs. Comparing these results with
well-established performance evaluation techniques in
literature, it is assumed that there are a lot of potentials
to improve methods and tools in practice.

The advantages seen in performance evaluation of
ERP systems include mainly improvements in
efficiency (85.29%), risk reduction (76.47%), increased
flexibility (50%) and cost reduction (44.12%).
Consequently, further research should be done to
combine existing performance evaluation techniques in
literature with requirements in practice. To identify the
demands in detail, additional data acquisitions are
necessary. For this purpose and with the assistance of
the expert communities, semi-structured interviews are
being considered. Based on these findings, aligned
methods for performance evaluation of ERP systems
can be developed.

ACKNOWLEDGMENTS
The online survey has been conducted via
www.2ask.de. For a copy of the survey questionnaire,
results, and analysis please contact the authors.

REFERENCES
Dsag - Deutsche Sap Anwendergruppe. Available from:

http://www.dsag.de [February 12 2011].
Sdn - Sap Developer Network. Available from:

http://www.sdn.sap.com [February 12 2011].

351

Banks, J., Carson, J., Nelson, B. L., Nicol, D., 2004.
Discrete-Event System Simulation. Englewood
Cliffs, NJ, USA:Prentice-Hall.

Boegelsack, A., Wittges, H., Krcmar, H., Year.
Scalability and Performance of a Virtualized
Sap System. Proceedings of the 16th American
Conference on Information Systems, Paper 13.
August 12-15, Lima, Peru.

Bolch, G., Greiner, S., de Meer, H., Trivedi, K. S.,
2006. Queueing Networks and Markov Chains:
Modelling and Performance Evaluation with
Computer Science Applications. Hoboken, NJ,
USA:John Wiley and Sons.

Ferrari, D., 1986. Considerations on the Insularity of
Performance Evaluation. IEEE Transactions
on Software Engineering (12:678-683).

Ferrari, D., Serazzi, G., Zeigner, A., 1983.
Measurement and Tuning of Computer
Systems. Englewood Cliffs, NJ, USA:Prentice-
Hall.

Gradl, S., Mayer, M., Wittges, H., Krcmar, H., Year.
Modelling Erp Business Processes Using
Layered Queueing Networks. Proceedings of
the 12th International Conference on
Enterprise Information Systems, 255-260,
Funchal, Portugal.

Heidelberger, P., Lavenberg, S. S., 1984. Computer
Performance Evaluation Methodology. IEEE
Transactions on Computers (33:1195-1220).

Hu, L., Gorton, I. "Performance Evaluation for Parallel
Systems: A Survey," 9707, University of New
South Wales, Sydney, Australia.

Jain, R., 1991. The Art of Computer Systems
Performance Analysis: Techniques for
Experimental Design, Measurement,
Simulation, and Modelling. New York, NY,
USA:Wiley/Interscience.

Jehle, H., 2010. Performance Measurement of an Sap
Enterprise Portal System in a Virtualized
Environment. University of Technology
Munich.

Jonkers, H., Year. Queueing Models of Parallel
Applications: The Glamis Methodology.
Proceedings of the 7th International
Conference on Computer Performance
Evaluation, 123-138, Secaucus, NJ, USA.

Kleinrock, L., 1976a. Queueing Systems, Volume 1:
Theory. Hoboken, NJ, USA:John Wiley &
Sons.

Kleinrock, L., 1976b. Queueing Systems, Volume 2:
Computer Applications. Hoboken, NJ,
USA:John Wiley & Sons.

Kühnemund, H. "Documentation for Slcs V.2.3.," SAP
AG, Linux Lab, Walldorf, Germany.

Lazowska, E. D., Zahorjan, J., Graham, G. S., Sevcik,
K. C., 1984. Quantitative System Performance:
Computer System Analysis Using Queueing
Network Models. Englewood Cliffs, NJ,
USA:Prentice-Hall.

Pal, N., Sarkar, S., 2005. Statistics: Concepts and
Applications. New Dehli, India:Prentice-Hall.

Peterson, J. L., 1981. Petri Net Theory and the
Modelling of Systems. Englewood Cliffs, NJ,
USA:Prentice-Hall.

Risse, T., 2006. Design and Configuration of
Distributed Job Processing Systems. Thesis
(PhD). Technische Universität Darmstadt.

Robertazzi, T. G., 2000. Computer Networks and
Systems: Queueing Theory and Performance
Evaluation. New York, New York,
USA:Springer.

Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S.,
Kraft, S., Year. Predictive Modelling of Sap
Erp Applications: Challenges and Solutions.
Proceedings of the Fourth International ICST
Conference on Performance Evaluation
Methodologies and Tools, 1-9, Pisa, Italy.

Sauer, C. H., Chandy, K. M., 1981. Computer Systems
Performance Modelling. Englewood Cliffs,
NJ, USA:Prentice-Hall.

Scherr, A. L., 1965. An Analysis of Time-Shared
Computer Systems. Massachusetts Institute of
Technology.

Seelig, M., Kluth, S., Porzucek, T., Copaciu, F.,
Naumann, N., Kühn, S., Year. Comparison of
Simulation and Performance Modelling - a
Case Study. Proceedings of the 15th Annual
IEEE International Conference and Workshop
on the Engineering of Computer Based
Systems, 49-56, Washington, DC, USA.

Snodgrass, R., 1988. A Relational Approach to
Monitoring Complex Systems. ACM
Transactions on Computer Systems (6:157-
195).

Tertilt, D., Leimeister, S., Gradl, S., Mayer, M.,
Krcmar, H. "Towards an Evolutionary Model
Generation for Erp Performance Simulation,"
in: IADIS International Conference on
Intelligent Systems and Agents (ISA), Freiburg,
Germany, 2010.

Tijms, H. C., 2003. A First Course in Stochastic
Models. Hoboken, NJ, USA:John Wiley &
Sons.

