
SIMULATION OF NATURAL PHENOMENA BY CELLULAR AUTOMATA WITH THE
LIBAUTOTI LIBRARY: AN APPLICATION TO GEOLOGICAL MODELLING

William Spataro(a), Giuseppe Spingola(b), Giuseppe Zito(c), Donato D’Ambrosio(d),

Rocco Rongo(e), Maria Vittoria Avolio(f) , Salvatore Di Gregorio(g)

(a) (b) (c) (d) (f) (g)Department of Mathematics and HPCC, University of Calabria, Italy
(e) Department of Earth Sciences and HPCC, University of Calabria, Italy

(a)spataro@unical.it, (b)g.spingola@gmail.com, (c)giuseppe.zito@gmail.com, (d)d.dambrosio@unical.it, (e)rongo@unical.it,

(f)avoliomv@unical.it, (g)dig@unical.it,

ABSTRACT
This work presents the application of libAuToti, an
open-source parallel library for implementing models
based on the Cellular Automata approach, for the
simulation of geological processes. In particular, we
describe the implementation of two models for lava
flows and debris flows, as defined by the SCIARA and
SCIDDICA models, respectively. Cellular Automata are
parallel computing models which are continuously
gaining attention from the Scientific Community for
their potentiality and efficiency. libAuToti permits a
straightforward and simple implementation of
Macroscopic Cellular Automata models, which are
appropriate for the simulation of spatial extended
dynamical systems. Experiments have demonstrated the
elevated computational efficiency of the library,
executed both on an HPC machine and a standard multi-
core PC, confirming the reliability of the library and
goodness of simulation results.

Keywords: natural phenomena simulation, cellular
automata, lava flows, debris flows, parallel computing

1. INTRODUCTION
Cellular Automata (CA) are discrete dynamical
systems, widely utilized for modelling and simulating
complex systems, whose evolution can be described in
terms of local interactions. Well known examples are
Lattice Gas Automata and Lattice Boltzmann models
(Succi 2004), which are particularly suitable for
modelling fluid dynamics at a microscopic scale.
However, many natural phenomena are difficult to be
modelled at such scale, as they generally evolve on very
large areas, thus needing a macroscopic level of
description. Moreover, they may be also difficult to be
modelled through standard approaches, such as
differential equations (McBirney and Murase 1984),
and Macroscopic Cellular Automata (MCA) (Di
Gregorio and Serra 1999) can represent a valid
alternative.

Among the above mentioned phenomena, lava
flows and debris flows may involve serious dangers for
people security and property, and their forecasting could
significantly decrease these hazards, for instance by

simulating paths and evaluating the effects of control
works (e.g. embankments or channels).

As regards MCA, libAuToti (Spataro et al. 2008)
has proven to be an efficient and flexible simulation
parallel library. Written in C++, it allows for a simple
and concise definition of both the transition function
and the other characteristics of the MCA model
definition. Moreover it was projected for both
sequential and parallel execution, both on shared and
distributed memory machines (thanks to the adoption of
the Message Passing paradigm for the inter-processes
communications), by completely hiding parallel
implementation issues to the user.

In the following, MCA are briefly presented and
the main characteristics of the libAuToti library
illustrated. Two examples of application are also shown,
which regard the implementation of the MCA basic lava
flow model SCIARA and the MCA landslide model
SCIDDICA version “T”. A general discussion on the
results and on the future perspective of the library
concludes the paper.

2. MACROSCOPIC CELLULAR AUTOMATA:

THE SCIARA AND SCIDDICA MODELS
As previously stated, CA are dynamical systems,
discrete in space and time. They can be thought as a
regular n-dimensional lattice of sites or, equivalently, as
an n-dimensional space (called cellular space)
partitioned in cells of uniform size (e.g. square or
hexagonal for n=2), each one embedding an identical
finite automaton. The cell state changes by means of the
finite automaton transition function, which defines local
rules of evolution for the system, and is applied to each
cell of the CA space at discrete time steps. The states of
neighbouring cells (which usually includes the central
cell) constitute the cell input. The CA initial
configuration is defined by the finite automata states at
time t=0. The global behaviour of the system emerges,
step by step, as a consequence of the simultaneous
application of the transition function to each cell of the
cellular space.

When dealing with the modelling of spatial
extended dynamical systems, MCA can represent a
valid choice especially if their dynamics can be

331

described in terms of local interaction at macroscopic
level. Well known examples of successful applications
of MCA include the simulation of lava (Crisci et al.
2004) and debris flows (Di Gregorio et al. 1999) forest
fires (Trunfio 2004), agent based social processes (Di
Gregorio et al. 2001) and highway traffic (Di Gregorio
et al. 1996), besides many others.

