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ABSTRACT 
We examined the use of radar to detect humans wearing 
a suicide bomb vest with detonation wires.  In our 
research we used the GunnPlexer Doppler radar at 12.5 
GHz to collect experiment data of humans both with 
wires and a vest and without wires. We collected data 
and broke the reflected radar  signal into both horizontal 
and vertical polarization (HH and VV). We developed 
several metrics from this data that could be used in 
building models or algorithms to more accurately detect 
subjects wearing wires. We discovered additional 
information about the metrics and used combinations of 
the metrics so we could increase the detection 
probability. We built a Monte Carlo simulation to test 
our theories.  To date, we have a success rate over 98% 
and a false positive rate of under approximately 2%. 
This research and the results encourage us to think that 
suicide bombers can be found prior to their detonation 
of their bombs at a safe range. 
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1. INTRODUCTION 
Improvised Explosive Devices (IEDs) are a major 
problem in the world we face today (Meigs, 2007). A 
major IED concern is the suicide bomber. The suicide 
bomber generally does not present their action prior to 
the event and can more easily accomplish their goal.  
We examine the dynamics involved in the suicide 
bomber and possible detection strategies using a stand-
off radar.  
  The general observational situation we consider is 
illustrated in figure 2, below.   We see one or more 
radars observing a crowd of people of whom one or 
more have wires on their bodies. Those with wires 
might be terrorists who plan to explode their suicide 
bomb.  We anticipate that the range from the radar to 
the people (or animals) under observation would be 
typically 50 to 100 meters.  Our plan is to make 
observations with one or more radars (and likely other 
sensors as well, such as video surveillance cameras or 
thermal imaging).  The results of these observations 
become the essential input data to our mathematical 
model that assesses the system’s ability to detect  

suspects (persons suspected of harmful intent) from 
among a crowd of subjects who are largely harmless.   

 
Figure 2. Radar observational geometry.  One or more 
radars observe a group of people with one or two having 
wires on their bodies and hence becoming suspects. 
 

 We discuss the radar observational systems, the 
radar cross sections of humans both with and without 
wires on their bodies (from both experimental 
measurements and computational electromagnetic 
estimates), our mathematical models with metrics and 
our findings and conclusions with  recommendations. 
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2. DETECTING SUICIDE BOMBERS 
 

Data  was collected using the GunnPlexer radar  on 
persons both with and without wires & vests.  This data 
has been analyzed. We begin by displaying the 
scatterplots, see Figure 1-3. Each plot indicates a visual 
exponential distribution. Using goodness of fit chi-
squared analysis we found each does follow an 
exponential distribution. 
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Figure 1. No wire on persons 
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Figure 2. Persons wearing wire loops 
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Figure 3. Person wearing wires and wire loops 
 
 Analysis of the data used to create these graphs 
show that each follows an exponential distribution. We 
used a Chi-squared goodness of fit test at α =0.05 for 
each test.  

 First, we took the scaled or normalized the data and 
then display a histogram of the data in Vest 1, see the 
figure 4 below. 
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Figure 4.  Histogram of Data set 1, Vest Configuration 
1 
 
 We used the χ2 goodness of fit test to a truncated 
exponential distribution: 
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 Since our test statistic value is less than my critical 
value then, we conclude that the truncated exponential 
with empirical mean 0 .15209355 is a good fit at an  α 
level of 0.05 
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 We perform the same analysis for the data from 
Vest 2 seen in figure 5. 
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 Figure 5. Histogram of data set 2, Vest Configuration 2 
 
 We tested using a goodness of fit test to a truncated 
exponential distribution: 
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 We conclude that the truncated exponential with 
empirical mean 0.156108622 is a good fit at an α level 
of 0.05. 
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 Both empirical distributions are essentially 
exponential distributions and that is supported by both 
the literature and other’s research (Dogaru et al., 2007, 
Fox, et al, 2010, Angell et al. 2007a, 2007b ). 
 We examined the vertical and horizontal  
polarization of the data that according to the literature 
might be able to distinguish certain objects. Linear 
polarization has been found to detect metal. We found 
that comparing the VV to HH polarization of our 
subjects was useful to identify metal. Our plots of the 
polarization data very closely resemble those of Dogaru 
et al. (2007), shown below in figure 6-7. 
 