Trivedi, K. S., 1982. Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications. Englewood Cliffs, NJ,
USA:Prentice-Hall.

Trivedi, K. S., Haverkort, B. R., Rindos, A., Mainkar,
V., Year. Techniques and Tools for Reliability
and Performance Evaluation: Problems and
Perspectives. Proceedings of the 7th
International Conference on Computer
Performance Evaluation, 1-24, Secaucus, NJ,
USA.

352

UNDERSTANDING THE PERFORMANCE BEHAVIOR OF A SAP ERP SYSTEM FOR
THE USE OF QUEUING MODELS

Stephan Gradl(a), Manuel Mayer(b), Alexandru Danciu(c), Holger Wittges(d), Helmut Krcmar(e)

(a) (b) (c) (d) (e) Chair for Information Systems, Technische Universitaet Muenchen, Boltzmannstrasse 3,
 85748 Garching, Germany

(a) (b) (c) (d) (e) {Stephan.Gradl, Manuel.Mayer, Danciu, Holger.Wittges, Krcmar}@in.tum.de

ABSTRACT
ERP systems support the management of a company’s
resources. As a large number of business-relevant
processes are supported by ERP systems, the
performance and availability of those systems is crucial
for the success of a company (Apache Software
Foundation 2010). We analyze the response time of
49350 requests. Furthermore, we interpret the system’s
internal behavior by fetching and analyzing the
statistical data. As results we can show that queuing
models can be used for evaluating the performance of
SAP ERP systems as the response time behavior
follows the assumptions of queuing theory, resulting in
nearly constant resource consumption per user
interaction task, independent of the number of parallel
requests. By analyzing the reasons for these results,
important insights into the performance behavior of
SAP ERP systems for performance analysis and
prediction are achieved.

Keywords: ERP, SAP, Performance, Load Test,
Measurement, Analysis

1. INTRODUCTION
ERP systems support the management of a company’s
resources. As a large number of business-relevant
processes are supported by ERP systems, the
performance and availability of those systems is crucial
for the success of a company (Krcmar 2009). In
particular, we focus on the performance analysis of the
SAP Enterprise Resource Planning (SAP ERP, formerly
SAP R/3) application (Schneider 2008). SAP ERP is an
integrated backend application with tens of thousands of
installations worldwide designed for tracking and
managing business processes in midsize and large
enterprises. From a technical perspective, this
application is built on top of a software integration
platform that provides primitives to control the
concurrency offered by application server and database
server, the layered use of servers, asynchronous
messaging, and priority scheduling for certain types of
processing. According to Jain (1991), there are several
classical approaches for capacity planning and
performance evaluation of computer systems like
measurement (benchmarking and stress testing),

simulation and analytical modeling. To evaluate the
performance using simulation techniques, the system
has to be modeled. Performance modeling of an ERP
system requires deep knowledge about the structure and
its performance behavior. To achieve accurate and
significant results using queuing models the system has
to follow certain performance criteria (Chen et al.
2008):

• The CPU time per user interaction task has to

be independent from overall system utilization.
• The CPU utilization has to increase linearly

with the number of concurrent load steps.
• The response time has a constant section that is

followed by a linearly increasing section,
ending in an exponentially increasing behavior.

In the following we describe a case study we

performed on an SAP ERP system to analyze the
performance behavior of this system when set under
heavy parallel. We measure the response time behavior
of the system as a black box, and then go a step further
and analyze the internal behavior of the ERP system by
fetching and interpreting the system’s statistical records.
Section 2 of this paper provides the research context of
this work, while Section 3 provides an overview of the
required definitions. In Section 4 we describe how we
measure the response time of the system, give a brief
overview of the architecture of the system under test
and the used benchmark, and point out the method we
used to create load. Section 6 then follows with the
measurement results, as well as with their interpretation,
and the analysis of the statistical records of the ERP
system. Finally, in Section 7 we conclude our results
and give an overview about the next steps and future
work.

2. RELATED WORK
The key literature about performance measurement and
analysis of (enterprise) software systems are the books
of Jain (1991) and Lilja (2000). These authors describe
elaborately the whole process of performance
measurement, pointing out what performance is, how it
is measured, and which factors affect the performance
of a software system. We are basing our work on the

353

definitions made in these books, and adopt them to the
fields of ERP. The importance of performance analysis
is pointed out by Menascé (2002). An overview of the
factors that determine the performance of an application
is given by Bailey (2005) and Hollingsworth
For the performance of an ERP system, we refer to
(Schneider-Neureither 2004). In this book, the author
explains in detail the effect of the SAP architecture and
configuration on its performance, focusing on the
solution of concrete operational problems. Although th
book is written as an administrator manual, it provides a
good overview of the factors affecting the SAP
system´s performance. An overview of existing SAP
benchmarks is given in (Prior 2003).

A scientific approach for the measurement of ERP
performance behavior – in this case focusing on the
effects of virtualization - presented by Jehle
Bögelsack (2010). While Jehle is focusing on the
response time behavior using a load test,
(2008) is analyzing the system´s internal matters,
especially the CPU time, for interpreting its effect on
the system performance.

Jin (2007) shows a method for performance
prediction of legacy information systems. As the
internal architecture of the investigated productive
information system is not known, the authors used a
method that is based on a black box approach for
predicting the technical performance of this legacy
information system with historical values. This
approach combines benchmarking, production system
monitoring, and performance modeling (BMM) by
analyzing and correlating the performance v
derived from the benchmarks and monitoring. Based on
the measurements, a model is created and used for the
performance prediction.

In (Rolia et al. 2009), an LQN model for the
performance prediction of an SAP ERP system is
introduced. In this approach the statistical records
provided by the SAP system are used for performance
analysis and prediction. In addition, the authors also
used CPU values gathered from an SAP tool called
saposcol. The workload used is based on a sales and
distribution scenario, very similar to the workload that
is applied in the SAP SD benchmark. Buffers, both
from the applications server and the database, having a
significant impact on the overall performance, are not
taken into account.

