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ABSTRACT 
This work presents the application of libAuToti, an 
open-source parallel library for implementing models 
based on the Cellular Automata approach, for the 
simulation of geological processes. In particular, we 
describe the implementation of two models for lava 
flows and debris flows, as defined by the SCIARA and 
SCIDDICA models, respectively. Cellular Automata are 
parallel computing models which are continuously 
gaining attention from the Scientific Community for 
their potentiality and efficiency. libAuToti permits a 
straightforward and simple implementation of 
Macroscopic Cellular Automata models, which are 
appropriate for the simulation of spatial extended 
dynamical systems. Experiments have demonstrated the 
elevated computational efficiency of the library, 
executed both on an HPC machine and a standard multi-
core PC, confirming the reliability of the library and 
goodness of simulation results.  

 
Keywords: natural phenomena simulation, cellular 
automata, lava flows, debris flows, parallel computing 

 
1. INTRODUCTION 
Cellular Automata (CA) are discrete dynamical 
systems, widely utilized for modelling and simulating 
complex systems, whose evolution can be described in 
terms of local interactions. Well known examples are 
Lattice Gas Automata and Lattice Boltzmann models 
(Succi 2004), which are particularly suitable for 
modelling fluid dynamics at a microscopic scale. 
However, many natural phenomena are difficult to be 
modelled at such scale, as they generally evolve on very 
large areas, thus needing a macroscopic level of 
description. Moreover, they may be also difficult to be 
modelled through standard approaches, such as 
differential equations (McBirney and Murase 1984), 
and Macroscopic Cellular Automata (MCA) (Di 
Gregorio and Serra 1999) can represent a valid 
alternative. 

Among the above mentioned phenomena, lava 
flows and debris flows may involve serious dangers for 
people security and property, and their forecasting could 
significantly decrease these hazards, for instance by 

simulating paths and evaluating the effects of control 
works (e.g. embankments or channels).  

As regards MCA, libAuToti (Spataro et al. 2008) 
has proven to be an efficient and flexible simulation 
parallel library. Written in C++, it allows for a simple 
and concise definition of both the transition function 
and the other characteristics of the MCA model 
definition. Moreover it was projected for both 
sequential and parallel execution, both on shared and 
distributed memory machines (thanks to the adoption of 
the Message Passing paradigm for the inter-processes 
communications), by completely hiding parallel 
implementation issues to the user. 

In the following, MCA are briefly presented and 
the main characteristics of the libAuToti library 
illustrated. Two examples of application are also shown, 
which regard the implementation of the MCA basic lava 
flow model SCIARA and the MCA landslide model 
SCIDDICA version “T”. A general discussion on the 
results and on the future perspective of the library 
concludes the paper. 
 
2. MACROSCOPIC CELLULAR AUTOMATA: 

THE SCIARA AND SCIDDICA MODELS 
As previously stated, CA are dynamical systems, 
discrete in space and time. They can be thought as a 
regular n-dimensional lattice of sites or, equivalently, as 
an n-dimensional space (called cellular space) 
partitioned in cells of uniform size (e.g. square or 
hexagonal for n=2), each one embedding an identical 
finite automaton. The cell state changes by means of the 
finite automaton transition function, which defines local 
rules of evolution for the system, and is applied to each 
cell of the CA space at discrete time steps. The states of 
neighbouring cells (which usually includes the central 
cell) constitute the cell input. The CA initial 
configuration is defined by the finite automata states at 
time t=0. The global behaviour of the system emerges, 
step by step, as a consequence of the simultaneous 
application of the transition function to each cell of the 
cellular space. 

When dealing with the modelling of spatial 
extended dynamical systems, MCA can represent a 
valid choice especially if their dynamics can be 
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described in terms of local interaction at macroscopic 
level. Well known examples of successful applications 
of MCA include the simulation of lava (Crisci et al. 
2004) and debris flows (Di Gregorio et al. 1999) forest 
fires (Trunfio 2004), agent based social processes (Di 
Gregorio et al. 2001) and highway traffic (Di Gregorio 
et al. 1996), besides many others. 

