
GENETIC ALGORITHM APPROACH TO MODELLING FRACTAL

MANUFACTURING LAYOUT

Julian Aririguzo C
(a)

 and Sameh M Saad
(b)

(a)(b)

Faculty of Arts, Computing, Engineering and Sciences

Sheffield Hallam University

Sheffield, UK

(a)

J.Aririguzo@shu.ac.uk
(b)

S.Saad@shu.ac.uk

ABSTRACT

Fractal Manufacturing System (FrMS) basically

structurally builds up from units called 'fractals' or

fractal objects which are independent entities and

contain essential features and congenital attributes of

the entire manufacturing configuration. They can self-

adapt quickly to dynamic changes in an unpredictable

manufacturing environment. They are also self

regulating and fall under organizational work groups,

each within its own area of competence. An optimal

shop floor design and implementation is key and an

integral part of achieving a successful FrMS. and is

concerned with issues of shop floor planning,

arrangement and function layout. The fractal shop floor

layout develops from individual cells and is

conceptually capable of producing a variety of products

with minimal reconfiguration. Keen attention is paid to

determination of capacity level, cell composition and

flow distances of products. In this paper, Genetic

Algorithm (GA) is adopted to efficiently and effectively

design flexible FrMS shop floor layout, needed in agile

manufacturing system to cope with new and dynamic

manufacturing environments that need to adapt to

changing products and technologies. Its stochastic

search algorithm is used in simulating natural

evolutionary process techniques, which in turn solves

the many FrMS combinatorial optimization problems.

The design implementation is done using MATLAB.

The end result interestingly is a fault tolerant structure

that is better suited to survive and stand the pressure for

lead time reduction and inventories, product

customization and challenges of a dynamic and

unpredictable operational environment.

Keywords: Fractal manufacturing system,

Manufacturing layout design, Genetic algorithm.

1. INTRODUCTION

The conceptual fractal shop floor builds up from

individual cells called fractals and is capable of

producing a variety of products with minimal

reconfiguration (Venkatadri et al. 1997; Montreuil et

al., 1999). This is due mainly to their ability to self-

adapt quickly to dynamic changes in an unpredictable

manufacturing environment. The fractal layout is an

extension of the cellular layout (Askin et al. (1999) and

in fact, each fractal cell is a multifunctional mini shop

(Venkatadri et al., 1997) since it could produce most of

the product types routed to it and have layout

specification that produce varied products. This

decentralized production layout allows for flexible mass

customization. However, there are many challenges

posed by the design and implementation of this strategy.

A design and simulation of the model of shop floor

layout for FrMS is presented in this paper paying

attention to determination of capacity level and cell

composition using genetic algorithm approach. The

procedure is based on an iterative algorithm,

implemented using MATLAB and used to calculate

material travelling distances for each fractal cell and

this continuously optimizes the layout, flow assignment

and improves the overall performance of these

parameters to create maximum space utilization. The

rest of the paper is organized as follows; section two

briefly looked at the general fractal manufacturing

layout, section three made an overview of the GA and

MATLAB and sets the scene for the application of the

GA to the layout design and experimentation. Section

four discusses the essentials of the proposed fractal

manufacturing layout. Section five implements the GA

approach, while section six discusses output results and

the paper is finally concluded in section seven.

2. FRACTAL MANUFACTURING LAYOUT

The fractal workstation layout is created to minimize

the capacity requirements and material travelling

distances (Saad and Lassila 2004). The layout design

concerns the arrangement of physical production

resources within the production facility (Chase and

Aquilano 1992) and the planning of which involves the

determination and allocation of the available space to a

given number of resources (Azadivar and Wang 2000)

and emphasizes minimization of flow distances in order

to improve product flow and general layout

performance (Montreuil et al., 1999). This involves

various aggregate steps; capacity planning, fractal cell

creation, flow assignment and cell/ global layout

(Venkatadri et al.1997). These processes can

significantly affect the efficiency of the planned

manufacturing system in terms of shop floor control,

equipment utilisation, materials handling, materials

management, and worker productivity (Co and Araar

1988). The manner and nature of the flow of materials

through the facility is of crucial importance and this

includes the flow rate, throughput time of products and

the routes taken by the products (Wild 1993).

126

2.1. Capacity Planning

The consideration of the resource requirements,

demand, capacity, work methods, handling and

movement, departmental area requirements, and shape

and location restrictions are all issues of capacity

planning (Wild 1993, Gau and Meller 1999). The

general and perhaps most important objectives are how

to minimize the physical movement and handling of

materials, maximize the capacity utilisation (Wild 1993)

and ensure a smooth work flow (Chase and Aquilano

1992) in accordance with the system plan. Other very

important issues include; systems design, machine

reliability, parts scheduling, etc. These are all issues

involved in the capacity planning process. It is worth

mentioning that the capacity planning task requires

optimal value of input data to satisfy product demand,

minimize investment and operations cost and go into

production within the pre-specified production time,

though cost of material transfer could be traded-off

against initial investment cost (Montreuil et al., 1999).