3. DEFINITIONS
For measurement the performance of an application,
one first has to define what is understood as
performance in the given context, and which metric(s)
are considered for the representation of an application’s
performance. Our understanding of performance is best
shown by the following definition, taken from
(Schneider-Neureither 2004).

Generally spoken, the performance of a data
processing system is its ability to match the
requirements in response time and throughput

ks, and adopt them to the
fields of ERP. The importance of performance analysis

overview of the
factors that determine the performance of an application

Hollingsworth (2005).
For the performance of an ERP system, we refer to

. In this book, the author
explains in detail the effect of the SAP architecture and
configuration on its performance, focusing on the
solution of concrete operational problems. Although the
book is written as an administrator manual, it provides a
good overview of the factors affecting the SAP
system´s performance. An overview of existing SAP

A scientific approach for the measurement of ERP
in this case focusing on the

Jehle (2009) and
. While Jehle is focusing on the

response time behavior using a load test, Bögelsack
internal matters,

especially the CPU time, for interpreting its effect on

shows a method for performance
prediction of legacy information systems. As the
internal architecture of the investigated productive
information system is not known, the authors used a

box approach for
predicting the technical performance of this legacy
information system with historical values. This
approach combines benchmarking, production system
monitoring, and performance modeling (BMM) by
analyzing and correlating the performance values
derived from the benchmarks and monitoring. Based on
the measurements, a model is created and used for the

, an LQN model for the
performance prediction of an SAP ERP system is
introduced. In this approach the statistical records
provided by the SAP system are used for performance
analysis and prediction. In addition, the authors also

from an SAP tool called
saposcol. The workload used is based on a sales and
distribution scenario, very similar to the workload that
is applied in the SAP SD benchmark. Buffers, both
from the applications server and the database, having a

ct on the overall performance, are not

For measurement the performance of an application,
one first has to define what is understood as
performance in the given context, and which metric(s)

tion of an application’s
performance. Our understanding of performance is best
shown by the following definition, taken from

Generally spoken, the performance of a data
processing system is its ability to match the
requirements in response time and throughput.

As already given by this definition, the most
popular metrics for an application’s performance are
response (or execution) time and throughput.
Nevertheless there are other, like the number of
accesses to a special resource of energy need. In our
context of ESOA, the response time as defined by
(2000) and shown in figure 1
the request is sent (T1) until the time, when the
response is completely received (T3)
relevant metric, as the service calls are considered to be
short running by time critical (in contrast to a batch job,
where in general the throughput is more relevant than
the single response time).

Figure 1: The Structure of the response time (according
to Menasce (2002))

Even though it is obvious that the response time

and the throughput are connected, in our work we
focused on the response time, since the response time is
the actual time a user waits while performing a task. On
a high dispersion of respon
could be still eligible, while some high response times
are inacceptable (e.g. due to Service Level
Agreements).

4. MEASUREMENT
Following (Lilja 2000), the most common benchmark
strategy is the fixed-computation approach in which the
total time required to execute the benchmark is used as
the performance metric. The complementary approach
is to fix the amount of time, where the total amount of
computation completed in this time period is used as
performance metric. The most flexible benchmark
strategy is to derive a third dimension from some
combination of the execution time and the amount of
computation completed within this time. In this way
(using this third dimension as performance metric),
execution time and computation can be kept variable.
The Hierarchical Integration Benchmark (HINT), for
instance, uses quality improvements per second as
performance metric, defined as a function of the
problem being solved by the benchmark program.
1 summarizes the strategies that can be used in a
benchmark program to exercise the system under test.

For our case study we fixed the amount of
computation while measuring th
sap ERP System to execute it.

As introduced later on, the benchmark consists of
the creation of a material master record in the SAP ERP
system. For this task, a WebService in the SAP system
has been identified, which has been used for
load on the system. This service is called in parallel by
an own implementation of a Java load generator. For
measuring the system behavior, we combine the black

As already given by this definition, the most
popular metrics for an application’s performance are

ecution) time and throughput.
Nevertheless there are other, like the number of
accesses to a special resource of energy need. In our
context of ESOA, the response time as defined by Nudd

1 the time from the moment
1) until the time, when the

response is completely received (T3) – is the more
relevant metric, as the service calls are considered to be
short running by time critical (in contrast to a batch job,
where in general the throughput is more relevant than

The Structure of the response time (according

Even though it is obvious that the response time
and the throughput are connected, in our work we
focused on the response time, since the response time is
the actual time a user waits while performing a task. On
a high dispersion of response times, the throughput
could be still eligible, while some high response times
are inacceptable (e.g. due to Service Level

, the most common benchmark
computation approach in which the

total time required to execute the benchmark is used as
the performance metric. The complementary approach
is to fix the amount of time, where the total amount of
computation completed in this time period is used as

mance metric. The most flexible benchmark
strategy is to derive a third dimension from some
combination of the execution time and the amount of
computation completed within this time. In this way
(using this third dimension as performance metric),

n time and computation can be kept variable.
The Hierarchical Integration Benchmark (HINT), for
instance, uses quality improvements per second as
performance metric, defined as a function of the
problem being solved by the benchmark program. Table

summarizes the strategies that can be used in a
benchmark program to exercise the system under test.

For our case study we fixed the amount of
computation while measuring the time, needed by the
sap ERP System to execute it.

As introduced later on, the benchmark consists of
the creation of a material master record in the SAP ERP
system. For this task, a WebService in the SAP system
has been identified, which has been used for creating
load on the system. This service is called in parallel by
an own implementation of a Java load generator. For
measuring the system behavior, we combine the black

354

box approach described by Kruse (2009)
box approach used by Malik (2010). In the following
section, we illustrate the architecture of the system
under test, the benchmark, and the load generator

Table 1: Benchmark Strategies (based on

Time Computation Performance Metric
Variable Fixed Execution Time

Fixed Variable Consumption completed
Variable Variable Third dimension

5. SYSTEM ARCHITECTURE
To provide an understanding of the ERP system
architecture shown in figure 2, we derive the system
components from the ERP process step
analyzing the recorded trace and the abstraction of the
trace entries. These components are described in detail
in (Schneider 2008). The process step of calling a
program involves many components of the SAP system
(see figure 2).