By extending the classic definition of
Homogeneous CA, MCA facilitate the definition of
several aspects considered relevant for the correct
simulation of the complex systems to be modelled. In
particular, MCA provide the possibility to “decompose”
the CA cell state in “substates” and to allow the
definition of “global parameters”. Moreover, the
dynamics of MCA models (especially those developed
for the simulation of complex macroscopic physical
systems such as debris or lava flows) is often “guided”
by the “Minimisation Algorithm of the Differences” (cf.
Di Gregorio and Serra 1999), which translates in
algorithmic terms the general principle for which
natural systems leads towards a situation of equilibrium.
Refer to Di Gregorio and Serra (1999), for a complete
description of the algorithm, besides theorems and
applications.

2.1. The MCA lava flow model SCIARA
SCIARA is a family of bi-dimensional MCA lava flow
models, successfully applied to the simulation of many
real cases, such as the 2001 Mt. Etna (Italy) Nicolosi
lava flow (Crisci et al. 2004), the 1991 Valle del Bove
(Italy) lava event (Barca et al. 1993) which occurred on
the same volcano and employed for risk mitigation
(D’Ambrosio et al. 2006). In this work, the basic
version of SCIARA (Barca et al. 1993) was considered
and its application to the 2001 Nicolosi (Sicily) event
shown.

SCIARA considers the surface over which the
phenomenon evolves as subdivided in square cells of
uniform size. Each cell changes its state by means of the
transition function, which takes as input the state of the
cells belonging to the von Neumann neighbourhood. It
is formally defined as

SCIARA = < R, X, Q , P, σ >
where:

• R is the set of points, with integer coordinates,

which defines the 2-dimensional cellular space
over which the phenomenon evolves. The generic
cell in R is individuated by means of a couple of
integer coordinates (i, j), where 0 ≤ i < imax and
0 ≤ j < jmax.

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the von
Neumann neighbourhood relation, a geometrical
pattern which identifies the cells influencing the
state transition of the central cell. The
neighbourhood of the generic cell of coordinate
(i, j) is given by

V(X, (i, j)) =
= {(i, j)+(0,0), (i, j)+(0, -1), (i, j)+(1, 0),

(i, j)+(-1, 0), (i, j)+(0, 1)} =
= {(i, j), (i, j-1), (i+1, j), (i-1, j), (i, j+1)} (1)

• Q is the set of cell states; it is subdivided in the

following substates:

− Qz is the set of values representing the
topographic altitude (m);

− Qh is the set of values representing the lava
thickness (m);

− QT is the set of values representing the lava
temperature (K°);

− Qo
5 are the sets of values representing the lava

outflows from the central cell to the
neighbouring ones (m).

The Cartesian product of the substates defines the
overall set of state Q:

Q = Qz × Qh × QT ×Qo
5

• P is set of global parameters ruling the CA
dynamics:

− PT={Tvent, Tsol, Tint}, the subset of parameters

ruling lava viscosity, which specify the
temperature of lava at the vents, at
solidification and the “intermediate”
temperature (needed for computing lava
adherence), respectively;

− Pa={avent, asol, aint}, the subset of parameters
which specify the values of adherence of lava
at the vents, at solidification and at the
“intermediate” temperature, respectively;

− pc, the cooling parameter, ruling the
temperature drop due to irradiation;

− pr, the relaxation rate parameter, which affects
the size of outflows.

• σ : Q5→ Q is the deterministic cell transition

function. It is composed by four “elementary
processes”, briefly described in the following:

σ1. Outflows computation. It determines the

outflows from the central cell to the
neighbouring ones by applying the
minimisation algorithm of the differences; note
that the amount of lava which cannot leave the
cell, due to the effect of viscosity, is previously
computed in terms of adherence. Parameters
involved in this elementary process are: PT and
Pa.

σ2. Lava thickness computation. It determines the
value of lava thickness by considering the mass
exchange among the cells. No parameters are
involved in this elementary process.

σ3. Temperature computation. It determines the
lava temperature by considering the

332

temperatures of incoming flows and the effect
of thermal energy loss due to surface
irradiation. The only parameter involved in this
elementary process is pc.

σ4. Solidification. It determines the lava
solidification when temperature drops below a
given threshold, defined by the parameter Tsol.

2.2. The MCA debris flow model SCIDDICA
SCIDDICA is a family of bi-dimensional MCA debris
flow models, successfully applied to the simulation of
many real cases, such as the 1988 Mt. Ontake (Japan)
landslide (Di Gregorio et al. 1999), and the 1998 Sarno
(Campania, Italy) disaster (D’Ambrosio et al. 2003). In
this work, the basic version “T” of SCIDDICA (Avolio
et al. 2000) was considered and its application to the
1992 Tessina (Italy) landslide shown. For a more in-
depth knowledge of debris flow modelling using MCA
approach, please refer to (D’Ambrosio et al. 2003)
 SCIDDICA considers the surface over which the
phenomenon evolves as subdivided in square cells of
uniform size. Each cell changes its state by means of the
transition function, which takes as input the state of the
cells belonging to the von Neumann neighbourhood. It
is formally defined as

SCIDDICA = < R, X, Q , P, σ >

where:

• R is the set of points, with integer coordinates,

which defines the 2-dimensional cellular space
over which the phenomenon evolves. The generic
cell in R is individuated by means of a couple of
integer coordinates (i, j), where 0 ≤ i < imax and
0 ≤ j < jmax.