 

 
Figure 6. (Radar cross section of a simulated human 
body in both VV and HH polarization over the 
frequency range from 0.5 to 9 GHz.  After Dogaru et al. 
(2007)) 
 
 

 
Figure 7. (Radar cross section of a human body carrying 
a thin, 1 m metal rod in front of the body.  After Dogaru 
et al. (2007)) 
 
 It is easy to see that the two figures are different. 
Figure 6 shows the two graphs (blue and red functions) 
and the plots are close to being the same. Figure 7 
clearly shows visually that the two plots (blue and red) 

appear to be different. In fact, statistical analysis shows 
this is true. We analyzed two sets of data for person 
with wires in different arrays and tested the means in 
pairs to show they are different. 
μ1= mean for person with wires 
μ2= mean for person with wires (Vest 2) 
μ3= mean for persons with wires and loops (Vest 3) 
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Rejection region with α =0.05 in each case is reject if 
|Z| > 1.96. The test statistics were found and are 
Case 1: | Z | = |1.03-1.520/(0.1425)|  =  3.439 
Case 2: | Z | = |1.03-1.430/(0.1628)|  =  2.457 
Case 3: | Z | = |1.52-1.43/(0.186)|  =  0.483 
 
 Our decisions from the hypothesis tests are: 
Reject the null hypothesis in Case 1 and Case 2 
concluding the ratios are different. we fail to reject the 
null hypothesis in Case 3, so we conclude the ratios for 
the wires on humans are statistically the same. This 
confirms they are different. 
  Previous results were weak in two areas (Fox, et 
al. 2010): 

(1) our probability of detection was at most 
approximately 85% and  

(2) our probability of false detections was high 
between 22-56% 

 
 We have created the wave forms of the polarization 
data using sinusoidal regression on the data in hopes of 
finding some new indicators. We obtained the following 
plots from the sinusoidal regression (Fox, 2011). Figure 
8-12 show these results. 

 
2.1 The Data 
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Figure 8. Waves with wires on person 
 

 
Figure 9. Waves with wires on person 

 

  

  

 
 

 
Figure 10. Waves with no wires on person 
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Figure 11. Waves with no wires on person 

.  
Figure 12. No wires on person. 
 
 The bottom line from analysis, confirmed with 
hypothesis testing at α=0.05, of these plots of the 
sinusoidal regression are: 
For persons wearing wires the periodicity is different 
while for persons without wires the periodicity is the 
approximately the same.  
 
3. INDICATORS FOR METRICS FOR 
DETECTION (INFORM DETECTION) 
 
3.1 DETECTION METHODS and METRICS 
 
Previously, we examined the absolute differences and 
the ratio of polarization. Now we move on to new 
constructs. Signal-to-noise ratios has been shown to be 
useful in detection and lowering false positives as 
shown by Kingsley et al (1992). 
 
 Our definition of SNR is shown is equation 1:  

 

.SNR μ
σ

=                                   (1) 

 Rather that look at this metric alone, we devise a 
ratio of SNR ratios for polarization wave forms. Our 
new metrics are shown in equations 2 and 3 below: 
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 For example, for a person without wires on their 
person this calculation leads to 
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  0.637069. 

 
  For persons wearing wires for detonation purposes, 
we have 
 
2.7757*.8206/(1.824*1.1267)= 1.10773. 
 
The values are both different and are significant using a 
level of significance of a = 0.05. 
 