This study first determines the required capacity levels

for each machine type and the number and composition

of fractal cells. Then an iterative algorithm continuously

optimizes the layout and flow assignment according to

the performance of the system.

2.2. Fractal Cell Creation

The fractal layout system uses cells to group machines

together and to control and limit product routings. The

number of fractal cells and workstation composition of

each cell is significant in the overall manufacturing

system. Its layout can be seen as an extension of a

cellular layout (Askin et al. 1999) due to the structure of

the shop floor, and fractal cells are multifunctional and

are able to process most of the product types routed into

the system. Each cell needs to contain exactly one

replicate of workstation type. They also share

workstations, but each cell has equal compositions.

These identical cells are flexible and standardized. They

can respond well to short term changes, uncertainties

and unpredictable incidents or events such as machine

breakdown, product mix, and transfer devices going

offline (Montreuil et al., 1999).

2.3. Flow Assignment

The fractal cell, a set of neighboring workstations is the

basic unit in the fractal layout system (Venkatadri et al.

1997 & Montreuil et al. 1999). The system flexibility is

believed to increase because all fractal cells have

roughly the same composition of machines and are

capable of processing most of the products routed to

them. It helps to alleviate flow congestion of products

and improve flow efficiency. The flow score is

measured and analyzed in order to estimate the

frequency and distance travelled. The satisfactory

estimation of flow around the actual workstations is

also of significance in the layout design. Flow

assignment involves the decision of getting the products

processed through particular machines on the job shop

(Askin et al.1996 & 1999). The assignment of products

to flow paths minimizes travel distance if there are

several products with specified machine type routing to

be processed (Venkatadri et al., 1997). The objective of

the flow assignment is to create a workstation layout

that minimizes the capacity requirements and material

travelling distances for a particular product. The flow

assignment experiment and capacity analysis can be

used to improve the layout repeatedly until a

satisfactory layout is generated (Montreuil et al., 1999).

The results indicate that unrestricted product flows offer

the best flow scores in a fractal layout.

3. OVERVIEW OF GA AND MATLAB

Many combinatorial optimization problems in

manufacturing systems are very complex and can not be

solved using conventional optimization techniques

(Kamrani and Gonzalez 2003). Most fractal

manufacturing layout problems are dynamic - they

change with time, and the system is expected to self-

adapt to unpredictable changes and uncertainties. To

deal with such problems efficiently and effectively,

different fault tolerant structures and adaptable methods

are required in solving problems in these dynamic

operational environments.

3.1. GA procedure

GA is an evolutionary algorithm, a simulation of natural

evolutionary process technique that has been adopted

for this study (Azadivar and Wang 2000). The GA

approach is a powerful and broadly applicable

stochastic search technique used to find approximate

solutions in optimization problems (Holland 1975).

Just like evolutionary algorithms, it allows systems to

self-adapt to make up for unpredictable changes in the

operational environment. It would take into account a

wider range of possible solutions and further increase

the probability of finding optimal solution by

continuously iterating and optimizing the design of the

fractal layout and flow assignment according to the

performance of these parameters.

3.1.1. Genetic Operators

Crossover and mutation are the two genetic operators

that are applied probabilistically to create a new

population of individual strings (Rajasekharan, 1998).

Crossover is an important operation performed by GA

for solving combinatorial optimization problem. Two of

the individual strings in the initial population are

selected randomly as two parents. A cut point is

randomly chosen within the parent strings (Kamrani and

Gonzalez 2003).

3.1.2. Crossover

Crossover operation exchanges cross sections of the

parents in order to form two offspring. As shown in

(Figure 1), the two off-springs form new individual

strings generated by combining the “head” of the first

parent string with the “tail” of the second parent string

and vice versa (Rajasekharan, 1998). The essential

characteristic of crossover is the crossover rate (CR)

127

which is the ratio of number of off-springs produced in

each generation to the population size. A higher CR

allows deeper exploration of solution space and

increases the chance of achieving accurate optimal

results. If the CR is too high, it results in wastage of

computational time (Kamrani and Gonzalez 2003).

Figure 1: Crossover (Al-Sultan et al., 1997)

Due to the unique hierarchical chromosome scheme

used, a one-point crossover is used as in (Xiaodan Wu

et al., 2007). A cut point is randomly selected over the

whole chromosome as shown in (Figure 2). Parent1 and

Parent2 are the chromosome pair selected for the

crossover operation. The “head” of Parent1 is replaced

by “tail” of Parent2. Then Child1 is generated. On the

other hand, the “tail” of the Parent1 replaces the “head”

of the Parent2, and Child2 is then created.