• X = {(0,0), (0, -1), (1, 0), (-1, 0), (0, 1)} is the von
Neumann neighbourhood relation, a geometrical
pattern which identifies the cells influencing the
state transition of the central cell. The
neighbourhood of the generic cell of coordinate (i,
j) is given by

V(X, (i, j)) =
= {(i, j)+(0,0), (i, j)+(0, -1), (i, j)+(1, 0),

(i, j)+(-1, 0), (i, j)+(0, 1)} =
= {(i, j), (i, j-1), (i+1, j), (i-1, j), (i, j+1)} (2)

• Q is the set of cell states; it is subdivided in the
following substates:
- Qz is the set of values representing the

topographic altitude (i.e. elevation);
- Qh is the set of values representing the debris

thickness;
- Qo

5 are the sets of values representing the
debris outflows from the central cell to the
neighbouring ones (recall that the central cell is
part of its neighbourhood).

The Cartesian product of the substates defines the
overall set of state Q:

Q = Qz × Qh × Qo

5

• P is set of global parameters ruling the CA

dynamics:
- pa is the parameter which specifies the

thickness of the debris that cannot leave the
cell due to the effect of adherence;

- pz is the critical altitude, defining two regions
of different rheological behaviours of the flow;
it is related to parameters pf;

- pf is the “friction angle” parameter, which
empirically defines the minimum slope
between two cells needed for debris motion -
its value is related to that of the parameter pz;

- pr is the relaxation rate parameter, which
affects the size of outflows (cf. section above).

• σ : Q5→ Q is the deterministic cell transition
function. It is composed by two “elementary
processes”:
- σ1 : (Qz × Qh)5 × pa × pz × pf × pr → Qo

5
determines the outflows from the central cell to
the neighbouring ones by applying the
minimisation algorithm of the differences. In
brief, a preliminary control eliminates those
cells for which the slope with respect the
central cell is less than pf. Moreover, the
amount of debris which cannot leave the cell,
due to the effect of viscosity, is simply
modelled by means of the parameter pa. Thus,
by means of the minimization algorithm,
outflows qo(0,i) (i=0,1,…,4) are evaluated and
the substates Qo

5 accordingly updated. Note
that qo(0, 0) represents the amount of debris
that does not flow out of the central cell.
Eventually, a relaxation rate factor, pr∈]0,1],
can be considered in order to obtain the local
equilibrium condition in more than one CA
step. This can significantly improve the realism
of model as, in general, more than one step
may be needed to displace the proper amount
of debris from a cell towards the adjacent ones.
In this case, if f(0,i) (i=1, …, 4) represent the
outgoing flows towards the 4 adjacent cells, the
resulting outflows are given by qo(0,i)=f(0,i)⋅pr
(i=1, …, 4), while the amount of debris
remaining in the central cell is obtained as:

∑
=

−==
4

1
00),0()0()0,0()0(

i
r iqhqh (3)

• σ2 : (Qo

5)5 → Qh determines the value of debris
thickness inside a cell by considering mass
exchange in the cell neighbourhood: h(0) = ∑i
(qo(0,i) - qo(i,0)), where i = 0,1,…,4 and qo(i,0)
represents the inflow from the ith adjacent cell. The
substate Qh is accordingly updated. Note that no

333

parameters are involved in this elementary
process.

3. THE LIBAUTOTI LIBRARY FOR

MACROSCOPIC CELLULAR AUTOMATA
The MCA approach permits to straightforwardly define
a simulation model of a complex system, such as a lava
flow. Moreover, the MCA models of complex systems
often need to be the most efficient possible since,
depending also on the size of input data, each
simulation can last days or even weeks (cf. D’Ambrosio
et al. 2006). As a consequence, the developer must
implement proper optimization strategies (e.g. cf.
Walter and Worsch 2004) and, when mandatory,
parallelize the program (e.g. by means of MPI –
Message Passing Interface).

Unfortunately, the world of development tools for
MCA suffers of a lack of open-source software and
often the developer must pay attention to all the low
levels details of the implementation, such as memory
allocation/de-allocation, I/O management and so on.