By extending the classic definition of 
Homogeneous CA, MCA facilitate the definition of 
several aspects considered relevant for the correct 
simulation of the complex systems to be modelled. In 
particular, MCA provide the possibility to “decompose” 
the CA cell state in “substates” and to allow the 
definition of “global parameters”. Moreover, the 
dynamics of MCA models (especially those developed 
for the simulation of complex macroscopic physical 
systems such as debris or lava flows) is often “guided” 
by the “Minimisation Algorithm of the Differences” (cf. 
Di Gregorio and Serra 1999), which translates in 
algorithmic terms the general principle for which 
natural systems leads towards a situation of equilibrium. 
Refer to Di Gregorio and Serra (1999), for a complete 
description of the algorithm, besides theorems and 
applications. 

 
2.1. The MCA lava flow model SCIARA 
SCIARA is a family of bi-dimensional MCA lava flow 
models, successfully applied to the simulation of many 
real cases, such as the 2001 Mt. Etna (Italy) Nicolosi 
lava flow (Crisci et al. 2004), the 1991 Valle del Bove 
(Italy) lava event (Barca et al. 1993) which occurred on 
the same volcano and employed for risk mitigation 
(D’Ambrosio et al. 2006). In this work, the basic 
version of SCIARA (Barca et al. 1993) was considered 
and its application to the 2001 Nicolosi (Sicily) event 
shown.  

SCIARA considers the surface over which the 
phenomenon evolves as subdivided in square cells of 
uniform size. Each cell changes its state by means of the 
transition function, which takes as input the state of the 
cells belonging to the von Neumann neighbourhood. It 
is formally defined as 
 

SCIARA = < R, X, Q , P, σ > 
where: 
 
• R is the set of points, with integer coordinates, 

which defines the 2-dimensional cellular space 
over which the phenomenon evolves. The generic 
cell in R is individuated by means of a couple of 
integer coordinates (i, j), where 0 ≤ i < imax and  
0 ≤ j < jmax. 

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the von 
Neumann neighbourhood relation, a geometrical 
pattern which identifies the cells influencing the 
state transition of the central cell. The 
neighbourhood of the generic cell of coordinate  
(i, j) is given by 
 

V(X, (i, j)) = 
= {(i, j)+(0,0), (i, j)+(0, -1), (i, j)+(1, 0),  

(i, j)+(-1, 0), (i, j)+(0, 1)} = 
= {(i, j), (i, j-1), (i+1, j), (i-1, j), (i, j+1)} (1) 

 
• Q is the set of cell states; it is subdivided in the 

following substates: 
 

− Qz is the set of values representing the 
topographic altitude (m); 

− Qh is the set of values representing the lava 
thickness (m); 

− QT is the set of values representing the lava 
temperature (K°); 

− Qo
5 are the sets of values representing the lava 

outflows from the central cell to the 
neighbouring ones (m). 

 
The Cartesian product of the substates defines the 
overall set of state Q: 

Q = Qz × Qh × QT ×Qo
5 

• P is set of global parameters ruling the CA 
dynamics: 
 
− PT={Tvent, Tsol, Tint}, the subset of parameters 

ruling lava viscosity, which specify the 
temperature of lava at the vents, at 
solidification and the “intermediate” 
temperature (needed for computing lava 
adherence), respectively; 

− Pa={avent, asol, aint}, the subset of parameters 
which specify the values of adherence of lava 
at the vents, at solidification and at the 
“intermediate” temperature, respectively; 

− pc, the cooling parameter, ruling the 
temperature drop due to irradiation; 

− pr, the relaxation rate parameter, which affects 
the size of outflows. 

 
• σ : Q5→ Q is the deterministic cell transition 

function. It is composed by four “elementary 
processes”, briefly described in the following: 
 
σ1. Outflows computation. It determines the 

outflows from the central cell to the 
neighbouring ones by applying the 
minimisation algorithm of the differences; note 
that the amount of lava which cannot leave the 
cell, due to the effect of viscosity, is previously 
computed in terms of adherence. Parameters 
involved in this elementary process are: PT and 
Pa. 