Figure 2: Numerical illustration of Crossover (Xiaodan

Wu et al., 2007)

3.1.3. Mutation

Mutation operation produces spontaneous random

changes in certain chromosomes. Mutation play two

roles that involve either replacing the genes lost from

the population during the selection process, or

providing the genes that were not present in the initial

population (Kamrani and Gonzalez 2003). Mutation is

designed to prevent premature convergence and to

explore a new solution space (Xiaodan Wu et al. 2007).

But the mutation operation alters and mutates one or

more genes within the chromosomes of an individual

rather than across a pair of chromosomes. There are two

kinds of mutation proposed by (Xiaodan Wu et al.

2007), which are group mutation (Figure 3) and

inverting mutation (Figure 4). Group mutation is for

exchanging genes of the same group for the same layer

at same time while inverting mutation involves

exchanging the genes from the randomly chosen loci of

the parent. Both genes are chosen randomly for the

operation of mutation. From a theoretical perspective, if

the length of the chromosome for inverting mutation is

long, the chances of finding the optimal solution in the

near-optimal area is low. However, the group mutation

can help to enhance the GA’s ability of exploiting and

converging rapidly to a promising region (Xiaodan Wu

et al., 2007). (Al-Sultan and Fedjki 1997) illustrated in

(Figure 3) that group inverting mutation begins with a

selection of a parent, and randomly dividing into two

strings. The two strings are then exchanged to get a new

offspring. Group inverting mutation involves two steps

- a random cut of the selected parent is generated and

the two chosen strings are then exchanged to obtain a

new offspring.

Figure 3: Group Mutation (Al-Sultan and Fedjki 1997)

There is yet another kind of inverting mutation by

(Hicks 2006), that involves the selection of the two

points randomly and then the genes between those

points are placed in reverse order. This inverting

mutation is shown in (Figure 4). The other genes in

other positions are also copied directly from the parent

to the child. In an inserting mutation, a gene is selected

at random. The gene is taken off from the chromosome

and then inserted back in a random position (Parames,

2001).

Figure 4: Inverting Mutation (Azadivar and Wang

2000)

3.1.4. Stopping Criteria

Two stopping conditions are employed to stop the GA

from iterating continuously (Parames, 2001). First, if

the number of iterations exceeds the predefined fitness

value, GA would stop the operation immediately. The

other stopping condition is that the value of the

objective function does not change within the expected

number of iterations. Once the algorithm has completed

the given number of generations, the best value of the

objective function is obtained. At that moment, GA

would be terminated and display the layout

configuration associated with the chromosome with the

highest fitness value.

3.2. MATLAB R2008a

MATLAB is a high-level computer language for

scientific computing and data visualization built around

an interactive programming environment (Kiusalaas

2005). It integrates computing, visualization and

programming in one user-friendly environment. In the

course of this study, MATLAB R2008a is used to

develop, implement, customize and create a user-

friendly graphic interface (Kiusalaas 2005) for our

fractal layout design. Its high-performance language

essentially expresses the problems and solutions in

mathematical notation. The model is then designed to

fetch input of pair-wise comparison data of different

128

criterion and alternatives and process these data to an

output of optimum score of the alternatives.

A set of general procedures are employed in the

design of the fractal shop floor layout. There are several

phases to the procedure;

1. Design and simulate the model of FrMS shop

floor layout using MATLAB R2008a,

determining the machine types and machine

routing sequence.

2. Write MATLAB programming codes to reflect

minimization of material travelling distances

or flow distance score.

3. Apply Genetic Algorithm to continuously

iterate and optimize the design of fractal layout

and flow assignment according to the

performance of the parameters.

4. Quality of the resulting layout is assessed and

compared against Fractal cell layout according

to (Venkatadri et al.1997)

4. THE PROPOSED FRACTAL

MANUFACTURING LAYOUT DESIGN

As a guide, the initial fractal manufacturing layout

adopted for this study is the cellular manufacturing

systems configuration proposed by (Co and Araar 1988)

(Figure 5). This layout is re-designed and reconfigured

from its initial cellular manufacturing layout using the

GA optimization technique. Limitations of the cellular

manufacturing layout include inflexibility due to a fixed

set of part families, limited allowance for inter-cell

flows, and long product life cycles which makes it

incapable of performing in unstable environments. It

also contains different types of machines which

increases the product inter-cell and intra-cell travelling

distances.