To overcome these difficulties, the developer of a
MCA model could decide to uneffortlessly implement
her/his own simulation model by scratch using a high
level language (such as C++ or FORTRAN) or consider
a valid (but not-free) software solution, namely the
CAMELot CA simulation environment. Advantages of
the last solution include the use of a proprietary
language (i.e. the CARPET one, cf. Spezzano and Talia
1998) for model definition, integrated 2D/3D viewer
and the possibility to run the simulation in parallel by
means of the Message Passing paradigm, in a
completely transparent manner to the user (i.e. she/he
does not need to care of parallel issues such as process
allocation on nodes, data partitioning, global-reduction
operations, etc). However, disadvantages include the
not extensibility of the library, lack of adequate debug
facilities and reduced 3D visualization capabilities.

As consequence of all these last considerations, the
libAuToti library can represent a valid solution.
Differently to CAMELot, libAuToti is not an integrated
simulation environment, but an ANSI C++ (thus
portable) library, which intends to offer the main
features of CAMELot, as the possibility to simply
define the model by ignoring low level details, manage
input and output data and execute the simulation both
sequentially or in parallel by adopting the Message
Passing paradigm.

Differently to CAMELot, the developer produces a
standard C++ program by including the libAuToti
library header file, with all the advantages that this
approach permits. Among these, the possibility to
choose the preferred development environment with the
related debug facilities (not very functional in
CAMELot), and the possibility to easily introduce
further features such as an optimization module or a 3D
viewer. In the following examples, CA model
development is illustrated by considering the libAuToti
library on the SCIARA lava flows and SCIDDICA
debris flows models. Furthermore, computational

results of tests carried out on an Alpha Server SC45
supercomputer and on an Intel dual-core PC are
illustrated and commented.

3.1. A libAuToti implementation of SCIARA
As stated above, the library has been tested by
considering the Macroscopic Cellular Automata model
SCIARA for lava flow simulation. In the following, a
seamless parallel implementation of SCIARA is
presented. In particular, Figure 1 and 2 illustrate the CA
definition and transition function, respectively. Besides
common C++ libraries such as iostream, math or
vector (here omitted for briefness), the program
includes the libAuToti.h header that allows to
employ the library. In particular, the object sciara is
defined, representing a MCA with the possibility to
perform a parallel simulation. As it can be easily seen,
the user does not need to concentrate in parallel issues,
such as the CA space decomposition or message
passing of boundary “ghost” cells between nodes: all
these operations are transparently carried out by the
library. Moreover, once the program has been compiled,
the user has to simply decide how many processing
elements the CA has to run on (e.g. mpirun –np 4
sciara for automatically executing sciara in parallel
on 4 processing nodes). Note that, in order to perform a
sequential simulation, it will be sufficient to define an
object of type SeqSimulationCA_2D.

// header files here...
#include "libAuToti.h"

int main(int argc, char** argv)
{
 ParallelSimulationCA_2D sciara;
 sciara.setDim(410,296);

 //flow substates
 sciara.addSubstate(SUBSTATE_FLOAT);// 0
 sciara.addSubstate(SUBSTATE_FLOAT);// 1
 sciara.addSubstate(SUBSTATE_FLOAT);// 2
 sciara.addSubstate(SUBSTATE_FLOAT);// 3
 //elevation substate
 sciara.addSubstate(SUBSTATE_FLOAT);//4
 //lava thickness substate
 sciara.addSubstate(SUBSTATE_FLOAT); //5
//lava temeperature substate
 sciara.addSubstate(SUBSTATE_FLOAT); //6

 sciara.setRadius(1);

 // von Neumann neighbourhood
 sciara.addNeighboor(0,-1);
 sciara.addNeighboor(1, 0);
 sciara.addNeighboor(-1, 0);
 sciara.addNeighboor(0, 1);

 sciara.addParameter(1373); //vent temp.
 sciara.addParameter(1153); //solidif. temp.
 sciara.addParameter(1265); //interm. temp.
 sciara.addParameter(0.7); //vent adherence
 sciara.addParameter(7); //solidif. adher.
 sciara.addParameter(1.5); //interm. adher.
 sciara.addParameter(1.4e-14); //cool. par.
 sciara.addParameter(0.6); //relaxation

 sciara.initialize(argc, argv);

334

 sciara.readFromFile("./nicolosi.txt", 4);
 sciara.readFromFile("./vent_pos.txt", 5);

 sciara.setNumStep(18000);

 sciara.run();

 sciara.finalizeSimulation();
 return 0;
}
Figure 1: The SCIARA CA definition by using the
libAuToti free MCA library.

The member function setDim defines the cell
space dimensions, while setRadius and
addNeighboor the CA the neighbourhood radius and
relation, respectively.