σ2. Lava thickness computation. It determines the 
value of lava thickness by considering the mass 
exchange among the cells. No parameters are 
involved in this elementary process. 

σ3. Temperature computation. It determines the 
lava temperature by considering the 

332



temperatures of incoming flows and the effect 
of thermal energy loss due to surface 
irradiation. The only parameter involved in this 
elementary process is pc. 

σ4. Solidification. It determines the lava 
solidification when temperature drops below a 
given threshold, defined by the parameter Tsol. 

 
2.2. The MCA debris flow model SCIDDICA 
SCIDDICA is a family of bi-dimensional MCA debris 
flow models, successfully applied to the simulation of 
many real cases, such as the 1988 Mt. Ontake (Japan) 
landslide (Di Gregorio et al. 1999), and the 1998 Sarno 
(Campania, Italy) disaster (D’Ambrosio et al. 2003). In 
this work, the basic version “T” of SCIDDICA (Avolio 
et al. 2000) was considered and its application to the 
1992 Tessina (Italy) landslide shown. For a more in-
depth knowledge of debris flow modelling using MCA 
approach, please refer to (D’Ambrosio et al. 2003) 
 SCIDDICA considers the surface over which the 
phenomenon evolves as subdivided in square cells of 
uniform size. Each cell changes its state by means of the 
transition function, which takes as input the state of the 
cells belonging to the von Neumann neighbourhood. It 
is formally defined as 
 

SCIDDICA = < R, X, Q , P, σ > 
 
where: 
 
• R is the set of points, with integer coordinates, 

which defines the 2-dimensional cellular space 
over which the phenomenon evolves. The generic 
cell in R is individuated by means of a couple of 
integer coordinates (i, j), where 0 ≤ i < imax and  
0 ≤ j < jmax. 

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the von 
Neumann neighbourhood relation, a geometrical 
pattern which identifies the cells influencing the 
state transition of the central cell. The 
neighbourhood of the generic cell of coordinate (i, 
j) is given by  
 

V(X, (i, j)) = 
= {(i, j)+(0,0), (i, j)+(0, -1), (i, j)+(1, 0),  

(i, j)+(-1, 0), (i, j)+(0, 1)} = 
= {(i, j), (i, j-1), (i+1, j), (i-1, j), (i, j+1)} (2) 
 

• Q is the set of cell states; it is subdivided in the 
following substates: 
- Qz is the set of values representing the 

topographic altitude (i.e. elevation); 
- Qh is the set of values representing the debris 

thickness; 
- Qo

5 are the sets of values representing the 
debris outflows from the central cell to the 
neighbouring ones (recall that the central cell is 
part of its neighbourhood). 

The Cartesian product of the substates defines the 
overall set of state Q:  

 
Q = Qz × Qh × Qo

5 

 
• P is set of global parameters ruling the CA 

dynamics: 
- pa is the parameter which specifies the 

thickness of the debris that cannot leave the 
cell due to the effect of adherence; 

- pz is the critical altitude, defining two regions 
of different rheological behaviours of the flow; 
it is related to parameters pf; 

- pf is the “friction angle” parameter, which 
empirically defines the minimum slope 
between two cells needed for debris motion - 
its value is related to that of the parameter pz; 

- pr is the relaxation rate parameter, which 
affects the size of outflows (cf. section above). 
 

• σ : Q5→ Q is the deterministic cell transition 
function. It is composed by two “elementary 
processes”: 
- σ1 : (Qz × Qh)5 × pa × pz × pf × pr → Qo

5 
determines the outflows from the central cell to 
the neighbouring ones by applying the 
minimisation algorithm of the differences. In 
brief, a preliminary control eliminates those 
cells for which the slope with respect the 
central cell is less than pf. Moreover, the 
amount of debris which cannot leave the cell, 
due to the effect of viscosity, is simply 
modelled by means of the parameter pa. Thus, 
by means of the minimization algorithm, 
outflows qo(0,i) (i=0,1,…,4) are evaluated and 
the substates Qo

