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ABSTRACT 
Energy modeling techniques used during the design 
phase of buildings are failing to accurately predict 
energy use during the buildings operational phase. The 
main reason behind this discrepancy is the 
misrepresentation of the role and impact of occupants’ 
energy consumption characteristics on building energy 
use. Current energy modeling tools represent occupants 
as static elements, overlooking their different and 
changing energy use behaviors over time. These 
behavioral aspects significantly affect energy 
consumption levels, hence the need for a new energy 
modeling approach that overcomes the limitations of 
traditional energy modeling tools by better accounting 
for occupants actions and behaviors to predict buildings 
energy consumption. Therefore, this paper presents a 
new agent-based modeling approach that accounts for 
the diverse and dynamic energy consumption patterns 
among occupants, in addition to the potential changes in 
their energy use behavior due to their interactions with 
each other and with the building environment. 
 
Keywords: building energy consumption, occupant 
behavior, behavior change, agent-based modeling 

 
1. INTRODUCTION 
According to the United Nations Environmental 
Program, buildings are responsible for 30 to 40 percent 
of global energy use, and a similar percentage of green 
house gas emissions (UNEP-SBCI 2007). Over the life-
cycle of buildings, more than 80 percent of the energy 
consumed occurs during the operational phase to meet 
various energy needs such as heating, ventilation, and 
air conditioning (HVAC), lighting, water heating, and 
various equipment loads. Moreover, in commercial 
buildings, more energy is often used during non-
working hours than during working hours mainly due to 
occupancy related actions (Masoso and Groblera 2010). 

 A number of studies emphasize the role that 
building occupants play in affecting the energy 
consumption in buildings and the anticipated savings in 
energy usage if occupant behavior was influenced over 
time. A change in behavior could lead to energy savings 
in excess of 40 percent in some cases, leading to 
significant economical and environmental benefits 
(Emery and Kippenhan 2006; Meier 2006; Staats, 
Leeuwen, and Wit 2000). The Building Sector has 
therefore a large potential for delivering long-term, 
significant and cost-effective greenhouse gas emissions 
reductions, leading governments to shape their policies 
and programs to reduce energy use during the 
operational phase of buildings (UNEP-SBCI 2007). 
 A number of empirical and energy simulation 
models exist and are widely used in the building sector 
to predict energy consumption during the operational 
phase of buildings. Common software programs are 
eQuest, Energy Plus, Energy-10, and IES (IES 2011; 
SBCI 2010; EnergyPlus 2009; eQuest 2009). These 
tools are used at different stages of the life-cycle of 
buildings, but most importantly during the design phase 
to optimize the selection and the sizing of mechanical 
and electrical systems. Consequently, accurate energy 
predictions are essential to avoid common equipment 
over-sizing issues, typically resulting in excessive and 
unnecessary energy use throughout the life of the 
building under study (Crawley, Hand, Kummert, and 
Griffith 2008). Furthermore, the need for accurate 
energy estimates is growing with the increasing demand 
for Life-Cycle Analysis (LCA) and Life-Cycle Cost 
Analysis (LCCA), performed to assess the 
environmental footprint and the economic value of 
buildings. 
 However, current energy modeling tools are failing 
to accurately predict energy use. Their estimates are 
typically deviating by more than 30 percent from actual 
energy consumption levels and this difference can even 
reach a value of 100 percent in particular cases such as 
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laboratory buildings with high process loads (Yudelson 
2010; Dell’lsola and Kirk 2003; Soebarto and 
Williamson 2001). 
 Although several limiting factors such as the 
complexity of buildings, weather, and variations in 
building schedule might affect the accuracy of energy 
estimates, studies are showing that these deviations are 
mainly attributed to misunderstanding and 
underestimating the important role that the occupant’s 
energy use characteristics play in determining energy 
consumption levels; the term ‘occupant’s energy use 
characteristics’ being defined as the presence of people 
in the premises and the actions they perform (or do not 
perform) to influence the level of energy consumption 
(Hoes, Hensen, Loomans, DeVries, and Bourgeois 
2009; Turner and Frankel 2008). As a matter of fact, 
current commercial energy modeling software are 
accounting for occupancy in a static way by making 
simplistic assumptions about building occupants and 
their energy consumption behavior. 
 More specifically, the first assumption made by 
these tools is that all occupants have similar energy use 
patterns and consume energy at the same rates. This 
assumption results from the limited number of 
occupancy-related inputs that can be entered into the 
models, imposing a common schedule for all occupants 
and a common energy consumption pattern. 
Consequently, these tools are ignoring the results of 
many studies showing that building occupants typically 
have diverse energy use behaviors, which significantly 
affect the accuracy of the generated energy use 
estimates (Hoes, Hensen, Loomans, DeVries, and 
Bourgeois 2009; Turner and Frankel 2008).. 
 The second assumption made by typical energy 
models is that occupants’ behavior remains constant 
over time. Here again, several studies are showing that 
occupants might change their energy use characteristics 
over time by adopting more energy efficient practices or 
on the contrary, adopt bad consumption habits due to 
the often called ‘rebound effect’. As an example of the 
‘rebound effect’, occupants might tend to use more 
electric lighting following the installation of energy 
saving bulbs, assuming that their actions will have less 
impact on the environment. Such types of behavior 
change negatively impact energy consumption by 
increasing energy use (Sorrell, Dimitropoulos, and 
Sommerville 2009; Jackson 2005). On the other hand, 
factors such as energy conservation campaigns/trainings 
that encourage energy use reduction or financial 
incentives that incentivize energy savings typically lead 
to positive changes in energy consumption behavior. 
Another important factor is the ‘word of mouth’ or the 
‘peer-to-peer’ effect, which is considered to be a very 
influential channel of communication. Originally used 
in the marketing field to promote new commercial 
products, the ‘word of mouth’ factor in terms of energy 
use is defined as the influence that each occupant exerts 
on the other occupants sharing the same building 
environment to change their energy consumption habits. 
Lastly, feedback techniques have also proven to induce 