Table 1: List of all allowed type for the substates
definition together with their corresponding C++ types.

libAuToti substate type Corresponding C++ type
SUBSTATE_CHAR char
SUBSTATE_SHORT short
SUBSTATE_INT int
SUBSTATE_LONG long
SUBSTATE_FLOAT float
SUBSTATE_DOUBLE double

As required by SCIARA seven substates are

defined thanks to the addSubstate member function.
Table 1 lists all the allowed substates type and their
identifiers. Once a substate is defined, a numerical
handle is automatically defined in order to refer the
substate in the program. However, to simply refer to a
substate, the user can declare an enumerative type; for
the case of SCIARA it could be the following:

enum Subs{
 FLOW0 = 0, //outflow Qo towards the N cell
 FLOW1, //outflow Qo towards the E cell
 FLOW2, //outflow Qo towards the W cell
 FLOW3, //outflow Qo towards the S cell
 ELEV, //cell elevation a.s.l Qz
 TEMP, //cell temperature (K°)
 THICK //lava thickness Qh inside cell
};

In this way, it is possible to refer to a substate
through a symbolic identifier, instead of a numerical
one.

As requested by the considered version of
SCIARA, the von Neumann neighbourhood was
defined, thanks to the addNeighboor member
function. Note that, similarly for the case of substates, a
numerical handle is implicitly assigned to each cell of
the neighbourhood, except for the central cell that the
library directly refers (cf. below). The library also
permits the definition of more “sophisticated”
neighbourhoods, as Moore’s one (both square or
hexagonal) by the way required by the latest releases of
SCIDDICA (D’Ambrosio et al. 2003, Iovine et al.
2005).

Parameters are defined by means of the
addParameter member function. As before, a

numerical handle is automatically defined by the
library, and the user can define an enumerative type to
better manage parameters setting and usage; it could be
the following (note that the first 8 correspond to
SCIARA parameters shown in Section 2.1):

enum Params{
 TEMP_V = 0, //temp. at vent
 TEMP_S, //temp. at solidification
 TEMP_I, //interm. temp
 ADHERENCE_V, //adherence at vent
 ADHERENCE_S, //adherence at solid.
 ADHERENCE_I, //interm. adherence
 COOL, //cooling parameter
 RELAXATION, //relaxation
 IS_VENT, //cell is a crater?
 VENT_THICK //crater lava thickness
};

Parameter setting and retrieval are managed by the
two self-explanatory member functions
setParameter and getParameter, respectively.
Moreover, input data is automatically performed by the
function readFromFile, which reads files in
standard ASCII Grid format.

Eventually, the simulation is performed (for 18000
steps) by means of the function run().

Figure 2 shows the libAuToti implementation of the
SCIARA transition function, defined as an inline
member function. Recall that, by CA definition, this
function is called at each step. Substates identifiers,
together with the neighbours ones, are utilised as
arguments of getSubstate*, which returns the value
of a certain substate for the specified neighbouring cell.
Here the symbol * can be one of the types listed in
Table 1.

inline void parallelSimulationAC2D ::
transitionFunction()
{
// set lava width for crater
if(getSubstateFloat(ELEV)==getParameter(IS_CRATER))
 updateCellSubstate(THICK,
 getParameter(vent_thick));

switch (STEP%2){
 case 1: calc_flows(this);
 break;
 case 0: calc_thickness(this);
 calc_temperature(this);
 calc_quote(this);
 break;
 }
}

Figure 2: The SCIARA transition function definition by
using the libAuToti free MCA library.

For instance, the following portion of code verifies
if the value of the substate ELEV of type float, is
equal to the IS_CRATER parameter, meaning that the
cell itself represents a crater:

if(getSubstateFloat(ELEV)==getParameter(IS_CRAT
ER))

Analogously, if one wants to check the value of a
neighbouring cell, she/he has to simply add the
neighbour index as second argument to the

335

getSubstateFloat function. The following
example could test if the value of the substate THICK
of the neighbour number 2 is equal to 0:

if (getSubstateFloat(THICK, 2) == (float)0)

Equivalently, the function
updateCellSubstate updates the value of a given
substate for the central cell. For example, the following
portion of code sets the new value for the substate
THICK for the central cell to the value of the
vent_thick parameter (i.e. the amount of lava that is
discharged by the crater at each CA step).

updateCellSubstate(THICK,
 getParameter(vent_thick));

Besides the setting of the value of lava thickness
for the crater, the transition function subsequently calls
alternatingly the calc_flow function and the
calc_thickness, calc_temperature and
calc_quote functions (here all omitted for brevity),
depending on the fact the CA step, whose value is given
by the internal variable STEP, is odd or even. All four
functions correspond to the elementary processes σ1, σ2,
σ3 and σ4, respectively (cf. Section 2.1). In this way, a
single SCIARA step corresponds to 2 executions of the
libAuToti transition function (double-step transition
function).

Figure 3: The SCIARA MCA application to the
simulation of the 2001 Mt Etna event at Nicolosi. The
figure, shows a snapshot of the CA configuration of the
system after 18000 steps with the lava path in red,
utilizing the libAuToti OpenScenegraph 3D viewer.