5 accordingly updated. Note 
that qo(0, 0) represents the amount of debris 
that does not flow out of the central cell. 
Eventually, a relaxation rate factor, pr∈]0,1], 
can be considered in order to obtain the local 
equilibrium condition in more than one CA 
step. This can significantly improve the realism 
of model as, in general, more than one step 
may be needed to displace the proper amount 
of debris from a cell towards the adjacent ones. 
In this case, if f(0,i) (i=1, …, 4) represent the 
outgoing flows towards the 4 adjacent cells, the 
resulting outflows are given by qo(0,i)=f(0,i)⋅pr 
(i=1, …, 4), while the amount of debris 
remaining in the central cell is obtained as: 

 

∑
=

−==
4

1
00 ),0()0()0,0()0(

i
r iqhqh  (3) 

 
• σ2 : (Qo

5)5 → Qh determines the value of debris 
thickness inside a cell by considering mass 
exchange in the cell neighbourhood: h(0) = ∑i 
(qo(0,i) - qo(i,0)), where i = 0,1,…,4 and qo(i,0) 
represents the inflow from the ith adjacent cell. The 
substate Qh is accordingly updated. Note that no 

333



parameters are involved in this elementary 
process. 

 
3. THE LIBAUTOTI LIBRARY FOR 

MACROSCOPIC CELLULAR AUTOMATA 
The MCA approach permits to straightforwardly define 
a simulation model of a complex system, such as a lava 
flow. Moreover, the MCA models of complex systems 
often need to be the most efficient possible since, 
depending also on the size of input data, each 
simulation can last days or even weeks (cf. D’Ambrosio 
et al. 2006). As a consequence, the developer must 
implement proper optimization strategies (e.g. cf. 
Walter and Worsch 2004) and, when mandatory, 
parallelize the program (e.g. by means of MPI – 
Message Passing Interface). 

Unfortunately, the world of development tools for 
MCA suffers of a lack of open-source software and 
often the developer must pay attention to all the low 
levels details of the implementation, such as memory 
allocation/de-allocation, I/O management and so on. 

To overcome these difficulties, the developer of a 
MCA model could decide to uneffortlessly implement 
her/his own simulation model by scratch using a high 
level language (such as C++ or FORTRAN) or consider 
a valid (but not-free) software solution, namely the 
CAMELot CA simulation environment. Advantages of 
the last solution include the use of a proprietary 
language (i.e. the CARPET one, cf. Spezzano and Talia 
1998) for model definition, integrated 2D/3D viewer 
and the possibility to run the simulation in parallel by 
means of the Message Passing paradigm, in a 
completely transparent manner to the user (i.e. she/he 
does not need to care of parallel issues such as process 
allocation on nodes, data partitioning, global-reduction 
operations, etc). However, disadvantages include the 
not extensibility of the library, lack of adequate debug 
facilities and reduced 3D visualization capabilities. 

As consequence of all these last considerations, the 
libAuToti library can represent a valid solution. 
Differently to CAMELot, libAuToti is not an integrated 
simulation environment, but an ANSI C++ (thus 
portable) library, which intends to offer the main 
features of CAMELot, as the possibility to simply 
define the model by ignoring low level details, manage 
input and output data and execute the simulation both 
sequentially or in parallel by adopting the Message 
Passing paradigm.  

Differently to CAMELot, the developer produces a 
standard C++ program by including the libAuToti 
library header file, with all the advantages that this 
approach permits. Among these, the possibility to 
choose the preferred development environment with the 
related debug facilities (not very functional in 
CAMELot), and the possibility to easily introduce 
further features such as an optimization module or a 3D 
viewer. In the following examples, CA model 
development is illustrated by considering the libAuToti 
library on the SCIARA lava flows and SCIDDICA 
debris flows models. Furthermore, computational 

results of tests carried out on an Alpha Server SC45 
supercomputer and on an Intel dual-core PC are 
illustrated and commented. 