Figure 2: Simplified SAP ERP system architecture

Searching for the program includes access to

internal buffers as well as access to the database tables.
This access is made by the so called disp+work
processes of the SAP system. Such processes are
responsible for executing programs, processing user or
WebService requests, and accessing the database.
Before a request is associated to one of the disp+work
processes of the SAP system, a dispatcher process is
accessed. The dispatcher process manages all other
processes in the SAP system, and his primary task
assign a user request to a free disp+work process. In our
model, we assume the database as a black box.

After the SAP system got the information which
program has to be executed, it loads a compiled version
of the program from the database and execu
Sometimes such compiled programs are held in the
internal buffers of the SAP system to avoid database
accesses.

After the request is processed, the data should be
saved to the database. This is done by the disp+work
process(es) together with a process called update
process. This process receives data and stores it in
corresponding database tables.

Simultaneously, a lock on a central table is
established, which may be described as a little

(2009), and the glass
. In the following

llustrate the architecture of the system
under test, the benchmark, and the load generator.

Benchmark Strategies (based on (Lilja 2000))
Performance Metric

Execution Time
Consumption completed

Third dimension

To provide an understanding of the ERP system
, we derive the system

components from the ERP process step-by-step by
analyzing the recorded trace and the abstraction of the
trace entries. These components are described in detail

. The process step of calling a
program involves many components of the SAP system

Simplified SAP ERP system architecture

Searching for the program includes access to
internal buffers as well as access to the database tables.
This access is made by the so called disp+work
processes of the SAP system. Such processes are
responsible for executing programs, processing user or

bService requests, and accessing the database.
Before a request is associated to one of the disp+work
processes of the SAP system, a dispatcher process is
accessed. The dispatcher process manages all other
processes in the SAP system, and his primary task is to
assign a user request to a free disp+work process. In our
model, we assume the database as a black box.

After the SAP system got the information which
program has to be executed, it loads a compiled version
of the program from the database and executes it.
Sometimes such compiled programs are held in the
internal buffers of the SAP system to avoid database

After the request is processed, the data should be
saved to the database. This is done by the disp+work

ess called update
process. This process receives data and stores it in

Simultaneously, a lock on a central table is
established, which may be described as a little

repository of all available material master records
(MMR) within the system. This lock is not set by the
disp+work process itself; it triggers a so
process. The only task of the enqueue process is to set
locks on any tables in the SAP system, and to manage
such locks. After the lock was set successfu
disp+work process can store the data into the central
MMR repository.

5.1. Benchmark
For the load run processed in this case study, the
Production Planning Integration Case Study
2006) has been used. In detail Web Services creating
different kinds of material master records, bill of
materials, routing, etc. has been chosen. As shown in
table 2, these Web Services have an average complexity
with read, insert and update statements to the database.
Each execution of the case study does not depend
another one and therefore can be executed anytime
using the SAP Web Service Interface.

As already introduced, the programs in a SAP ERP
System are running on an infrastructure containing
dispatching, locking, buffering and database access
mechanisms (Schneider 2008)
the performance of a SAP ERP system, it is necessary
to use a workload that uses these componen
leads to different kinds of database queries that
characterize the Web Service calls from a technical
side.

Table 2: Database accesses for material creation

 DBRows

Direct Read 6
Sequ. Read 2754

Insert 122
Update 1

Table 2 shows different kinds of database accesses.

As the labels Insert and Update are self
“Direct reads” are always in the form of “select single”
and fetch exactly one row from the d
queries in the form of “select * from...” are named
Sequential reads. The column DBRows shows the
number of rows that are fetched directly from the
database without being served by the buffers, while the
column read2Buffer shows the number o
could be served from caches. The column ReqTime
contains the time requests took. This entry does not
include requests time served by the caches, since these
times can be neglected, according to the technical
documentation of the Transaction

In addition, the workload emulates an existing
business process, affecting the already mentioned key
components (buffers, locks, database accesses, etc) on
the technical layer.

For the load test, an ERP installation with an
application server and a database server, both hosted on
a physical server with 16 GB of Ram and 4 Cores
running at 2.8 GHz, has been used. The application

repository of all available material master records
thin the system. This lock is not set by the

disp+work process itself; it triggers a so-called enqueue
process. The only task of the enqueue process is to set
locks on any tables in the SAP system, and to manage
such locks. After the lock was set successfully, the
disp+work process can store the data into the central

For the load run processed in this case study, the
Production Planning Integration Case Study (Weidner

has been used. In detail Web Services creating
different kinds of material master records, bill of
materials, routing, etc. has been chosen. As shown in

, these Web Services have an average complexity
with read, insert and update statements to the database.
Each execution of the case study does not depend on
another one and therefore can be executed anytime
using the SAP Web Service Interface.

As already introduced, the programs in a SAP ERP
System are running on an infrastructure containing
dispatching, locking, buffering and database access

(Schneider 2008). In order to understand
the performance of a SAP ERP system, it is necessary
to use a workload that uses these components. This
leads to different kinds of database queries that
characterize the Web Service calls from a technical

Database accesses for material creation
 Read to

Buffer
ReqTime

222 5134
176 6352196
0 12633
20 686

shows different kinds of database accesses.
As the labels Insert and Update are self-explanatory,
“Direct reads” are always in the form of “select single”
and fetch exactly one row from the database, while
queries in the form of “select * from...” are named
Sequential reads. The column DBRows shows the
number of rows that are fetched directly from the
database without being served by the buffers, while the
column read2Buffer shows the number of requests that
could be served from caches. The column ReqTime
contains the time requests took. This entry does not
include requests time served by the caches, since these
times can be neglected, according to the technical
documentation of the Transaction STAD.