energy use reduction by providing occupants with 
information about their energy consumption levels. 
These better informed occupants typically tend to save 
energy, especially when they are given access to the 
energy use levels of the neighboring offices or rooms in 
the same building (Peschiera, Taylor, and Siegel 2010; 
Allsop, Bassett, and Hoskins 2007; Staats, Harland, and 
Wilke 2004). 
 In brief,  there is a need to account for building 
occupants in a dynamic way by considering and 
modeling their different energy consumption 
characteristics in addition to the potential changes in 
their behavior over time. 
 
2. OBJECTIVES 
The main objective of this paper is to present a new 
energy modeling approach to better predict energy use 
during the operational phase of commercial buildings. 
The proposed framework needs to account for different 
occupants’ energy consumption patterns, their change in 
behavior over time, and finally simulate the resulting 
impacts on building energy use. This dynamic modeling 
of occupants is expected to result in more accurate 
estimates when compared to traditional energy 
modeling techniques that overlook the significant 
impact of occupancy actions and interactions on 
building energy use.  
 
3. AGENT-BASED MODELING 
Several simulation tools were identified in literature that 
are capable of modeling social and behavioral systems. 
The most common simulation methods are: Discrete 
Events (DE), System Dynamics (SD), and Agent-Based 
Modeling (ABM). While DE and SD are considered to 
a certain extent as centralized structures requiring the 
user to define the global system behavior (systems), 
ABM is decentralized where the modeler defines 
behavior at an individual level. In this ‘bottom-up’ 
modeling method, the global behavior emerges as a 
result of many individuals, each following its own 
behavior rules, interacting and communicating with 
each other and with their environment (Gilbert 2008; 
Edmonds, Hernandez, and Troitzsch 2007; Borshchev 
and Filippov 2004). More specifically, agent-based 
models consist of individual agents, commonly 
implemented in software as objects. Agent objects have 
states and rules of behavior. Running such models 
simply amounts to instantiating an agent population, 
letting the agents interacts, and monitoring what 
happens (Axtell 2000). 
 For this purpose, this research investigated the use 
of ABM as a technique capable of simulating almost all 
behavioral aspect of agents, which represent the 
building occupants (Gilbert 2008; Axtell 2000). As 
detailed in the upcoming sections, agents, or building 
occupants, are assigned attributes that define their 
specific energy consumption characteristics and 
patterns. These characteristics might change over time 
due to external events (e.g., energy conservation 
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training), or due to the interactions with other occupants 
(e.g., peer-to-peer influence).  
 