The design by (Co and Araar 1988) is modified

and illustrates the process of constructing a fractal job

shop. The example presented is a job shop with 15

distinct product types and 10 types of machine in the

initial cellular layout. A total of 64 workstations are

proposed by (Co and Araar 1988) in the 6 cells

modified group layout design within a factory. But,

each group cell contains uncertain numbers of

machines. Montreuil et al. (1999) propounds that the

grouping procedure implements a multi objective

mathematical programming formulation with few

surrogates;

 Minimize the difference between the assigned

workload and capacity available.

 Maximize the number of products that are

completed in each cell.

 Maximize the number of cells.

But, it is found that the objectives above are conflicting.

The design for the group layout makes the job shop

appear very much like a flow shop. But the group layout

design suffers from the major disadvantage that requires

too many workstation replicates (Montreuil et al.,

1999).

In this study, the GA approach lets us represent the

entire group layout proposed by (Co and Araar 1988) as

chromosomes. The modified group layout by (Co and

Araar 1988) is shown in (Figure 5). MATLAB

programming has made the representation of the

machines in each cell easier. For instance, Cell1 can be

represented as (1 5 2 6; 7 4 3 8; 9 10 3 5; 2 10 8 6; 1 5 9

10) in MATLAB codes. Cell4 is coded as (3 9 2 8; NaN

NaN NaN 5) (where NaN means Not-a-Number in

computing). Cell1 and Cell4 are combined using

crossover operations. After the crossover, Cell1 is re-

generated and it becomes one of the output cells for

fractal manufacturing layout.

Figure 5: Modified group layout from (Co and Araar

1988)

The fractal manufacturing cell layout proposed by (Co

and Araar 1988) has a number of characteristics and is

shown in (Figure 6). All fractal cells are similar and

contain roughly the same composition of machines.

Similarity of fractal cells in terms of machine types and

quantities enable high efficiency in controlling shop

floor, high operational flexibility and high flexibility for

factory expansion. Moreover, all fractal cells are

independent and are also capable of processing all

products routed to them. Furthermore, products are

distributed evenly among fractal cells.

The design of fractal layout (Figure 6) contains

three cells. This choice leads to a cell population of 10

workstations, which is within tractable standards of 5 to

15 machines in each fractal cell. It is not necessarily to

limit the number of workstations to 30 machines in this

case (Venkatadri et al., 1997). But, by adding few more

workstations congestion could be alleviated and flow

efficiency could further be improved. Therefore, it is

logical and reasonable to increase number of Machine 7

in the following approach in the fractal manufacturing

layout that is proposed by Venkatadri et al. (1997) and

Montreuil et al. (1999).

Figure 6: Fractal Manufacturing Layout

129

4.1. Design Parameters

It is estimated that 10 types of machines are required in

the fractal job shop. Machine requirement planning

represents the beginning of the fractal layout process.

This is carried out by computing the total number of

hours required for processing the product demand

(Montreuil et al., 1999). There are 15 types of products

that are required to be processed in the 3 fractal cells.

Based on bottleneck analysis, the total demand for the

fractal layout is estimated to produce 400 products that

can be processed in the fractal system without violating

aggregate capacity constraints and respecting product

demands. The other design parameters that are used for

the fractal layout modeling have to be defined and

calculated as below:

Machine types in fractal job shop = 10

Product types in fractal job shop = 15

Total number of products demand = 400 products

Demand for fractal job shop = 400/15 = 26.67

Total machine processing times = 1108 minutes =

18.47hours

Machine processing times for processing the demand

 = 18.47hours x 26.67

 = 492hours

Total machine capacity (available hours) is 1297hours

Minimum number of machine required for fractal cell

= Machine capacity ÷ Machine processing times

 = 1297 hours ÷ 492 hours

 = 2.6 machines = 3 machines

Fractal decomposition is carried out using the

procedures outlined in the section on cell creation

design. The results of the calculation are shown on

(Table 1). It can be shown that 3 machines are required

for the 3 fractal cells. Therefore, it is feasible for each

type of machine to be replicated or regenerated 3 times.

The expected fractal layout contains 30 machines where

each fractal cell has 10 machines.

Table 1: Number of replicates for fractal cell layout
Machine
Type

1

2

3

4

5

6

7

8

9

10

Total

Number of

Replicates

3

3

3

3

3

3

3

3

3

3

30

4.2. Input Data

Tables (2, 3 & 4) contain the input data for the machine

processing sequence, process times of products in

minutes and machine capacity in hours respectively for

each of the replicates (Co and Araar 1988). These data

are written in Microsoft excel file and imported into

MATLAB programming for the optimization process.