In addition, the workload emulates an existing
business process, affecting the already mentioned key
components (buffers, locks, database accesses, etc) on

For the load test, an ERP installation with an
application server and a database server, both hosted on
a physical server with 16 GB of Ram and 4 Cores
running at 2.8 GHz, has been used. The application

355

server and the database were provided in virtual
containers using SUN Solaris Zones. The application
server was configured with 30 work processes and the
database (MaxDB, version 7.7) with up to 150 parallel
connections. For the case study, we used an SAP system
with customizing and data of the SAP International
Demo and Education System (IDES).

The underlying database for this installation,
containing one IDES client, has a size of 220 GB and
uses Unicode. The database data files are provided on
two internal SAS Discs configured in a performance
raid with raid level 0.

5.2. Load Generator
Load generation is done by the own implemented Java
application Load Generator. The Load Generator uses
threads for parallelization, and the Axis2 framework
(Apache Software Foundation 2010) for calling the web
service.

A load run is conducted by a stepwise increasing
number of parallel service calls. To minimize the
amount of overhead, we initialize the payload once,
cloning the object tree for each call, and changing the
material number. The load procedure calls the service i
times in parallel for every step i in the load test (where i
= 1 to n, n = the number of maximum parallelism set for
the load test), then waits for all results to be stored, and
finally increases i by a given step size (step size 1 in our
case). Doing this, it is assured that every sequence,
which is a load unit of a certain number (i) of parallel
requests, is not affected by the request before. For this
purpose, a configurable wait time after each sequence
has been implemented, too. This short time frame
between the sequences is used to fetch the later
discussed statistical values from the SAP system, in
order to keep these values available and the amount of
data, which has to be transferred, as small as possible.

This results in a response time distribution matrix
containing the response times for all (i) sequences, and
a total number of calls of m_calls=(n*(n+1))/2.

Experiments showed that the initialization of
caches on first requests results in non proportional and
unpredictable long runtimes. To avoid these “cold start”
effects, we perform a settling phase of three times forty
requests before starting the measurement. In this way
we assure that all caches are initialized, as can be seen
by the cache hit statistics provided by the SAP system.

6. RESULTS AND ANALYSIS
In this section we provide two views of the system
under test. At first, we interpret the response time
behavior, seeing the system as a black box (cf Ludewig
(2007)). Afterwards, we switch to the glass box view,
taking a deeper look at the system’s internal behavior,
analyzing the statistical data, and providing an
illustration of where the presented response time
behavior originates from.

6.1. Measurement
Figure 3 shows the response time results for five load
tests running from one to 140 parallel requests. The
diagram contains 49350 response time results, resulting
in an easily recognizable behavioral pattern. Using
figure 4, we will explain this pattern in the following.

Taking a close look at the response time diagram,
one can see that the pattern can be split up in three
parts. The first part (marked as 1) is where the number
of parallel requests is smaller than the number of
available work processes on the ERP system. All
requests can be handled by the system in parallel. An
increasing number of parallel requests slows down the
response times for all requests, as can be seen by the
difference between 1.1 (one request) and 1.2 (30
parallel requests). Nevertheless, this slowdown is
affecting all requests evenly.

Figure 3: Response time diagram for five load tests

When the number of parallel processes exceeds the

number of available work processes, the message
queuing used by the ERP system for load balancing
becomes visible. The first block of n requests is
processed in parallel (where n is the number of
available work processes) in a constant time (2),
independent of the overall number of requests. This is
comprehensible, as the surplus of the requests stays in
the queue and thus is not consuming any relevant
resources.

Figure 4: Response time diagram analysis

The surplus of requests is processed after work

processes finish the first request. A repeating pattern is
recognizable, as the surplus of requests (6) is processed
as the requests in section 1. This continues (3 and 7, 4
and 8), up to approximately 100 parallel requests. From
this point on, the maximum response time stays
constant – due to a timeout of all longer running
requests.

As a result we can say that the system’s capacity is
at about 100 parallel requests. Passing this limit will
result in requests not being successfully answered. But

356

whatever excessive load generated, at least these 100
requests will be successfully processed.

The response time of a single request though is
quite unpredictable.

6.2. Glass Box View
To analyze the response time in a glass box view, the
relevant components addressed in section 1, and the
time slots they use, have to be introduced. The response
time in the SAP ERP ABAP stack is quite complex and
consists of the following components:

• wait time
• roll in time
• load/generation time
• database time
• enqueue time
• roll out time
• rolled out time
• time in workprocess

As illustrated in figure 1, each request that arrives

at the system has to be assigned to a work process in
order to get processed. This assignment is done by the
dispatcher process. The time for this step is called wait
or queue time. The overall time the program is
processed by the work process is called time in work
process.

As shown in figure 5, this time consists of several
components. The first processing step in t
process is to load the process context in its memory.
This is called roll in time. If a program calls a remote
service, the time, while it has to wait for the response, is
also assigned to the roll in time. Then the program has
to be loaded into the process memory or generated
(compiled) from source code, if it is called the first
time. While the request is processed, the work process
fetches data from the database. This is aggregated
the metric database time.