As stated above, though an integrated environment

surely ensures many advantages, a benefit of using a
separate library is the more flexibility which, for
instance, allows the developer to easily extend the
software features with the aid of further libraries. This is
the case of the SCIARA and SCIDDICA
implementations, where the computational model was
written by utilizing the libAuToti library and two 3D
visualization modules developed with OpenGL and
with the OpenScenegraph visual toolkit. Figure 3 shows
a snapshot of the SCIARA model simulation on the

Nicolosi 2001 lava event at the end of the simulation
with the latter viewer.

At the same way, it would be possible add a further
module, e.g. for model optimization purposes, by using
the PGAPack (PGApack web reference 1998) free
library for Parallel Genetic Algorithms (PGAs) (cf. also
Iovine et al. 2005 for an application of PGAs for
optimizing parameters of a MCA model).

3.2. A libAuToti implementation of SCIDDICA
In this paragraph, a seamless parallel implementation of
SCIDDICA is presented. In particular, Figure 4 and 5
illustrate the CA definition and transition function,
respectively. As in the SCIARA libAuToti
implementation, the program includes the
libautoti.h header that allows to employ the
library. In particular, the object sciddica of type
ParallelSimulationCA_2D is defined,
representing a MCA with the possibility to perform a
parallel simulation.

Figure 4: The SCIDDICA CA definition by using the
libAuToti free MCA library.
 The member function setDim defines the cell
space dimensions, while setRadius and
addNeighboor the CA the neighbourhood radius and
relation, respectively. Moreover, as required by
SCIDDICA, six substates are defined thanks to the
addSubstate member function.

336

 As requested by the considered version of
SCIDDICA, the von Neumann neighborhood was
defined, thanks to the addNeighboor member
function.
 As in the SCIARA libAuToti implementation,
parameters are defined by means of the
addParameter member function.
 Moreover, input data is automatically performed by
the function readFromFile, which reads files in
standard ASCII Grid format. Eventually, the simulation
is performed (for 10000 steps) and results saved (even
in ASCII Grid format) by means of the function
run().
 Figure 5 shows the libAuToti implementation of
the SCIDDICA transition function, defined as an inline
member function. Substates identifiers, together with
the neighbours ones, are utilised as arguments of
getSubstate*, which returns the value of a certain
substate for the specified neighbouring cell. Here the
symbol * can be one of the types listed in Table 1.

Figure 5: The SCIDDICA transition function definition
by using the libAuToti free MCA library.

 For instance, the following portion of code verifies
if the value of the substate WIDTH of type float, is
greater than 0 for the central cell:

if (getSubstateFloat(WIDTH) > (float)0)

 Analogously, if one wants to check the value of a
neighbouring cell, she/he has to simply add the
neighbour index as second argument to the
getSubstateFloat function. The following
example tests if the value of the substate WIDTH of the
neighbour number 2 is equal to 0:

if (getSubstateFloat(WIDTH, 2) == (float)0)

 Equivalently, the function
updateCellSubstate updates the value of a given
substate for the central cell. For example, the following
portion of code sets the new value for the substate
WIDTH for the central cell to the value new_width.

updateCellSubstate(WIDTH, new_width);

 Besides the setting of the pf parameter (cf.
FRICTION in Figure 5), the transition function
performs a preliminary elaboration at step 0 in order to
properly handle input data. Subsequently, it calls one of
the two functions calc_flow or calc_width (here
omitted for brevity), depending on the fact the CA step,
whose value is given by the internal variable STEP, is
odd or even. They correspond to the elementary
processes σ1 and σ2, respectively (cf. Section 2.2). In
this way, a single SCIDDICA step corresponds to 2
execution of the libAuToti transition function (double-
step transition function). Accordingly, the SCIDDICA
simulation steps were indeed exactly 5000.

Figure 6: The SCIDDICA MCA application to the
simulation of the Tessina Landslide. The figure shows a
snapshot of the CA configuration of the system after
5000 steps utilizing the libAuToti OpenGL 3D viewer

3.3. Computational results
As concerns computational results, the SCIARA and
SCIDDICA models – as implemented by adopting the
libAuToti library – were tested on two parallel
computers: a 24 processor HP Alpha Server SC45 and
an Intel T2500 2Ghz dual-core PC.

Figure 7: Speed-up of libAuToti for the model SCIARA
carried out on a 24 processor Alpha Server SC45.
Superlinear speedup is evident up to 24 processors.

337

Figure 8: Speed-up of libAuToti for the MCA model
SCIDDICA. Results refer to experiments carried out on
16 processors of the Alpha Server SC45. Superlinear
speedup is evident up to 8 processors.