Table 2: Machine routing sequence for 15 types of

product

Table 3: Machine processing times for 15 types of

product

Table 4: Machine capacity for each replicate

4.3. MATLAB dialog box

A dialog box is created as an interaction tool on

MATLAB. The dialog box pops up to request for input

data as shown on (figures 7, 8 & 9). These data are used

to verify; the location of Microsoft Excel input file,

sheet name of product sequence that is required for the

modeling operation, and the sheet name of machines in

fractal cell layout; the desired number of fractal cells

that are needed; number of rows and columns for each

pair of initial cells that are required to generate each

fractal cell; he cells required for crossover operation and

the desired number of iterations needed for generating

the final fractal manufacturing layout.

The input dialog box (Figure 7) for file location

and sheet name in Microsoft Excel has been used to

Product Type Machine Processing Sequence

1 1 4 7 3 10 8

2 3 9 2 8 5 6

3 2 3 4 5 9 10

4 1 7 8 10 2 3

5 5 6 8 1 4 7 9

6 5 2 6 4 1 7

7 6 4 5 7 10 9

8 1 3 5 6 8 10

9 3 4 2 1 5 9 10

10 8 10 2 4 6

11 3 1 9 5 7

12 1 9 10 2 7 8 3

13 4 3 10 2 8 6

14 4 2 8 5 1 6

15 1 5 2 6 8 3 4 7 9 10

Product Type Machine Processing Times (Minutes)

1 10 7 20 15 8 17

2 10 15 15 15 10 5

3 11 13 20 15 12 10

4 9 17 9 8 10 20

5 9 7 7 15 15 12 9

6 7 6 13 10 8 8

7 7 13 12 19 14 13

8 12 11 18 11 13 10

9 6 9 8 17 20 12 13

10 12 18 7 5 6

11 13 12 9 8 11

12 7 13 17 6 11 12 5

13 13 20 5 15 12 17

14 7 12 20 9 18 8

15 20 12 13 13 13 5 7 20 7 5

Machine Type Machine Capacity (Hours) for each replicate

1 25 15 10 30

2 16 29 15 25 30 20 28

3 17 15 40 30 10

4 18 19 17 28

5 15 20 30 20 20 20 30

6 18 20 15 15 10 15

7 10 20 20 10 15 20 15 15 15 10

8 20 20 15 15 10 10 10

9 18 17 20 30 40 30 20 17

10 20 10 10 10 30 30 30 15 15

130

ensure the location of the input data is identified and

verified. The input dialog box (Figure 8) for desired

number of cells is used to insert the number of cells that

are required for the initial cell layout. The input dialog

box (Figure 9) is for the number of iteration needed to

determine number of replicates and analyze the output

of the flow distance score.

Figure 7: Input dialog box for file location and sheet

name in Microsoft Excel

Figure 8: Input dialog box for desired number of cells

Figure 9: Input dialog box for number of iteration

4.4. Facility layout problem (FLP)

The FLP is defined as “the determination of the relative

locations for, and the allocation of the available space

among a number of workstations” (Azadivar and Wang,

2000). The resources could be different sizes and the

interactions between resources may vary. This is a

major concern in developing a block layout that

represents an optimal shape and arrangement of

departments within a facility (Hicks 2006). The FLP is

a combinational problem for which the optimal solution

can be found for small problems. GA based search is

one of the good method for dealing with problems of

facility layout. In the GA approach to optimization,

feasible solution to the problem is encoded in data

structures in the form of a string of decision choices that

resemble chromosomes. GA maintains population of

chromosomes or individuals that are created. The layout

design is characterized by chromosomes’ fitness which

is measured by its value of objective function. Off-

springs are created through reproduction, crossover, and

mutation (Balamurugan et al., 2006). FLP is formulated

as a quadratic set which covers linear integer

programming problem, mixed-integer programming

problem and graph-theoretical problem. Therefore,

quadratic assignment problem (QAP) formulation has

been popular in this kind of problems. But

manufacturing practice normally requires particular

layout configurations such as single row, multi-row or

loop formations. These practical constraints place a

huge restriction on the optimization process (Hicks

2006), but the GA based search is one good method of

dealing with problems of facility layout.

The pick-up and delivery points position of each

cell in our study are located on either one of the cell

axes (Rajasekharan et al. 1998). In this model, the

fractal cells are considered to be rectangular blocks with

known dimension of (w, h) where w is width and h is

height of each cell. After the crossover and mutation,

the facility layout for FrMS for this model has a height,

h of 3 rows and width, w of 4 columns. If the fractal

cells are written as three rows and four columns in

matrix form in MATLAB, then the Pick-up Point is (1,

1) and Delivery Point is (3, 4)(Figure 10).

Figure 10: Facility layout problem for FrMS

Some logical assumptions are made for the facility

layout problem. These include that the dimensions of

the floor area on which the fractal cells are placed is

given. The floor space for the flow path on the floor

area is not considered. It is also assumed that the flow

paths consist of segments that are horizontal and

vertical to the walls of the floor (Hu et al., 2007).