4. METHODOLOGY 
Four main steps were required to achieve this research’s 
study objectives: (1) Define different occupancy energy 
use characteristics and identify factors that cause them 
to change, (2) build an agent-based simulation model, 
(3) generate energy use rates for each type of energy use 
behavior, which are imported into the simulation model, 
and finally (4) verify the built model through a 
numerical example. 
 
4.1. Occupants energy use characteristics and 

influencing factors 
The first step consisted of defining different energy 
consumption behaviors, which is essential for building 
accurate energy estimation models (Yu, Fung, 
Haghighat, Yoshino, and Morofsky 2011; Hoes, 
Hensen, Loomans, deVries, and Bourgeois 2009; 
Clevenger and Haymaker 2006). Therefore, three 
categories of occupants were considered. ‘High Energy 
Consumers’ (HEC) represent occupants that over-
consume energy. ‘Medium Energy Consumers’ (MEC) 
are the average energy consuming occupants. Finally, 
‘Low Energy Consumers’ (LEC) represent occupants 
that use energy efficiently. These assumptions were 
made based on a study by Accenture (2010) that 
classified energy consumers in different countries 
around the world into eight different categories based 
on their attitude toward energy management programs. 
However, after discussions with industry professionals, 
and because of the main focus on energy modeling, it 
was assumed in this paper that three categories of 
occupants are adequate to observe differences in energy 
consumption levels. 
 Occupants in the three proposed categories mainly 
differ by the way they use the building energy systems, 
resulting in different energy use levels. To understand 
and quantify these differences, an intensive literature 
review was performed to understand how HEC, MEC, 
and LEC use each of the main building energy systems 
such as lighting, equipment/computers, and heating, 
ventilation, and air conditioning systems (HVAC). For 
instance, the study by Bourgeois, Reinhart, and 
MacDonald (2006) was used to identify the variations 
in the light switching patterns of occupants in 
commercial buildings. Regarding equipment/computer 
use, data collected by Sanchez, Webber, Brown, Busch, 
Pinckard, and Roberson (2007) and Webber, Roberson, 
McWinney, Brown, Pinckard, and Bush (2006) were 
used to determine common rates of office equipment 
use for different occupancy patterns. Similarly, the 
studies of Davis and Nutter (2010) and Wang, 
Federsipel, and Rubinstein (2005) were considered to 
study occupants’ presence in their offices, which 
significantly affects the energy use levels. 
 After defining different energy consumption 
characteristics, it was important to identify the factors 
that might affect these behaviors and cause them to 

change over time. Three main factors were chosen for 
analysis in this paper. 
 First, energy conservation trainings/workshops 
were considered, which are informational events that 
educate occupants about energy saving practices and 
encourage them to reduce their energy consumption. So, 
after attending such events, a portion of the occupants is 
expected to reduce its energy consumption. This is 
translated into a conversion of some HEC to MEC, and 
some MEC to the LEC category. 
 Second, the ‘rebound effect’ represents the opposite 
type of behavior change, where occupants counter react 
to energy reduction initiatives and increase their energy 
use. In that case, a portion of the LEC becomes MEC, 
and some MEC convert to HEC. 
 Finally, the peer-to-peer influence represents the 
influence that occupants sharing a certain building 
environment have on each other to change their energy 
consumption patterns. So, each category of occupants 
(HEC, MEC, and LEC) might influence occupants from 
the other categories to change their behaviors, and adopt 
its energy consumption patterns. So, in this type of 
interaction, three possible changes in behavior or 
conversion of occupants can occur as illustrated in 
Figure 1. The first line shows the case where HEC are 
influencing MEC and LEC. This change in 
characteristics is gradual where some MEC get 
converted to HEC, and some LEC become MEC. 
Similarly, the second and third lines of Figure 1 
respectively show the cases where MEC and LEC are 
actively converting other occupants. The influence of 
each category on the others depends on the number of 
persons in this category in addition to its Level of 
Influence (LI), which is entered by the user. More 
details on these conversions are provided in the 
upcoming sections. 
 