In particular, the high performing computer is

composed of 6 SMP nodes, each with 4 Alpha 64-bit
1250 Mhz EV68 processors and 16 MB cache. Figure 7
shows the speed-up diagram for experiments carried out
on the high performing machine, referred to the
SCIARA model. In this case, super-linear speed-up was
achieved up to 24 processors, probably due to the
limited dimensions of the CA space and cache memory
effects. Figure 8 depicts the speed-up diagram, referred
to the SCIDDICA model experiments performed
adopting 16 processors. Even in this case results,
though slightly worse than the previous experiments,
show the good scalability of the parallel system,
together with super-linear effects up to 8 processors.
Eventually, experiments carried out on the low cost
machine – the Intel T2500 2Ghz dual-core PC, here
omitted for briefness – have been positive. In particular,
with respect with the first case, results have shown an
even better super-linear effect when executed on both
cores. Still, this is probably due both to the limited
dimensions of the CA space and for the greater cache-
effect (i.e. cache is physically closer to the CPU in
multi-core machines) of the dual core architecture with
respect to the supercomputer.

However, in all cases, computational results
evidenced the goodness of the library in exploiting the
considered parallel systems, confirming that even low-
cost off-the-shelf machines can be fruitfully employed.

4. CONCLUSIONS
We have presented examples of implementation of the
libAuToti C++ parallel library for Scientific Computing
of two models based on the Macroscopic Cellular
Automata (MCA) approach. In particular, the two
considered models regard SCIARA, for lava flow
simulation, and SCIDDICA, for debris flow modeling.
The library, particularly suitable for MCA modeling, is
easily extensible and easily combinable with different
libraries, such as optimization or visualization modules.

Moreover, computational performances, achieved
on a 24 processor Alpha Server SC45 supercomputer
and on an Intel dual-core processor based machine have
demonstrated the goodness of the library. Future
developments of the library will regard the

implementation of a load balance strategy (e.g. based on
the scattered decomposition of the computational
domain), further library core optimization and the
integration of an interactive console (e.g. similar to that
of GNUPlot or Octave) to better control the phases of
the simulation. Eventually, a full integration with
interactive OpenGL or OpenScenegraph scientific 3D
viewers will be tackled in the future. The library is
freely downloadable from its official website, at the
URL http://autoti.mat.unical.it. The library’s name,
libAuToti, is gaily taken from Prof. Salvatore “Toti” Di
Gregorio, inventor of the MCA approach.

ACKNOWLEDGMENTS
A special thanks goes to Prof. Gino “Big Chief”
Mirocle Crisci and Dr. Valeria Lupiano for the common
researches.

REFERENCES
Avolio, M.V., Di Gregorio, S., Mantovani, F., Pasuto,

A., Rongo, R., Silvano, S., Spataro, W., 2000.
Simulation of the 1992 Tessina landslide by a
cellular automata model and future hazard
scenarios, International Journal of Applied Earth
Observation and Geoinformation 2:41-50.

Barca, D., Crisci, G.M., Di Gregorio, S., Nicoletta, F.,
1994. Cellular Automata for simulating lava
Flows: A method and examples of the Etnean
eruptions. Transport Theory and Statistical
Physics 23:195-232.

Crisci, G.M., Rongo, R., Di Gregorio, S., Spataro, W.,
2004. The simulation model SCIARA: the 1991
and 2001 lava flows at Mount Etna. Journal of
Volcanology and Geothermal Research, 132:253-
267.

D'Ambrosio D., Di Gregorio, S., Iovine, G., Lupiano,
V., Rongo, R., Spataro, W., 2003. First
simulations of the Sarno debris flows through
Cellular Automata modeling. Geomorphology,
54:91-117.

D’Ambrosio, D., Rongo, R., Spataro, W., Avolio, M.V.,
Lupiano, V., 2006. Lava Invasion Susceptibility
Hazard Mapping Through Cellular Automata.
Proceedings of ACRI 2006, pp. 452-461.
September 20-23, Perpignan, France.

D’Ambrosio, D.; W. Spataro; and G. Iovine. 2006.
Parallel genetic algorithms for optimising cellular
automata models of natural complex phenomena:
an application to debris-flows. Computers and
Geosciences-UK, 32, 861-875.

Di Gregorio, S., Festa, D.C., Rongo, R., Spataro, W.,
Spezzano, G., Talia, D., 1996. A microscopic
freeway traffic simulator on a highly parallel
system. In: D'Hollander, E.H., Joubert, G.R.,
Peters D. Trystam, F.J., eds. Parallel Computing:
State-of-the-Art and Perspectives,
Amsterdam:Springer, 69-76.

Di Gregorio, S., Mele, F., Minei, G., 2001. Automi
Cellulari Cognitivi. Simulazione di evacuazione,
Proceedings of Input - Conferenza Nazionale

338

Informatica Pianificazione Urbana e Territoriale,
Democrazia e Tecnologia, cdrom, June 23-26,
Isole Tremiti, Italy.