The fractal layout dimension, (3 x 4) is chosen

because we are considering 10 machines in this study.

Thus, we require at least 10 locations for the rectangular

fractal cell layout. So, it is feasible to generate a facility

layout with 10 machines and 2 spaces. This layout

could reduce the material travelling distance by having

multi-purpose machines in each fractal cell.

5. IMPLEMENTING THE PROPOSED

GENETIC ALGORITHM APPROACH

An iterative algorithm is implemented to optimize the

layout and flow assignment according to the design

parameters. The layout of each cell is refined using the

implied flows between stations. The replicates are re-

applied until the heuristic procedures could not find a

better solution. The cells are continually iterated to

obtain the optimal flow assignment and hence achieve

131

the optimum fractal layout (Montreuil et al., 1999). The

GA procedures - selection, crossover, row inverting

mutation, column inverting mutation, and deleting

mutation are embedded in the iterative procedure in

order to generate the optimal material travelling

distances. Hence the desired workstation layout that

minimizes the material travelling distances and capacity

requirements for product demand and mix is created.

Each optimal fractal cell is selected based on the flow

distance score. Thus, optimum fractal manufacturing

layout is created by combining the three optimal fractal

cells. The illustrations of the GA steps are presented by

showing the first iteration of the fractal cell 1. Initial

cellular layout is assumed to contain 6 cells. Fractal

cell1 is generated by combining cell 1 and cell 4 by

crossover operation. Cell 1 is shown as parent1 and cell

4 is illustrated as parent2 in MATLAB program codes.

Chromosomes for each Parent are represented by the

various kinds of genes. The genes are represented by the

number 1 to 10 that signify that Machine1 to

Machine10 are used. Parent1 is represented as (1 5 2 6;

7 4 3 8; 9 10 3 5; 2 10 8 6; 1 5 9 10), illustrated in 5

rows and 4 columns. Parent2, contains 2 rows and 4

columns as (3 9 2 8; NaN NaN NaN 5). The

chromosome for each parent is represented in rows.

This means that the chromosomes for Parent1 are (1 5 2

6), (7 4 3 8), (9 10 3 5) and so on. One of the

chromosomes from Parent1 is chosen randomly. For

instance, the first row chromosome for Parent1 has been

selected for the crossover function. On the other hand,

the 1
st
 row chromosome for Parent2 also is selected to

be combined with the chromosome of Parent1 as shown

in (Figure 11). The continuous selection of the

chromosomes for Parent1 and Parent2 generated 10

different Offspring after the crossover operation (Figure

11). Two Off-springs are generated from each iteration

of the crossover. The Offspring1 that is created from

selection and crossover with 5 chromosomes are

selected for the upcoming mutation. Offspring2 is not

been used because there are only 3 chromosome lesser

than Offspring1.

Figure 11: Selection and Crossover

Inverting mutation takes place after the crossover. The

Offspring that is generated in the previous crossover is

used as the Parent again in this inverting mutation

operation. Initially, a cutting point is randomly

introduced anywhere along the last row of the Parent.

The cutting point indicates the row of the chromosomes

for the inverting mutation. The last row of the

chromosome is being mutated to the initial row based

on the programming code “circshift” - (mathscript

function). The iterations of the row inverting mutation

are replicated four times as shown in (Figure 12). For

each offspring that is generated, three column inverting

mutations take place. For column inverting mutation,

chromosome is represented column by column. The

cutting point is set in the last column of the

chromosome. The column based chromosome is

mutated and shifted from the last column to the first

column. After this, the Parent is replicated by shifting

its chromosomes in columns as shown in (Figure 13).

For each Parent that is obtained from the previous

mutation step, the entire inverting mutation is expected

to replicate 12 times.

Figure 12: Row Inverting Mutation

132

Figure 13: Column Inverting Mutation

After inverting mutation, the Child is generated and

transformed to be the Parent again for deleting mutation

as shown in (Figure 14). On completion of the previous

mutation, the process of deleting mutation is simplified

by just deleting the last two rows of the five

chromosomes in the Child.

Figure 14: Deleting Mutation

Replacement is the last step in the process of generating

fractal cell layout as shown in (Figure 15). In fact, each

fractal cell requires 10 machines where no duplicated

machines or missing machines are allowed. This is

because duplicated machines will increase the material

travelling distance. Minimum flow distance score is the

requirement for fractal cells.

As a result, machine3, machine8 and machine9 are

grouped as duplicated machines that required to be

replaced by missing machines. The MATLAB codes are

programmed to search the missing machines. The

missing machine in this scenario is machine6. Thus,

machine6 replaces one of the duplicated machines.