 

Figure 1: ‘Peer-to peer’ interactions and conversions 
 

4.2. Agent-Based model 
The next step consisted of building an agent-based 
model to simulate the above-mentioned interactions and 
predict energy use. 
 The agent-based software that was chosen for this 
research is ‘Anylogic’, which is widely used in the 
industry (XJ Technologies 2009; Borshchev and 
Filippov 2004). The choice of ‘Anylogic’ was mainly 
due to its Java-based environment that allows the user 
to develop custom Java codes, and integrate them in 
pre-built simulation blocks (XJ Technologies 2009). 
This was essential in this research to optimize and 
customize the proposed model in order to simulate the 
complex behavioral aspects of building occupants. The 
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proposed model flowchart is shown in Figure 2 where a 
five-step iterative process was defined. 
 First, energy consumption rates for HEC, MEC, 
and LEC are imported into the agent-based model to be 
used in the following stages (Step 1). Details on 
obtaining theses rates are shown in the upcoming 
section.  
 Step 2 simulates the interaction of agents and the 
potential change in behavior due to the ‘word of mouth’ 
or peer-to-peer effect. So, for the first time step (e.g., 
first month), HEC, MEC, and LEC sharing the same 
simulation environment (e.g., office) interact and try to 
influence each others to change behavior.  The chances 
of success for each category are dependent on two 
variables: (1) the number of persons in this category at 
the current time step, and (2) its Level of Influence (LI) 
on other categories. Initially, three LIs are entered by 
the user before the beginning of the simulation: LIHIGH, 
LIMEDIUM, and LILOW. For instance, a LIHIGH of 5 
percent/person/month means that each HEC person has 
a 5 percent chance of successfully converting another 
occupant every month. So, a high number of HEC at a 
specific time step or a high LIHIGH results in high 
pressure on the other occupants sharing the same 
environment to increase their energy consumption and 
become HEC. At the end of Step 2, the model updates 
and stores the numbers of HEC, MEC, and LEC for the 
current time step.  
 Next, the model moves to Step 3 to check if an 
energy conservation event (e.g., training, workshop, 
etc.) is scheduled for this time step. Here again, the user 
can schedule ‘events’ and specify their effectiveness 
before running the model, then track their impact on 
occupancy behavior and energy use. For instance, an 
event scheduled for month 12 with an efficiency of 30 
percent result in the conversion of 30 percent of HEC to 
MEC and 30 percent of the MEC to LEC when the 
simulation time reaches 12 months. So, for each time 
step, the model checks if any ‘event’ is scheduled and 
updates the number of HEC, MEC, and LEC. 
 In step 4, the model checks if a rebound effect is 
occurring at this time step, leading to a change in 
behavior and an increase in energy consumption. In this 
case, the conversion of occupants occurs towards the 
high energy consumption categories, where some LEC 
become MEC and some MEC convert to HEC. Here 
again, the occurrence time and the effectiveness of the 
rebound effect is previously specified by the user. 
 The updated numbers of HEC, MEC, and LEC are 
then combined to the energy consumption rates 
obtained from Step 1, and total energy consumption 
levels are calculated for the current time step (Step 5). 
Once this iteration is completed, the model moves to the 
next time step and keeps repeating the cycle until the 
total simulation time is reached. 
 

 

Figure 2: Model’s flowchart 
 
4.3. Energy use rates for different types of energy 

use behavior 
This section presents the proposed method that was 
used to obtain energy consumption rates for HEC, 
MEC, and LEC using traditional energy modeling 
software (e.g., EnergyPlus, eQuest, etc.). In this study 
three sets of simulations were particularly needed, each 
set having specific inputs representing the different 
energy characteristics of the three defined categories of 
occupants. In general, two types of inputs are required 
to build these models: (1) building related inputs which 
are the same for all the simulations, and (2) different 
occupancy related inputs that will lead to the three 
different energy use rates. 
 So, the first step consists of defining the building 
environment under study accommodating occupants 
who consume energy over time through their daily 
activities. Common inputs related to the building under 
study are determined such as the building type and size, 
floor plan layout, construction materials, HVAC 
equipment, lighting systems, miscellaneous equipment 
(e.g., computers), and hot water supply (Dell’lsola and 
Kirk 2003). 
 The next step consists of defining occupancy 
related parameters, leading to the difference between 
the energy consumption levels of HEC, MEC, and LEC. 
These differences are generated in traditional energy 
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simulation software by varying occupancy related 
parameters such as ‘equipment rates of use’ or ‘building 
operating schedules’. For instance, to illustrate how 
HEC leave their computers ON more frequently than 
MEC and LEC during building non-operating hours, 
parameters such as equipment use rates can be increased 
for the HEC simulation to represent this over-use of 
energy. Similarly for the rest of the energy consumption 
sources (e.g., lighting, HVAC, etc.), specific inputs are 
used to customize each of the three simulations and 
translate the differences in behavior into differences in 
energy consumption levels. The obtained rates are then 
imported into the simulation model as was shown in 
Step 1 of Figure 2, to be used for the total energy use 
calculation of the building under study. 
 It is important to note that the input parameters are 
determined on a case by case basis, depending on the 
building environment and on the specific occupancy 
characteristics. A detailed example of the proposed 
method is presented in the following section. 
 