Di Gregorio, S., Rongo, R., Siciliano, C., Sorriso-
Valvo, M., Spataro, W, 1999. Mount Ontake
landslide simulation by the cellular automata
model SCIDDICA-3, Physics and Chemistry of the
Earth Part A 24:97-100.

Di Gregorio, S., Serra, R., 1999. An empirical method
for modelling and simulating some complex
macroscopic phenomena by cellular automata.
Future Generation Computer Systems 16:259-271.

Iovine, G., D’Ambrosio, D., Di Gregorio, S., 2005.
Applying genetic algorithms for calibrating a
hexagonal cellular automata model for the
simulation of debris flows characterised by strong
inertial effects. Geomorphology 66:287-303.

McBirney, A.R., Murase, T., 1984. Rheological
properties of magmas. Annual Review of Earth
Planetary Sciences, 12:337-357.

PGAPack web reference: www-fp.mcs.anl.gov/CCST/
research/reports_pre1998/comp_bio/stalk/pgapack.
html.

Spataro, W., D’Ambrosio, D., Spingola, S., Zito, G.,
Rongo, R., 2008. LibAuToti, A Parallel Cellular
Automata Library for Simulation: An example of
Application to Landslides. Proceedings of Summer
Computer Simulation Conference, June 16-19,
Edinburgh, UK).

Spezzano, G., Talia, D., 1998. Designing Parallel
Models of Soil Contamination by the CARPET
Language, Future Generation Computer Systems
13:291-302.

Succi, S., 2004. The Lattice Boltzmann Equation for
Fluid Dynamics and Beyond. London,
Oxford:University Press.

Trunfio, G.A., 2004. Predicting Wildfire Spreading
Through a Hexagonal Cellular Automata Model,
Proceedings of ACRI 2004, pp. 725-734. October
23-25, Amsterdam, The Netherlands.

Walter, R., Worsch, T., 2004. Efficient Simulation of
CA with Few Activities. Proceedings of ACRI
2004, pp. 101-110. October 23-25, Amsterdam,
The Netherlands.

AUTHORS BIOGRAPHY
WILLIAM SPATARO was born in London, UK. He
is an Assistant Professor in Computer Science at the
Department of Mathematics at the University of
Calabria (Italy). His principal interests regard Parallel
Computing, Cellular Automata, Modelling and
Simulation of complex phenomena and Genetic
Algorithms. His e-mail address is:
spataro@unical.it and his Web-page can be found
at http://www.mat.unical.it/spataro.

DONATO D’AMBROSIO was born in Cosenza, Italy.
He is an Assistant Professor in Computer Science at the
Department of Mathematics at the University of
Calabria (Italy). His interests concern Genetic

Algorithms, Parallel Computing, Simulation of
Complex Natural Phenomena and Computer Graphics.
His e-mail address is: d.dambrosio@unical.it and
his Web-page can be found at
http://www.mat.unical.it/~donato.

ROCCO RONGO was born in Naples, Italy. He is an
Assistant Professor in Computer Science at the
Department of Earth Sciences at the University of
Calabria (Italy). His major interests regard Parallel
Computing, Modelling and Simulation of Geological
processes by Cellular Automata and GIS software. His
e-mail address is: rongo@unical.it and his Web-
page can be found at
http://dister.unical.it/rongo/.

GIUSEPPE SPINGOLA was born in Praia a Mare, in
Calabria (Italy). His Computer Science Degree thesis
regarded the first release of the libAutoti library. He
presently is working with the Department of
Mathematics and the Department of Chemical
Engineering of the University of Calabria for code
parallelization of simulation models and on further
releases of the libAuToti library. His email address is
g.spingola@gmail.com.

GIUSEPPE ZITO was born in Torino, Italy. His
Computer Science Degree thesis regarded the first
release of the libAutoti library. He currently is
collaborating with the Department of Mathematics and
the Department of Chemical Engineering of the
University of Calabria for code parallelization of
simulation models on further releases of the libAuToti
library. His email address is
giuseppe.zito@gmail.com.

MARIA VITTORIA AVOLIO was born in Cosenza,
Italy. Mathematician and Researcher Assistant at the
Department of Mathematics and at the University of
Calabria, Italy, she is involved basically in Modelling
and Simulation of lava, landslide and pyroclastic flows
by Cellular Automata methods. She is the beloved wife
of William Spataro, who fell in love with her during her
PhD course in Computer Science and Mathematics at
the same University. Her e-mail address is:
avoliomv@unical.it.

SALVATORE DI GREGORIO was born in
Castellamare del Golfo, Sicily, Italy. He is Full
Professor in Computer Science at the Department of
Mathematics at the University of Calabria (Italy).
Together with Professor Gino Mirocle Crisci, he leads
the Empedocles Research group at the same University.
His research interests concern Computational Models of
Complex Systems and Parallel Computing. His e-mail
address is: dig@unical.it.

339