The SAP ERP kernel has its own mec
control concurrent access to database objects, the so
called enqueue process. If a resource is busy, then a
work process has to wait until it can be obtained. This
slot is called enqueue time. As soon as the work process
is finished, the information has to be unloaded from the
process memory into the systems shared memory,
which is measured by the roll out time. If a request
consists of more than 1 work process calls, then the
time between the end of the fist call and the beginning
of the next call is registered as rolled out time.

whatever excessive load generated, at least these 100

The response time of a single request though is

To analyze the response time in a glass box view, the
relevant components addressed in section 1, and the
time slots they use, have to be introduced. The response
time in the SAP ERP ABAP stack is quite complex and

, each request that arrives
at the system has to be assigned to a work process in
order to get processed. This assignment is done by the
dispatcher process. The time for this step is called wait
or queue time. The overall time the program is

is called time in work

, this time consists of several
components. The first processing step in the work
process is to load the process context in its memory.
This is called roll in time. If a program calls a remote
service, the time, while it has to wait for the response, is
also assigned to the roll in time. Then the program has

e process memory or generated
(compiled) from source code, if it is called the first
time. While the request is processed, the work process
fetches data from the database. This is aggregated into

The SAP ERP kernel has its own mechanism to
control concurrent access to database objects, the so
called enqueue process. If a resource is busy, then a
work process has to wait until it can be obtained. This
slot is called enqueue time. As soon as the work process

ion has to be unloaded from the
process memory into the systems shared memory,
which is measured by the roll out time. If a request
consists of more than 1 work process calls, then the
time between the end of the fist call and the beginning

l is registered as rolled out time.

Figure 5: Response time components

These dependencies are shown in

(response time). In this illustration, the Time in work
process consists of the components roll in time,
load/generation time, database time, and enqueue time.
The roll out time is part of th
part of the response time, as the response is sent to the
client before, in order to reduce the system response
time. Different other metrics are not collected, but
calculated by the kernel.

The CPU time is a subset of the resp
cannot be assigned to a special component, but is
returned by the operating system timer. In the case, of
UNIX, the timer works with 100 Hz and consequently
the CPU time is always a multiple of 10ms. To analyze
the system behavior, the introd
measured. This is done by the SAP ERP kernel
completely independent of any ABAP application. The
kernel logs a set of performance metrics, like the
components of the response time, the program and user
name, response size and other
performance analysis of the system.

After a request is processed, the work process
collects the available information, calculates additional
metrics, and stores it in the shared memory. This
memory can be accessed by all work proc
the performance metrics of the full. As soon as the
buffer is full, it is written to binary files on the file
system. Every hour a new file named stat is created,
while the old one is renamed to stat_<number>. In this
way, the statistical records can be accessed as long as
the maximum number of stat files is not reached. As
soon as this maximum number is exceeded, the oldest
file will be deleted. The number of these stat files (and
with it the amount of statistical records that are held) is
controlled by parameters of the SAP system. For this
case study, their values have been increased to hold all
the data of a load run. As the logging of statistical
records is a standard functionality of the kernel that is
always turned on, this method of mon
referred to as non intrusive as mentioned in JAIN, as it
does not add an additional load on the system in
comparison to a productive usage of the ERP system.

Response time components

These dependencies are shown in figure 3
(response time). In this illustration, the Time in work
process consists of the components roll in time,
load/generation time, database time, and enqueue time.
The roll out time is part of the rolled out time and is not
part of the response time, as the response is sent to the
client before, in order to reduce the system response
time. Different other metrics are not collected, but

The CPU time is a subset of the response time and
cannot be assigned to a special component, but is
returned by the operating system timer. In the case, of
UNIX, the timer works with 100 Hz and consequently
the CPU time is always a multiple of 10ms. To analyze
the system behavior, the introduced metrics have to be
measured. This is done by the SAP ERP kernel
completely independent of any ABAP application. The
kernel logs a set of performance metrics, like the
components of the response time, the program and user
name, response size and other important information for
performance analysis of the system.

After a request is processed, the work process
collects the available information, calculates additional
metrics, and stores it in the shared memory. This
memory can be accessed by all work processes, and so
the performance metrics of the full. As soon as the
buffer is full, it is written to binary files on the file
system. Every hour a new file named stat is created,
while the old one is renamed to stat_<number>. In this

ords can be accessed as long as
the maximum number of stat files is not reached. As
soon as this maximum number is exceeded, the oldest
file will be deleted. The number of these stat files (and
with it the amount of statistical records that are held) is

ntrolled by parameters of the SAP system. For this
case study, their values have been increased to hold all
the data of a load run. As the logging of statistical
records is a standard functionality of the kernel that is
always turned on, this method of monitoring can be
referred to as non intrusive as mentioned in JAIN, as it
does not add an additional load on the system in
comparison to a productive usage of the ERP system.

357

Figure 6: CPU time analysis

The statistical values of each program are displayed

using the Transaction STAD in the SAP Gui. To
evaluate the big number of these performance values in
the presented case study, they have to be exported to a
file or a database. For this, several BAPIs exist to
deliver the statistical records using RFC function calls.
The most complete values are delivered by the BAPI
SAPWL_STATREC_DIRECT_READ. As this BAPI is
not exported as a web service by the SAP system, it has
been copied and modified to meet the requirements for
the export as a web service. Thereby, the feature of
obtaining the statistical values as soon as the load run is
over has been integrated in the presented load generator
and analysis tool. To have these performance values
easily available, a database has been created t
these values of each load run.

Taking a closer look on the measured values, as
discussed in section 5, a clear pattern can be observed.
Using the glass box approach, this pattern will be
explained by analyzing the process times of each
component of the SAP ERP systems kernel. As the
system has been warmed up, before the load test has
been executed, load/generation time can be neglected,
as the ABAP code is already in the corresponding
buffer. The same effect can be observed in productive
systems, as the size of the buffers is adapted to the
expected workload. In addition, the amount of data that
has to be rolled in at the beginning of the processing
phase is too small to have influence on the systems
performance.

The determining factor for the overa
time are the CPU time, total database time, commit
time, which is a part of the total db time, and the
queuing time. The measured values of these metrics will
be introduced in the following to illustrate the
performance behavior of the web service used in this
case study.

Figure 6 shows the CPU time in nanoseconds
according to the timestamp the request has been
processed. As the load run has been executed wi
growing number of parallel requests, this graph shows
that the CPU time, as expected, does not depend on the
number of parallel requests. The overall response time
is not negatively affected by the CPU time under a
growing number of parallel requests.