5. MODEL VERIFICATION THROUGH A 
NUMERICAL EXAMPLE 

 This section highlights the capabilities of the model 
through a numerical example and presents some of the 
sensitivity analyses that were performed to verify the 
model. 

 
5.1. Environment description 
First, an experimental energy simulation model was 
built for the purpose of this study using eQuest. This 
conceptual 2000 square feet (186 square meters), two-
story university type building, is located in the city of 
Madison, Wisconsin (See Figure 3). The first floor 
contains two open space offices accommodating 16 and 
10 graduate students respectively. The second floor 
contains one classroom with a maximum capacity of 50 
students.  
 

 

Figure 3: Building environment in eQuest 
 
5.2. Inputs and assumptions 
Six energy consumption sources were considered in this 
example: (1) HVAC heating, (2) HVAC cooling, (3) 
area lighting, (4) task lighting, (5) equipment 

(computers), and (6) hot water supply. For each 
occupant categories (HEC, MEC, and LEC), energy 
consumption rates were obtained using eQuest by 
running different experiments using specific inputs that 
reflect their behavioral differences (Refer to Section 4.3 
for more details about the method used). More 
specifically, three types of inputs were varied in the 
simulations to differentiate between the energy use 
behaviors of HEC, MEC, and LEC: (1) lighting 
schedules, (2) equipment schedules (computers), and (3) 
hot water use. 
 In this example, the parameters were first derived 
based on several studies in literature on occupants and 
the different energy consumption patterns they adopt 
(Masoso and Grobler 2010; Mahdavi, Mohammadi, 
Kabir, and Lambeva 2008; Sanchez, Webber, Brown, 
Busch, Pinckard, and Roberson 2006; Webber, 
Roberson, McWinney, Brown, Pinckard, and Bush 
2006). Some parameters were also suggested by eQuest, 
which follows the California’s Title 24 building code 
requirements (eQuest 2009). Additional occupancy 
related assumptions had to be made about the 
differences between the high, medium, and low energy 
use levels. These hypotheses were then reviewed and 
confirmed by industry experts and were as a result 
considered acceptable. A summary of the used 
parameters is shown in Table 1. 

 
Table 1: Input Parameters Variation 

 
 So, by using the above-shown sets of parameters, 
energy consumption rates for HEC, MEC, and LEC 
were obtained, and then imported into the proposed 
agent-based model. 

 
5.3. Agent-Based model outputs 
The next step consisted of executing the steps of the 
flowchart shown in Figure 2 to simulate occupancy and 
predict the building’s energy consumption levels. An 
example of the proposed model’s output is shown in 
Figure 4, showing the change in behavior in one of the 
offices of the building (upper graph), along with the 
resulting changes in energy consumption (lower graph). 
Similar graphs are generated for each of the building’s 
rooms, allowing to track occupancy behavior and 
energy consumption changes both on a room and on a 
whole building level. 
 At the start of the simulation, and for this particular 
office, 5 of the students were assumed to be HEC, 6 