 
3.1. A libAuToti implementation of SCIARA 
As stated above, the library has been tested by 
considering the Macroscopic Cellular Automata model 
SCIARA for lava flow simulation. In the following, a 
seamless parallel implementation of SCIARA is 
presented. In particular, Figure 1 and 2 illustrate the CA 
definition and transition function, respectively. Besides 
common C++ libraries such as iostream, math or 
vector (here omitted for briefness), the program 
includes the libAuToti.h header that allows to 
employ the library. In particular, the object sciara is 
defined, representing a MCA with the possibility to 
perform a parallel simulation. As it can be easily seen, 
the user does not need to concentrate in parallel issues, 
such as the CA space decomposition or message 
passing of boundary “ghost” cells between nodes: all 
these operations are transparently carried out by the 
library. Moreover, once the program has been compiled, 
the user has to simply decide how many processing 
elements the CA has to run on (e.g. mpirun –np 4 
sciara for automatically executing sciara in parallel 
on 4 processing nodes). Note that, in order to perform a 
sequential simulation, it will be sufficient to define an 
object of type SeqSimulationCA_2D. 
 
// header files here... 
#include "libAuToti.h" 
 
int main(int argc, char** argv) 
{ 
 ParallelSimulationCA_2D sciara; 
 sciara.setDim(410,296); 
  
 //flow substates 
 sciara.addSubstate(SUBSTATE_FLOAT);// 0 
 sciara.addSubstate(SUBSTATE_FLOAT);// 1 
 sciara.addSubstate(SUBSTATE_FLOAT);// 2 
 sciara.addSubstate(SUBSTATE_FLOAT);// 3 
 //elevation substate 
 sciara.addSubstate(SUBSTATE_FLOAT );//4 
 //lava thickness substate 
 sciara.addSubstate(SUBSTATE_FLOAT); //5 
//lava temeperature substate 
 sciara.addSubstate(SUBSTATE_FLOAT); //6 
 
   
 sciara.setRadius( 1 ); 
  
 // von Neumann neighbourhood 
 sciara.addNeighboor( 0,-1 ); 
 sciara.addNeighboor( 1, 0 ); 
 sciara.addNeighboor( -1, 0 );  
 sciara.addNeighboor( 0, 1 ); 
  
 sciara.addParameter(1373); //vent temp. 
 sciara.addParameter(1153); //solidif. temp. 
 sciara.addParameter(1265); //interm. temp. 
 sciara.addParameter(0.7); //vent adherence 
 sciara.addParameter(7); //solidif. adher. 
 sciara.addParameter(1.5); //interm. adher. 
 sciara.addParameter(1.4e-14); //cool. par. 
 sciara.addParameter(0.6); //relaxation 
 
 sciara.initialize(argc, argv); 
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 sciara.readFromFile( "./nicolosi.txt", 4); 
 sciara.readFromFile( "./vent_pos.txt", 5); 
 
 sciara.setNumStep( 18000 );  
 
 sciara.run();  
 
 sciara.finalizeSimulation(); 
 return 0; 
} 
Figure 1: The SCIARA CA definition by using the 
libAuToti free MCA library. 
 

The member function setDim defines the cell 
space dimensions, while setRadius and 
addNeighboor the CA the neighbourhood radius and 
relation, respectively. 
 
Table 1: List of all allowed type for the substates 
definition together with their corresponding C++ types. 

libAuToti substate type Corresponding C++ type 
SUBSTATE_CHAR char 
SUBSTATE_SHORT short 
SUBSTATE_INT int 
SUBSTATE_LONG long 
SUBSTATE_FLOAT float 
SUBSTATE_DOUBLE double 

 
As required by SCIARA seven substates are 

defined thanks to the addSubstate member function. 
Table 1 lists all the allowed substates type and their 
identifiers. Once a substate is defined, a numerical 
handle is automatically defined in order to refer the 
substate in the program. However, to simply refer to a 
substate, the user can declare an enumerative type; for 
the case of SCIARA it could be the following: 
 
enum Subs{ 
 FLOW0 = 0,  //outflow Qo towards the N cell 
 FLOW1, //outflow Qo towards the E cell 
 FLOW2, //outflow Qo towards the W cell 
 FLOW3, //outflow Qo towards the S cell 
 ELEV, //cell elevation a.s.l Qz 
 TEMP, //cell temperature (K°) 
 THICK //lava thickness Qh inside cell 
}; 
 

In this way, it is possible to refer to a substate 
through a symbolic identifier, instead of a numerical 
one.  