3.2 Levels of Detection 
Level 1 Detection 
 
We introduce a concept of Level 1 detection using radar 
only. Level 1 detection stem from a combination of 
output from radar capabilities. We use the following 
metrics for my support matrix in Table 1: 
 
Metric 1:  M1=|VVmean-HHmean| 

Metric 2:  M2= mean

meam

VV
HH

 

Metric 3: 1
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μ
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Metric 4:  M4 = Periodicity of the polarizations scaling 
weighting (same=0, weak=.5, different=1) 
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Table 1. Detection Levels 
 
Radar 
Scan 

    

Metric 
1  

M1    

Metric 
2 

0 M2   

Metric 
3 

0 0 dm1  

Metric 
4 

0 0 0 M4 

 
 The product of these values along the main 
diagonal yield a strength measure of the level 1 
detection: 
 

1 2 3 4Detection level M M M M= ⋅ ⋅ ⋅  

 
The interpretation is as follows: 
Detection Level =0  (not a person of interest) 
Detection level > 0  ( a person of interest) 
The larger the value the higher the interest. 
M1 usually has to be greater than 0.6, M2 greater than 
1.35, dm1 greater than 1 or a Detection Level > 0.8  
units. 
 
 Simulation models for Level 1 detection finds the 
following statistics supporting our claim in Table 2. We 
ran the model 824,000 trials. 
Table 2. Simulation Results 
 P(Success) P(False Success) 
Mean 0.96189 0.092336 
Stand error 0.00202 0.004426 
Median 0.970508 0.0808 
St. Deviation 0.02864 0.0626 
Minimum .875 0 
Maximum 1 0.303 
Count 824,000 824,000 
95% CI length 0.00399 0.0087 
 
P(Successful detection)  is about. 0.96189 and P(False 
Positives) is about 0.092336.  
 Level 1 detection shows us that we have a good 
success rate but still need a little improvement as well 
as improvement is needed in the false detections. Level 
1 detection is based on single radar. 
 
 Multiple radars operating in independently and 
orthogonal in direction (if feasible) provides the best 
improvement. This will improve our p(detection) to 
greater than 99.84%.  The P(False Detections) is 
reduced to less than 1% ≈ 0.85%. 
 
 Further improvement can be made with Level 2 and 
Level 3 Detections described next. 
 
Level 2 Detection 
 

We move on to using radar and video together. We take 
the level detection probabilities and combine with video 
of the crowd.  Our video portion is examining for 
several quick indicators that will enhance the 
probabilities for detection and for false positives. Video 
indicators coupled after We get a Level 1 detection 
would include: 

(1) folds or shape in clothing over suicide vests 
which have been clearly modeled by previous 
people. 

(2) More clothing than needed based on weather 
and climate 

(3) Sweat or massive perspiration not caused by 
climate 

(4) Motion not consistent with others (saying 
when walking) 

 
 Each of these will be Bernoulli variable (1 if 
positive or 0 if negative). Any one positive indicator 
yields a 1 for the total. We total the values of each 
giving us a scale from 0 to 4. 
The more one’s the stronger the multiplier is for the 
detection. 
 
 We create a Level 2 detection metric: 

2 ( 1)L DM p success from Level Indicators= ∑
 

Video will most likely be used when then we 
have a probability flag for a suicide bomber.  The video 
feed then is observed and processed by a computer 
program for abnormal traits of movement. We use the 
information as we showed previously  in figure  2. 
 
Level 3 Detection 
  
Level 3 detection concerns using the radar to measure 
speed of the suspect. This can be done simultaneously 
with the other 2 detection strategies. We will use the 
work done by the Bornstein’s on “Pace of Life” to 
measure discrepancies from the norm based on the 
findings of the FBI that the two suicide bombers caught 
were under the influence of drugs that modified their 
speed and perceptive abilities. First, in a region of 
concern we want to measure the typical speed of 
movement under normal circumstances. The radar gun 
is keyed to pick up a plus or minus one standard 
deviation changes in the normal speed as a flag 
indicator. This flag is coupled with either a strong Level 
1and/or a Level 2 indicators to better detect the person 
wearing wires as a suicide bomber. We use three  
sensors (radar cross section (RCS), video, and radar 
speed) for my calculations for the probability of 
detection. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

P A B C P A P B P C P A P B
P A P C P B P C P A P B P C

∪ ∪ = + + − ⋅ −
⋅ − ⋅ + ⋅ ⋅

  

for three events. 
 