Figure 15: Replacement

The fractal cell layout that is generated after

Replacement can be represented as (10 1 5 9; 8 3 6 2;

NaN 7 4 NaN). From the Facility Layout Problem

(FLP) that was discussed in the previous section,

materials are moved into the cell through Pick-up Points

and moved out from the cell through Delivery Points as

shown in (Figure 16). The Pick-up Point is at (1, 1)

while the delivery Point is at (3, 4).

The fractal cells are capable of processing all 15 types

of product. Therefore, the materials to be produced need

to be processed in specified machine routing sequence.

For instance, materials that are used to produce

Product1 need to be processed by machine1, machine4,

machine7, machine3, machine10, and machine8 in

continuous sequence. Each location of machines is

represented on (x, y) coordinates. Before the materials

are processed in machine1, they have to be carried into

the fractal cell through the Pick-up Point. After

processing in all the machines within the fractal cells,

the final product1 gets delivered to the shipping

department through Delivery Point as shown in (Figure

16).

Figure 16: Material Routing sequence for Product1

Then the flow distance score is calculated based on the

mathematical solution in MATLAB which is

represented as:

Distance = abs (buffer1 (1)-buffer2 (1)) + abs (buffer1

(2)-buffer2 (2)) (1)

The abs is representation of absolute. The absolute

value allows the distance to the left (negative value) and

distance to the right (positive value) to be counted into

the total distance. Buffer1 and buffer2 is the matrices of

data that are being stored in temporary memory.

133

The shortest routing distance is always considered from

the various iterations that are being generated for each

of the fractal cell.

6. OUTPUT RESULTS AND DISCUSSIONS

The computational result of product travelling distances

within the fractal cells indicates the flow scores of

fractal layout. Flow score is computed and represented

as the product travelling distances.

The optimal fractal layout with the minimum flow

distance scores is selected by MATLAB and displayed.

These output data are used to draw the graphs of flow

scores with different generations and flow scores with

different product ranges. The GA search for an optimal

solution yielded results from 100 iterations and the

output is converted into the final fractal cell layout

representing the fractal manufacturing layout. The

material travelling distances for each of the three fractal

cells work out as follows in terms of flow distance

scores;

Flow distance score for Cell 1 = 205

Flow distance score for Cell 2 = 217

Flow distance score for Cell 3 = 197

Overall flow distance score for the final fractal

manufacturing layout through the proposed GA = 619

and this is shown on (Figure 17).

Figure 17: Final Fractal Manufacturing Layout A

Comparatively, the fractal layout according to

(Venkatadri et al.1997) has machine requirements

similar to our final layout requirements with the

following flow distances;

Flow distance score for Cell 1 = 251

Flow distance score for Cell 2 = 252

Flow distance score for Cell 3 = 257

Overall flow distance score for Final Fractal Layout

according to (Venkatadri et al.1997) is = 760 and that is

shown on (Figure 18).

This shows that the flow distance score obtained

from the proposed GA approach is lesser at 619 than

that of (Venkatadri et al.1997).

M5

M8

M5

M1

M2

M6

M1

M3

M9

M2

M7

M8

M10

M6 M7

M3

M5

M3

M9

M8M10

M4

M7

M4

M9

M7

M1

M6

M4

Cell 1

Cell 2 Cell 3

M7

M10

M2

M7

 Figure 18: Fractal cell layout according to (Venkatadri

et al.1997)

Ascertaining or working out the optimal number of

iterations in each cell for our proposed GA approach

aided in producing the right flow distances and involved

plotting flow distance score against iterations as shown

on figures (19), (20) and (21) for cells 1, 2 & 3. These

plots signify the optimal flow distances at 205, 217, and

197 for cells 1, 2, & 3 respectively.

Figure 19: Flow distance score for fractal cell 1

Figure 20: Flow distance score for fractal cell2

202
204
206
208
210
212
214
216

0 20 40 60

Fl
o

w
 D

is
ta

n
ce

 S
co

re

Iterations

Flow
Distance
Score

216

218

220

222

224

226

228

0 20 40 60

Fl
o

w
 D

is
ta

n
ce

 S
co

re

Iterations

Flow
Distance
Score

134

Figure 21: Flow distance score for fractal cell3

7. CONCLUSION

The GA approach has been applied in the design of the

fractal manufacturing shop floor layout. This algorithm

was used to search for the optimal fractal cell layout for

efficient and effective material/ product movements

within the shop floor. Fundamentally, the decision of

how to distribute/assign products to cells as evenly as

possible to aid responsiveness to uncertainties in

manufacturing and easy control of resources was seen to

be very important to the design, implementation and

final outcome of the experimentation. The model

implemented using MATLAB managed the scenario

quite well and handled the mathematical formulations,

swapping and deleting matrices etc. quite efficiently.