As requested by the considered version of 
SCIARA, the von Neumann neighbourhood was 
defined, thanks to the addNeighboor member 
function. Note that, similarly for the case of substates, a 
numerical handle is implicitly assigned to each cell of 
the neighbourhood, except for the central cell that the 
library directly refers (cf. below). The library also 
permits the definition of more “sophisticated” 
neighbourhoods, as Moore’s one (both square or 
hexagonal) by the way required by the latest releases of 
SCIDDICA (D’Ambrosio et al. 2003, Iovine et al. 
2005). 

Parameters are defined by means of the 
addParameter member function. As before, a 

numerical handle is automatically defined by the 
library, and the user can define an enumerative type to 
better manage parameters setting and usage; it could be 
the following (note that the first 8 correspond to 
SCIARA parameters shown in Section 2.1): 
 
enum Params{ 
 TEMP_V = 0,   //temp. at vent 
 TEMP_S,       //temp. at solidification 
 TEMP_I,       //interm. temp 
 ADHERENCE_V,  //adherence at vent 
 ADHERENCE_S,  //adherence at solid. 
 ADHERENCE_I,  //interm. adherence 
 COOL,       //cooling parameter
 RELAXATION,    //relaxation 
 IS_VENT,       //cell is a crater? 
 VENT_THICK    //crater lava thickness 
}; 
 

Parameter setting and retrieval are managed by the 
two self-explanatory member functions 
setParameter and getParameter, respectively. 
Moreover, input data is automatically performed by the 
function readFromFile, which reads files in 
standard ASCII Grid format.  

Eventually, the simulation is performed (for 18000 
steps) by means of the function run(). 

Figure 2 shows the libAuToti implementation of the 
SCIARA transition function, defined as an inline 
member function. Recall that, by CA definition, this 
function is called at each step. Substates identifiers, 
together with the neighbours ones, are utilised as 
arguments of getSubstate*, which returns the value 
of a certain substate for the specified neighbouring cell. 
Here the symbol * can be one of the types listed in 
Table 1. 
 
inline void parallelSimulationAC2D :: 
transitionFunction() 
{ 
// set lava width for crater 
if(getSubstateFloat(ELEV)==getParameter(IS_CRATER)) 
   updateCellSubstate(THICK, 
    getParameter(vent_thick));  
 
switch (STEP%2){ 
 case 1:  calc_flows(this);  
      break; 
 case 0:  calc_thickness(this); 
      calc_temperature(this); 
      calc_quote(this); 
      break; 
 } 
} 

Figure 2: The SCIARA transition function definition by 
using the libAuToti free MCA library. 
 

For instance, the following portion of code verifies 
if the value of the substate ELEV of type float, is 
equal to the IS_CRATER parameter, meaning that the 
cell itself represents a crater: 
 
if(getSubstateFloat(ELEV)==getParameter(IS_CRAT
ER)) 
 

Analogously, if one wants to check the value of a 
neighbouring cell, she/he has to simply add the 
neighbour index as second argument to the 

335



getSubstateFloat function. The following 
example could test if the value of the substate THICK 
of the neighbour number 2 is equal to 0: 
 
if (getSubstateFloat( THICK, 2 ) == (float)0 ) 
 

Equivalently, the function 
updateCellSubstate updates the value of a given 
substate for the central cell. For example, the following 
portion of code sets the new value for the substate 
THICK for the central cell to the value of the 
vent_thick parameter (i.e. the amount of lava that is 
discharged by the crater at each CA step). 
 
updateCellSubstate(THICK,
 getParameter(vent_thick)); 
 

Besides the setting of the value of lava thickness 
for the crater, the transition function subsequently calls 
alternatingly the calc_flow function and the 
calc_thickness, calc_temperature and 
calc_quote functions (here all omitted for brevity), 
depending on the fact the CA step, whose value is given 
by the internal variable STEP, is odd or even. All four 
functions correspond to the elementary processes σ1, σ2, 
σ3 and σ4, respectively (cf. Section 2.1). In this way, a 
single SCIARA step corresponds to 2 executions of the 
libAuToti transition function (double-step transition 
function).  
 