 In our simulations introducing speed we find that 
speed needs to be coupled with other indicators to raise 
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its ability to predict. In a simulation model with the use 
of single radar with metrics discussed earlier only  
raised the probability of detection to approximately 
100% and lowered the probability of false positive to 
approximately 0.5%. 
 
Level 4 Detection 
 
We consider more sensors in this level of detection to 
include thermal imagery and terahertz radar. My 
advanced algorithm uses Bayesian statistical updating 
analysis in order to calculate the probabilities of 
detection based on scans and visual sightings of the 
persons on interests. 
 
 For more than three events we use the inclusion -
exclusion principle and the general form for four 
sensors of: 
 

1 2 4 1 2 4

1 2 3 1 2 4

2 3 4 1 3 4

1 2 3 4

( ... ) ( ) ( ) ... ( )
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( ) ( )
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i j
i j

P A A A P A P A P A
P A A P A A A P A A A

P A A A P A A A
P A A A A
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∩ + ∩ ∩ + ∩ ∩ +

∩ ∩ + ∩ ∩ −
∩ ∩ ∩

∑  

For the general case of the principle, let P(A1), 
..., P(An ) be finite sets of Probabilities.  

1
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Each sensor adds to the probability of detection and 
decreases the probability of a false detection. 
 
More metrics considered 
 
We experimented with phased metrics using metrics (a) 
through (d) that proved to better than a single metric 
alone. By phased metric we mean using more than one 
metric in the algorithm, i.e., using two or more radar 
RCS metrics in the detection scheme. In a simulation, 
we achieved a probability of detection of approximately 
99%. 
 The sensitivity of the device (radar) and the 
collection apparatus is critical. The threshold values 
chosen are vital to the detection algorithm. For example, 
the higher the probability the further away from the 
mean the statistic is (see our figure below). Therefore, 
the SE now becomes an essential element. 
 
 Only data was used from identical subjects. We 
determine the following baseline data shown in Table 3 
and Table 4:  

 
Table 3. Baseline data for polarization differences 

Status Polarization Mean SD 1 SD 

Range 
No 
wires 

VV 2.44 .19 2.23,2.63 

 HH 2.37 .11 2.26,2.48 
 |VV-HH| 0.09 .3 -.21,.39 
Wires 
(no 
loop) 

VV 2.78 .19 2.57,2.97 

 HH 1.83 .11 1.72,1.94 
 |VV-HH| 0.95 .30 0.65,1.25 
Wire 
(loop) 

VV 2.87 .16 2.71,3.03 

 HH 2.00 .17 1.83,2.17 
 |VV-HH| 0.87 0.33 0.54,1.20 
 
Table 4. Baseline data for polarization ratios 
Status Ratio 

VV/HH 
Mean SD 1 SD  

Range 
3 SD 
Range  

No 
wires 

VV/HH 1.03 .12 .91,1.15 .67,1.37 

Wires 
(no 
loop) 

VV/HH 1.52 .15 1.37,1.67 1.07,1.97 

Wires 
(loop) 

VV/HH 1.43 .11 1.32,1.54 1.12,1.76 

 
 From a probabilistic standpoint we see that at 3 SD 
there is some slight overlap of values between no wires 
and wires in this case which are our false positives 
come from using only one sensor. 
 Enhancing our simulation to take advantage of this 
we find much improved results. Using both metrics 
together in a series fashion, the |VV-HH| and VV/HH, 
We found 100% of the bombers over a wider range of 
threshold values. We also am able to reduce the false 
positives to approximately 10-15%. 
 Video is an integral component to improve on 
detection. Video obtain simultaneous input that is 
couple with the radar infusion as shown is figure 2: 
 The radar becomes Flag 1 when it identifies 
through the combination of metrics above as potential 
subject. The video then analyzes the subject for 
deviations from the norm, approximately 1 SD. This 
becomes Flag 2. Two flags increase the probability of 
detection substantially. Adding a speed component to 
the radar is easy. Speed becomes the Flag 3 using the 
work done by the Bornstein’s (1976) in walking speed 
of a crowd in world cities. Again, speeds that differ by 
approximately 1 SD are deemed critical. If all three 
flags are persistent then our probability of detection is 
over 99% and the false positive detections are less than 
1%  as evidence by simulation models. 
 Further, the addition of Thermal imagery can 
provide significant advantages. If the video camera or 
other surveillance device is added with thermal 
capability then we can measure the temperature change 
in a person. Significant temperature changes indicate 
that cold, hard substances are present that are different 
than 98.6o. Again we look for 1 SD from the mean to 
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create a flag. This flag help increase the probability of 
detection as well as decrease the probability of a false 
detection. 
 Thus, adding the other sensors, speed and video, 
help reduce the percentages of false positives as well as 
the use of thermal imagery and increases our probability 
of a valid detection. 
 The detection algorithm for a real device will be 
realistic modification of the simulation algorithm 
below: 
 