Figure 7 illustrates the database commit time in
nanoseconds; also according to the timestamp the
request has been processed. This graph shows a few
irregularities, which are created by the log writer
mechanism of the underlying database. Besides these

: CPU time analysis

each program are displayed
using the Transaction STAD in the SAP Gui. To
evaluate the big number of these performance values in
the presented case study, they have to be exported to a
file or a database. For this, several BAPIs exist to

ical records using RFC function calls.
The most complete values are delivered by the BAPI
SAPWL_STATREC_DIRECT_READ. As this BAPI is
not exported as a web service by the SAP system, it has
been copied and modified to meet the requirements for

a web service. Thereby, the feature of
obtaining the statistical values as soon as the load run is
over has been integrated in the presented load generator
and analysis tool. To have these performance values
easily available, a database has been created to store

Taking a closer look on the measured values, as
discussed in section 5, a clear pattern can be observed.
Using the glass box approach, this pattern will be
explained by analyzing the process times of each

the SAP ERP systems kernel. As the
system has been warmed up, before the load test has
been executed, load/generation time can be neglected,
as the ABAP code is already in the corresponding
buffer. The same effect can be observed in productive

the size of the buffers is adapted to the
expected workload. In addition, the amount of data that
has to be rolled in at the beginning of the processing
phase is too small to have influence on the systems

The determining factor for the overall response
time are the CPU time, total database time, commit
time, which is a part of the total db time, and the
queuing time. The measured values of these metrics will
be introduced in the following to illustrate the

ice used in this

shows the CPU time in nanoseconds
according to the timestamp the request has been
processed. As the load run has been executed with a
growing number of parallel requests, this graph shows
that the CPU time, as expected, does not depend on the
number of parallel requests. The overall response time
is not negatively affected by the CPU time under a

illustrates the database commit time in
nanoseconds; also according to the timestamp the
request has been processed. This graph shows a few

hich are created by the log writer
mechanism of the underlying database. Besides these

irregular values, it does not show any dependencies to
the number of parallel requests.

Figure 7: Commit time and d

The total database time is shown in the right part of

figure 7. There is no indication that the performance of
the database component does significantly change with
the number of parallel requests. As the ERP system has
a certain number of work processes, it has been
assumed that the database response time does not
change significantly with a rising number of parallel
requests to the SAP ERP system, as there are not mo
requests arriving at the database than work processes in
the system exist. But even in the starting phase, where
less parallel requests had to be served by the system and
the database, the performance of the database is in a
certain frame.

Figure 8: Queuing time

An explanation of the measured values shown in

figure 4 is found in figure 8
in nanoseconds; according to the timestamp
has been processed.

The graph shows a significant dependency to the
number of parallel requests. As in the stating phase the
queuing time is small, it grows with more requests sent
to the system. With 30 work processes configured, the
first 30 requests had no or a
while the remaining requests had to wait until one of the
first requests has been finished. Consequently, the
queuing time rises with the number of parallel requests
until the sequence is finished.

7. LIMITATIONS
This case study does not regard the usage of different
technical users on the SAP system. However, in a well
configured productive SAP system, the shared memory
that is intended to hold the user contexts is big enough
to hold all data in shared memory with
put some data into a slower memory area. Therefore,
the simplification of reducing the amount of different
users does not reduce the significance and validity of
the case study’s results.

In addition, the impact of a suboptimal system
configuration to system response times is not part of
this work. Using a non optimal resource distribution,

irregular values, it does not show any dependencies to
the number of parallel requests.

: Commit time and database time

database time is shown in the right part of
. There is no indication that the performance of

the database component does significantly change with
he number of parallel requests. As the ERP system has
a certain number of work processes, it has been
assumed that the database response time does not
change significantly with a rising number of parallel
requests to the SAP ERP system, as there are not more
requests arriving at the database than work processes in
the system exist. But even in the starting phase, where
less parallel requests had to be served by the system and
the database, the performance of the database is in a

Queuing time

An explanation of the measured values shown in
8 showing the queuing time

in nanoseconds; according to the timestamp the request

The graph shows a significant dependency to the
number of parallel requests. As in the stating phase the
queuing time is small, it grows with more requests sent
to the system. With 30 work processes configured, the

uests had no or a negligible queuing time,
while the remaining requests had to wait until one of the
first requests has been finished. Consequently, the
queuing time rises with the number of parallel requests
until the sequence is finished.

This case study does not regard the usage of different
technical users on the SAP system. However, in a well
configured productive SAP system, the shared memory
that is intended to hold the user contexts is big enough
to hold all data in shared memory without the need to
put some data into a slower memory area. Therefore,
the simplification of reducing the amount of different
users does not reduce the significance and validity of

In addition, the impact of a suboptimal system
guration to system response times is not part of

this work. Using a non optimal resource distribution,

358

several system components may respond differently
compared to the response times and components'
behavior in general measured in this case study. For
instance, in some special cases the work process is
assigned to a user as long as he is logged into the
system. This work aims at understanding the general
concept of the response time of an ERP system that is
well parameterized, and not at the analysis of
performance problems.

Equally, the different behaviors of ERP systems
that are used for development purposes, so called
“DEV” Systems, are not regarded in this case study.

A challenging task when analyzing complex
software systems is the decision how many components
should be integrated in the analysis. Even in this
defined example, the paper demonstrates that a lot of
data is gathered from several components in the SAP
system and that even the database can be described in a
more detailed way. In (Gradl et al. 2010) an eight level
architecture was presented to limit the effort of building
the architecture of the SAP system. By analyzing the
SAP system and its traces, it was discovered that the
lowest level is the response time level of the database.
As the SAP system does not provide more detailed
information about the database, the database has been
treated as black box. Response time values of the
database are derived directly from the SAP system.