Figure 3: The SCIARA MCA application to the 
simulation of the 2001 Mt Etna event at Nicolosi. The 
figure, shows a snapshot of the CA configuration of the 
system after 18000 steps with the lava path in red, 
utilizing the libAuToti OpenScenegraph 3D viewer. 

 
As stated above, though an integrated environment 

surely ensures many advantages, a benefit of using a 
separate library is the more flexibility which, for 
instance, allows the developer to easily extend the 
software features with the aid of further libraries. This is 
the case of the SCIARA and SCIDDICA 
implementations, where the computational model was 
written by utilizing the libAuToti library and two 3D 
visualization modules developed with OpenGL and 
with the OpenScenegraph visual toolkit. Figure 3 shows 
a snapshot of the SCIARA model simulation on the 

Nicolosi 2001 lava event at the end of the simulation 
with the latter viewer. 

At the same way, it would be possible add a further 
module, e.g. for model optimization purposes, by using 
the PGAPack (PGApack web reference 1998) free 
library for Parallel Genetic Algorithms (PGAs) (cf. also 
Iovine et al. 2005 for an application of PGAs for 
optimizing parameters of a MCA model). 

 
3.2. A libAuToti implementation of SCIDDICA 
In this paragraph, a seamless parallel implementation of 
SCIDDICA is presented. In particular, Figure 4 and 5 
illustrate the CA definition and transition function, 
respectively. As in the SCIARA libAuToti 
implementation, the program includes the 
libautoti.h header that allows to employ the 
library. In particular, the object sciddica of type 
ParallelSimulationCA_2D  is defined, 
representing a MCA with the possibility to perform a 
parallel simulation.  

 

Figure 4: The SCIDDICA CA definition by using the 
libAuToti free MCA library. 
 The member function setDim defines the cell 
space dimensions, while setRadius and 
addNeighboor the CA the neighbourhood radius and 
relation, respectively. Moreover, as required by 
SCIDDICA, six substates are defined thanks to the 
addSubstate member function.  
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 As requested by the considered version of 
SCIDDICA, the von Neumann neighborhood was 
defined, thanks to the addNeighboor member 
function. 
 As in the SCIARA libAuToti implementation, 
parameters are defined by means of the 
addParameter member function. 
 Moreover, input data is automatically performed by 
the function readFromFile, which reads files in 
standard ASCII Grid format. Eventually, the simulation 
is performed (for 10000 steps) and results saved (even 
in ASCII Grid format) by means of the function 
run(). 
 Figure 5 shows the libAuToti implementation of 
the SCIDDICA transition function, defined as an inline 
member function. Substates identifiers, together with 
the neighbours ones, are utilised as arguments of 
getSubstate*, which returns the value of a certain 
substate for the specified neighbouring cell. Here the 
symbol * can be one of the types listed in Table 1. 
 

 
Figure 5: The SCIDDICA transition function definition 
by using the libAuToti free MCA library. 
 
 For instance, the following portion of code verifies 
if the value of the substate WIDTH of type float, is 
greater than 0 for the central cell: 
 
if ( getSubstateFloat( WIDTH ) > (float)0 ) 

 
 Analogously, if one wants to check the value of a 
neighbouring cell, she/he has to simply add the 
neighbour index as second argument to the 
getSubstateFloat function. The following 
example tests if the value of the substate WIDTH of the 
neighbour number 2 is equal to 0: 
 
if (getSubstateFloat( WIDTH, 2 ) == (float)0 ) 
 
 Equivalently, the function 
updateCellSubstate updates the value of a given 
substate for the central cell. For example, the following 
portion of code sets the new value for the substate 
WIDTH for the central cell to the value new_width. 
 

updateCellSubstate(WIDTH, new_width ); 
 
 Besides the setting of the pf parameter (cf. 
FRICTION in Figure 5), the transition function 
performs a preliminary elaboration at step 0 in order to 
properly handle input data. Subsequently, it calls one of 
the two functions calc_flow or calc_width (here 
omitted for brevity), depending on the fact the CA step, 
whose value is given by the internal variable STEP, is 
odd or even. They correspond to the elementary 
processes σ1 and σ2, respectively (cf. Section 2.2). In 
this way, a single SCIDDICA step corresponds to 2 
execution of the libAuToti transition function (double-
step transition function). Accordingly, the SCIDDICA 
simulation steps were indeed exactly 5000. 
 