 
 
INPUTS: N, number of runs, assumed distribution for 
the number of suicide bombers in a crowd, distributions 
for probability metric for radar detections, threshold 
value 
OUTPUTS: the number of positive detections, the 
number of false detections 
 
Step 1. Initialize all counters: detections = 0, false 
alarms=0, suicide bombers =0 
Step 2. For i = 1,2,…, N trials do 
        Step 3. Generate  a random number from an integer 
interval [a,b]. 
        Step 4. Obtain an event of a suicide bomber based 
upon our hypothesized distribution of the number of 
suicide bombers in a crowd of size X. Basically if 
random  number < a specified small value then I have a 
suicide bomber, otherwise I do not. 
For example, I might generate random numbers 
between [1,300] and if the random number is < 2 then 
the random number represents a suicide bomber.  
        Step 5. Generate characteristics for each person in 
the crowd by either being a bomber with random 
bomber characteristics or a non-bomber with random 
non-bomber characteristics based upon updated data 
collection feedback loop. I want to create a smart 
system. 
 Step 6. Allow the sensors to randomly detect the 
measures from Step 5 and use Step 7 to identify the 
characteristics based upon the metric used. 
 These distributions are described previously. 
        Step 7. Compare results from step 5-step 6 to 
threshold value using the following: 
Target present: y(t) > Y  correct detection 
Target present: y(t) < Y  missed detection 
Target not present: y(t) > Y   false alarm 
Target not present:  y(t) < Y  no action 
 Step 8. For each correct detection, obtain a video 
and a speed input. Generate a random speed for  each of 
the N trials above based upon Speed normal about  1 
m/sec for a non-suicide bomber and Speed is 1-.5(rand( 
)) or 1+.5rand( ) for a bomber on drugs.  
 Step 9. Compare for detection with speed and 
video. 
Target present: z(t) > Z  correct detection 
Target present: z(t) < Z  missed detection 
Target not present: z(t) > Z   false alarm 
Target not present:  z(t) < Z  no action 

 Step 10. If any are positive then use thermal 
imagery. Generate a random number for thermal 
imaging for temperature difference based upon  

100% ( )h l

h

temperature temperture
temperature

⋅ −
 

 Thermal difference for a normal person 
temperature percent differential of 
100% ( )h l

h

temperature temperture
temperature

⋅ −
 using 

temperatureh= 98.6 and temperturel = 95 
 
 Thermal difference for a normal person 
temperature percent differential of 
 

100% ( )h l

h

temperature temperture
temperature

⋅ −
 using 

temperatureh= 98.6 and temperturel =  a random number 
between 70-95 degrees) 

Step 11. Compare for detection by thermal 
imagining 
 
Target present: w(t) > W  correct detection 
Target present: w(t) < W  missed detection 
Target not present: w(t) > W   false alarm 
Target not present: w(t) < W  no action 
Step 12.  Increase all Counters as necessary 
Step 13. Output statistics under the assumption of 
independence and use Inclusion-Exclusion as explained 
previously. 
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END of Algorithm 
 
 
Figure 13. Simulation Algorithm for Methodology 
Model for RCS, Radar, Video, and Thermal  Imagery 
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