8. CONCLUSION
On the first view, the response time behavior of the
analyzed service seems to be complex. But on a second
view it reveals a quite predictable behavior. Using a
queuing mechanism, the SAP system processes several
requests in parallel, and at the same time it regulates the
resource consumption by limiting the number of parallel
processed requests to the number of work processes
available. This leads to a stable environment not being
affected by the amount of parallel requests, and a
guaranteed response time for some of the requests.

Taking a look inside the system, it can be seen that
the resource consumption behind the messaging layer is
quite constant. Considering the queuing, this is not
surprising. Only the commit time shows some volatility,
caused by the fluctuation of parallel processes accessing
the database. This volatility of the commit time also
causes the jitter in the response time diagram.

In summary we draw the conclusion, that the
dispatching time represents the difference between
response times, while the processing time is constant
independent of how many parallel requests are
processed. While this sounds obvious at first, it is an
important validation for performance analysis and
prediction.

As next steps, we use the information acquired in
this work and performance data gathered to
parameterize a layered queuing model based on (Gradl
et al. 2010) to predict the performance of a SAP ERP
system via simulation (Woodside 2002).

REFERENCES
Apache Software Foundation "Apache Axis2/Java,"

2010.
Bailey, D.H., and Snavely, A. "Performance Modeling:

Understanding the Present and Predicting the
Future," in: Euro-Par 2005 Parallel
Processing, Springer, Berlin / Heidelberg,
2005, pp. 185-195.

Bögelsack, A., Jehle, H., Wittges, H., Schmidl, J., and
Krcmar, H. "An Approach to Simulate
Enterprise Resource Planning Systems," in: 6th
International Workshop on Modelling,
Simulation, Verification and Validation of
Enterprise Information Systems, MSVVEIS-
2008, In conjunction with ICEIS 2008, U.
Ultes-Nitsche, D. Moldt and J.C. Augusto
(eds.), INSTICC PRESS, Barcelona, Spain,
2008, pp. 160-169.

Bögelsack, A., Krcmar, H., and Wittges, H.
"Performance Overhead of Paravirtualization
on an Exemplary ERP System," in: 12th
International Conference on Enterprise
Information Systems, Funchal, Madeira,
Portugal, 2010.

Chen, S.G., and Lin, Y.K. "Performance analysis for
Enterprise Resource Planning systems,"
Industrial Engineering and Engineering
Management, 2008. IEEM 2008. IEEE
International Conference on, 2008, pp. 63-67.

Gradl, S., Mayer, M., Wittges, H., and Krcmar, H.
"Modeling ERP Business Processes Using
Layered Queueing Networks," in: 12th
International Conference on Enterprise
Information Systems, Funchal, Portugal, 2010.

Hollingsworth, J.K., Snavely, A., Sbaraglia, S., and
Ekanadham, K. "EMPS: An Environment for
Memory Performance Studies," in:
Proceedings of the 19th IEEE International
Parallel and Distributed Processing
Symposium (IPDPS'05) - Workshop 10 -
Volume 11, IEEE Computer Society, 2005, p.
223.222.

Jain, R. The art of computer systems performance
analysis Wiley, New York, 1991.

Jehle, H. "Performance-Messung eines Portalsystems in
virtualisierter Umgebung am Fallbeispiel
SAP," in: CVLBA Workshop 2009. 3.
Workshop des Centers for Very Large Business
Applications (CVLBA), Arndt, H.-K.; Krcmar,
H., Magdeburg, Deutschland, 2009.

Jin, Y., Tang, A., Han, J., and Liu, Y. "Performance
Evaluation and Prediction for Legacy
Information Systems," in: ICSE´07, IEEE,
Minneapolis, 2007.

Krcmar, H. Informationsmanagement Springer-Verlag
New York, Inc., 2009.

Kruse, H.G. Leistungsbewertung bei
Computersystemen, (1. ed.) Springer-Verlag,
Berlin, Heidelberg, 2009.

359

Lilja, D.J. Measuring Computer Performance - A
practitioner's guide Cambridge University
Press, 2000.

Ludewig, J., and Lichter, H. Software Engineering -
Grundlagen, Menschen, Prozesse, Techniken,
(1. ed.) dpunkt.verlag GmbH, Heidelberg,
2007, p. 618.

Malik, H. "A methodology to support load test
analysis," in: Proceedings of the 32nd
ACM/IEEE International Conference on
Software Engineering - Volume 2, ACM, Cape
Town, South Africa, 2010, pp. 421-424.

Menascé, D.A. "Software, performance, or
engineering?," in: Proceedings of the 3rd
international workshop on Software and
performance, ACM, Rome, Italy, 2002, pp.
239-242.

Menasce, D.A., and Almeida, V.A.F. Capacity
Planning for Web Services: metrics, models,
and methods Prentice Hall, Upper Saddle
River, NJ, Upper Saddle River, NJ, 2002.

Nudd, G.R., Kerbyson, D.J., Papaefstathiou, E., Perry,
S.C., Harper, J.S., and Wilcox, D.V. "Pace - A
Toolset for the Performance Prediction of
Parallel and Distributed Systems,"
International Journal of High Performance
Computing Applications (14:3), August 1,
2000 2000, pp 228-251.

Prior, D. "Who Sets the Pace in the SAP Performance
'Olympics'?," Gartner), 24.2.2003 2003, p 6.

Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S.,
and Kraft, S. "Predictive modelling of SAP
ERP applications: challenges and solutions,"
in: Proceedings of the Fourth International
ICST Conference on Performance Evaluation
Methodologies and Tools, ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), Pisa, Italy,
2009, pp. 1-9.

Schneider-Neureither, A. Optimierung von SAP-
Systemlandschaften, (1. ed.) Galileo Press,
Bonn, 2004.

Schneider, T. SAP-Performanceoptimierung, (5 ed.)
Galileo Press, Bonn, 2008, pp. 247-249.

Weidner, S. "Integrations-Fallstudie PP (SAP ECC
5.0)," 2006.

Woodside, M. "Tutorial Introduction to Layered
Modeling of Software Performance," 2002.

360