 
Figure 6: The SCIDDICA MCA application to the 
simulation of the Tessina Landslide. The figure shows a 
snapshot of the CA configuration of the system after 
5000 steps utilizing the libAuToti OpenGL 3D viewer 

 
3.3. Computational results 
As concerns computational results, the SCIARA and 
SCIDDICA models – as implemented by adopting the 
libAuToti library – were tested on two parallel 
computers: a 24 processor HP Alpha Server SC45 and 
an Intel T2500 2Ghz dual-core PC. 

 

 
Figure 7: Speed-up of libAuToti for the model SCIARA 
carried out on a 24 processor Alpha Server SC45. 
Superlinear speedup is evident up to 24 processors. 
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Figure 8: Speed-up of libAuToti for the MCA model 
SCIDDICA. Results refer to experiments carried out on 
16 processors of the Alpha Server SC45. Superlinear 
speedup is evident up to 8 processors. 

 
In particular, the high performing computer is 

composed of 6 SMP nodes, each with 4 Alpha 64-bit 
1250 Mhz EV68 processors and 16 MB cache. Figure 7 
shows the speed-up diagram for experiments carried out 
on the high performing machine, referred to the 
SCIARA model. In this case, super-linear speed-up was 
achieved up to 24 processors, probably due to the 
limited dimensions of the CA space and cache memory 
effects. Figure 8 depicts the speed-up diagram, referred 
to the SCIDDICA model experiments performed 
adopting 16 processors. Even in this case results, 
though slightly worse than the previous experiments, 
show the good scalability of the parallel system, 
together with super-linear effects up to 8 processors. 
Eventually, experiments carried out on the low cost 
machine – the Intel T2500 2Ghz dual-core PC, here 
omitted for briefness – have been positive. In particular, 
with respect with the first case, results have shown an 
even better super-linear effect when executed on both 
cores. Still, this is probably due both to the limited 
dimensions of the CA space and for the greater cache-
effect (i.e. cache is physically closer to the CPU in 
multi-core machines) of the dual core architecture with 
respect to the supercomputer.  

However, in all cases, computational results 
evidenced the goodness of the library in exploiting the 
considered parallel systems, confirming that even low-
cost off-the-shelf machines can be fruitfully employed. 
 
4. CONCLUSIONS 
We have presented examples of implementation of the 
libAuToti C++ parallel library for Scientific Computing 
of two models based on the Macroscopic Cellular 
Automata (MCA) approach. In particular, the two 
considered models regard SCIARA, for lava flow 
simulation, and SCIDDICA, for debris flow modeling. 
The library, particularly suitable for MCA modeling, is 
easily extensible and easily combinable with different 
libraries, such as optimization or visualization modules. 

Moreover, computational performances, achieved 
on a 24 processor Alpha Server SC45 supercomputer 
and on an Intel dual-core processor based machine have 
demonstrated the goodness of the library. Future 
developments of the library will regard the 

implementation of a load balance strategy (e.g. based on 
the scattered decomposition of the computational 
domain), further library core optimization and the 
integration of an interactive console (e.g. similar to that 
of GNUPlot or Octave) to better control the phases of 
the simulation. Eventually, a full integration with 
interactive OpenGL or OpenScenegraph scientific 3D 
viewers will be tackled in the future. The library is 
freely downloadable from its official website, at the 
URL http://autoti.mat.unical.it. The library’s name, 
libAuToti, is gaily taken from Prof. Salvatore “Toti” Di 
Gregorio, inventor of the MCA approach. 
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