 HEC MEC LEC 

Lighting 
Schedules 
 

30% of time 
running after 
building 
operating hours 

10% of time 
running after 
building 
operating hours 

0% of time 
running after 
building 
operating hours 

Equipment 
Schedules 

60%  of time 
running after 
building 
operating hours 

20% of time 
running after 
building 
operating hours 

0% of time 
running after 
building 
operating hours 

Hot Water 
Use 

20% more than 
MEC 

1.20 
Gallon/Pers/Day 

20% less than 
MEC 
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MEC, and 5 LEC, reflecting average energy use 
characteristics. LEC were assumed to have a higher LI 
than the other categories, showing a strong influence of 
energy efficient occupants on others. The occupants of 
the studied room were also assumed to attend an energy 
conservation event at month 12 encouraging them to 
reduce their energy consumption and adopt energy 
saving practices. In this example, the efficiency was set 
at 50 percent, which means that after attending the 
event, 50 percent of the occupants were expected to 
reduce their energy consumption. Also, a rebound effect 
with a 25 percent efficiency was scheduled for month 
24, resulting in an increase in the occupants’ energy 
consumption, and a conversion from the LEC and MEC 
categories to the MEC and LEC categories respectively. 
It is important to note that the specific choice of 
parameters in this example was made to highlight the 
capabilities of the model. All of the parameters can be 
specified by the user through a user-friendly interface to 
customize the model and better represent the specific 
building and occupants under study. 

Figure 4 illustrates how the occupants of the office 
were changing behavior over the 36 months simulation 
time due to their interactions with each other, and also 
due to the external events that were scheduled for 
months 12 and 24. So, by sharing the same office, the 
16 occupants were influencing each other according the 
LIs that were entered for this particular example. This 
resulted in a change in behavior represented by the 
change in the numbers of HEC, MEC, and LEC over 
time. Moreover, the energy conservation event at month 
12 caused a sudden conversion of occupants towards the 
LEC with their number increasing from 6 to 9. The 
opposite type of conversion occurred at month 24, with 
a drop in the number of LEC and an increase in HEC 
and MEC. 

These changes in energy behavior were reflected 
on the energy consumption levels of the office. More 
specifically, as the room occupants were becoming 
LEC, energy consumption (electric and gas energy 
combined) was decreasing, with a total drop of 12 
percent as shown in the lower graph of Figure 4. It is 
important to note that over the 36 months studied 
period, the peeks of the total energy consumption curve 
occurred during the winter season. This was expected in 
a cold weather region such as Wisconsin, where heating 
loads are significant and typically exceed air-
conditioning cooling loads required during the warmer 
seasons. 
 

Figure 4: Agent-Based model output (Office) 
 
 As was previously mentioned, similar graphs are 
generated for all of the other rooms in the building. For 
instance, Figure 5 shows the change in behavior and the 
resulting change in energy consumption for the 
classroom area of the building in Figure 3. Unlike in an 
office where occupants interact on a daily basis and 
influence each other, students in a classroom have less 
influence on each other to change behavior.  As result, it 
was assumed in this example that the change in 
behavior of occupants can only be induced by 
independent events such as energy conservation events 
or the rebound effect. This is illustrated in Figure 5 
where changes in behavior only occurred when events 
were scheduled at months 12 and 24. 
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Figure 5: Agent-Based model output (Classroom) 

 
 In this example, the relatively low drop in energy 
consumption of 2 percent for the classroom can be 
attributed to two main reasons. First, by the end of the 
simulation time, only 19 of the 50 occupants were LEC, 
hence the remaining 31 occupants were consuming 
energy at medium or high levels. Second, the occupants 
of a classroom have a low level of control over the 
classroom energy consumption when compared to 
office occupants that use computers, task lights, etc. So, 
even if behavior changes in a classroom, the resulting 
impact on energy use remains limited. 
 So, by simulating occupancy behavior in all of the 
rooms of the studied building, the proposed model 
performs a whole building analysis and predicts the 
total energy consumption levels.  
 