Overall, the computational results indicated that

unrestricted product flows offer the best flow scores in a

fractal layout.

REFERENCES

Al-Sultan, K, S., and Fedjki, C. A., 1997, A Genetic

Algorithm for the Part Family Formation Problem,

Production Planning & Control, Vol. 8, No.8, pp.

788-796.

Askin, R. G., Ciarallo, F. W. and Lundgren, N. H.,

1999, An empirical evaluation of holonic and

fractal layouts. International Journal of

Production Research, 37, 5, 961-978.

Askin, R. G., Lundgren, N. H. and Ciarallo, F., 1996, A

material flow based evaluation of layout

alternatives for agile manufacturing. In R. J.

Graves, L. F. McGinnis, D. J. Medeiros, R. E.

Ward and M. R. Wilhelm (eds.), Progress in

material handling research (Braun-Brumfield),

pp. 71-90.

Azadivar, F., and Wang, J., 2000, Facility Layout

Optimization using Simulation and Genetic

Algorithms, International Journal of Production

Research, Vol. 38, No. 17, pp. 4369-4383.

Balamurugan, K., Selladurai, V., and Ilamathi, B., 2006,

Design and Optimization of Manufacturing

Facilities Layouts, Institution of Mechanical

Engineers, Vol. 220, Part B, pp. 1249-1257.

Chase, R. B. and Aquilano, N. J., 1992, Production &

operations management - A life cycle

approach, 6th Ed. (Irwin: Boston, Massachusetts,

USA).

Co, H. C. and Araar, A., 1988, Configuring cellular

manufacturing systems. International

Journal of Production Research, 26, 9, 1511-1522.

Gau, K. Y. and Meller, R. D., 1999, An iterative facility

layout algorithm. International Journal of

Production Research, 37, 16, 3739-3758.

Hicks, C., 2006, A Genetic Algorithm Tool for

Optimization, Cellular or Functional Layouts in

the Capital Goods Industry, International Journal

of Production Economics, Vol. 104, pp. 598-614.

Holland, J. H., 1975, Adaptation in Natural and

Artificial Systems, University of Michigan Press,

Michigan.

Hu, G. H., Chen, Y. P., Zhou, Z. D., and Fang, H. C.,

2007, A Genetic Algorithm for the Inter-Cell

Layout and Material Handling System Design, The

International Journal of Advanced Manufacturing

Technology, Springer, Vol. 34, pp.1153-1163.

Kamrani, A. K., and Gonzalez, R., 2003, A Genetic

Algorithm-Based Solution Methodology for

Modular Design, Journal of Intelligent

Manufacturing, Vol. 14, pp. 599-616.
Kiusalaas, J., 2005, Numerical methods in Engineering

with Python, Cambridge University press.

Montreuil, B., Venkatadri, U. and Rardin, R. L., 1999,

Fractal layout organization for job

 shop environments. International Journal of

Production Research, 37, 3, 501- 521.

Parames Chutima, 2001, Genetic Algorithm for Facility

Layout Design with Unequal Departmental Areas

and Different Geometric Shape Constraints,

Thammasat International Journal Science and

Technology, Vol. 6, No. 2, pp. 33-43

Rajasekharan, M., Peters, B. A. and Yang, T., 1998, A

Genetic Algorithm for Facility Layout Design in

Flexible Manufacturing Systems, International

Journal of Production Research, Taylor & Francis

Ltd., Vol. 36, No. 1, pp. 95-110.
Saad, S. M. and Lassila, A.M., 2004, Layout design in

fractal organizations, International Journal of

Production Research, Vol. 42, Vol. 17, p. 3529-

3550.

Venkatadri, U., Rardin, R. L. and Montreuil, B., 1997,

A design methodology for fractal layout

organization. IIE Transactions, 29, 911-924.

Xiaodan W., Chao-Hsien C., Yunfeng W., and Weili

Y., 2007, A Genetic Algorithm for Cellular

Manufacturing Design and Layout, European

Journal of Operational Research., Vol. 181, No.

181, pp. 156-167.

Wild, R., 1993, Production and operations

management. 4th Ed. (Cassell: London)

195

200

205

210

215

220

0 20 40 60

Fl
o

w
 D

is
ta

n
ce

 S
co

re

Iterations

Flow
Distance
Score

135

http://www.springerlink.com/content/102823/?p=e1246757653f457d8673439eb1832078&pi=0
http://www.springerlink.com/content/102823/?p=e1246757653f457d8673439eb1832078&pi=0
http://www.springerlink.com/content/102823/?p=e1246757653f457d8673439eb1832078&pi=0