5.4. Sensitivity analyses 
This section shows an example of the sensitivity 
analyses that were performed to test the model’s 
reaction to changes in input parameters. In accordance 
with the study’s objectives, a specific emphasis was put 
on the role played by occupants by varying parameters 
related to their behavior and interactions, and ultimately 
tracking the resulting changes in energy use. 
 Four different scenarios were considered in this 
analysis, and compared to the base case model built 
using eQuest (See Table 2). This base case represents 
traditional energy modeling software programs that do 
not allow for different nor changing occupancy 
characteristics throughout the simulation time. The first 
scenario represents the extreme case where all of the 
occupants are HEC with no peer-to-peer influences or 

events scheduled to change the high energy 
consumption behavior of the occupants. In scenario 2, 
the occupants are evenly divided between HEC, MEC, 
and LEC, however, the occupants are expected to 
convert to the HEC category since the highest LI was 
given to HEC and a rebound effect is scheduled for the 
12th month. Scenario 3 is the opposite of scenario 2 with 
the highest LI given to the LEC, in addition to an 
energy conservation event scheduled for the 12th month. 
Finally, scenario 4 represents an extreme case with all 
occupants being LEC and no peer-to-peer influence or 
events to change behavior.  
 

Table 2: Sensitivity analysis inputs variation 

  
 The results of this sensitivity analysis are 
summarized in Figure 6 where Scenario 1 resulted in 
the highest energy use level that is 13 percent higher 
than the eQuest base case. On the other hand, scenario 4 
resulted in the lowest energy consumption level, 17 
percent lower than the base case. These results were 
expected since Scenarios 1 and 4 represented the 
extreme cases with all the occupants being HEC and 
LEC respectively throughout the simulation time. 
Scenarios 2 and 3, in turn, showed variations in energy 
consumption by plus 8 percent and minus 11 percent. 
These numbers were also expected since HEC had the 
highest LI in Scenario 2 in addition to a rebound effect 
scheduled, while in Scenario 3, LEC were advantaged 
with a high LI and an energy conservation event. 
Finally, by comparing the two most extreme cases, 
Scenarios 1 and 4, a total net difference of 30 percent 
was observed. 
 The results from this sensitivity analysis in addition 
to the other analyses that were performed confirmed 
that the model is behaving in logical manner to changes 
in inputs. As a result, the model was considered 
verified. 
 Moreover, the significant variations in energy use 
that were observed confirmed the importance of the 
impact of occupants on building energy estimation. 

 
Initial Energy 
Use Behavior 
of Occupants 

Peer-to-peer 
Levels of 

Influence (LI) 

Energy 
Conservation 

Event 

Rebound 
Effect 

eQuest 
Base 
Case 

All MEC none none none 

Scenario 
# 1 

All HEC none none none 

Scenario 
# 2 

Evenly 
divided 

between HEC, 
MEC, and 

LEC 

Highest for 
HEC 

none 
Scheduled at 

t = 12 
months 

Scenario 
# 3 

Evenly 
divided 

between HEC, 
MEC, and 

LEC 

Highest for 
LEC 

Scheduled at t 
= 12 months 

none 

Scenario 
# 4 

All LEC none none none 
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More variations are also expected when more types of 
occupants’ interactions are considered, and more 
control is given for occupants over the building’s 
energy systems. 

 

 
Figure 6: Percentage change in energy from eQuest 

 
6. CONCLUSION 
 
In conclusion, traditional energy simulation software 
programs are accounting for occupancy in a simplistic 
way, overlooking the impact of occupants’ behavior and 
actions on building energy use.  This is causing their 
energy estimates to significantly deviate from actual 
energy consumption levels (Yudelson 2010; Clevenger 
and Haymaker 2006; Soebarto and Williamson 2001). 
 This paper presented a new agent-based modeling 
approach to energy estimation by modeling occupancy 
in a dynamic way, accounting for both the differences 
between occupants’ energy use characteristics and the 
changing aspect of these characteristics over time. The 
proposed approach was then tested and verified through 
a numerical example, which showed that significant 
changes in energy predictions can be obtained when 
occupancy is modeled in a dynamic way.  
 After successfully verifying the agent-based model, 
the next step is to validate it by comparing its energy 
estimates to numbers from actual buildings in operation. 
This is essential to make sure that the proposed model 
simulation numbers are consistent with the actual 
electricity, gas, and water consumption levels of the 
specific building under study. Once validated, the 
model can then be disseminated for real life 
applications.  
 Finally, the proposed methodology adds a new and 
important dimension to the energy modeling field by 
accounting for occupants and their impact on energy 
use. Consequently, this method overcomes the main 
limitations of current energy modeling software and 
results in more realistic and accurate energy predictions, 
which are essential to the design of more green and 
energy efficient buildings.  
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