
SIMULATION OF THE GOMS KEYSTROCK LEVEL MODEL USING 
DEVS 

 
 

Ali Mroue(a), Jean Caussanel(b) 
 

 
(a)(b)Laboratory of sciences of informations and of systems 

LSIS UMR 6168 University of Paul Cezanne, Aix-Marseille III 
 Av. escadrille de Normandie Niemen 13397 Marseille Cedex 20, France 

 

 (a)ali.mroue@lsis.org,   (b) jean.caussanel@lsis.org 

 
 
 

 
ABSTRACT 
In this paper, we describe our approach for the 
simulation of GOMS model. The GOMS models 
characterized human interaction as a goal-directed 
search, or as general problem solving, in which the 
shortest route to any goal was considered the most 
efficient. DEVS is a formalism used to represent 
Discrete Event System Specifications; it can represent 
complex systems in an effective way.The DEVS 
formalism is a powerful tool for model simulation. In 
order to simulate GOMS models in an effective way, we 
propose a method to transform GOMS models to DEVS 
models in order to simulate and improve them. In this 
paper we will propose the transformation of the 
Keystroke-Level Model for GOMS into DEVS. 

 
Keywords: DEVS,Goms KeyStrock, HCI 

 
1. INTRODUCTION 
In a design at the conceptual level, usability problems 
are among the most difficult to detect as design 
proceeds. The designers are unable or may be reluctant 
to make changes at the conceptual level either for time 
deadline or because the effort required. Operational 
prototypes frequently evolve into the final user 
interface. Evaluating the usability of an interactive 
system during the early stages of design, e.g. at the 
conceptual level, is therefore an important task. 
Predictive usability metrics are an emerging and 
promising approach to assessing and improving the 
quality of user interface designs.  
 One of the important approaches that can be used to 
predict the usability is GOMS family models, which 
allows the study of the usability of the interface easly 
with minimum cost and time, and allow detecting 
problems before start while still in the design process. 
There is no existing real simulator for GOMS models, 
and if it exists it will be in program form, and models 
will be attached to its application. Another important 
thing is that GOMS has many limitations, and we are 
working in improving it, being one of these limits the 
fact that GOMS models don’t take into account the 
stress, fatigue, etc. of the user. 

2. GOMS MODELS 
The acronym GOMS stands for Goals, Operators, 
Methods, and Selection Rules (Card, Newell and Moran 
1983). GOMS is a behaviour description model, that 
lets model the behaviour at different levels of 
abstraction, from task level to physical actions. GOMS 
uses as a starting point the Model Human Processor 
principle of rationality that attempts to model and 
predict user behavior. 
 Its essential contribution is a formal structure that 
allows organizing the design process. 
The design method that induces GOMS is done on two 
axes. In the analysis of task (since determines the 
behavior). In the predictive evaluation of user behavior 
in the task. 

 
2.1. GOMS ELEMENTS 
Goals, Operators, Methods and Selection Rules 
(GOMS) are an approach to modeling human computer 
interaction. 
 GOMS models consist of descriptions of the 
methods required to accomplish a specific goal. 
Methods are a sequence of operators and sub-goals to 
achieve a goal. If there exists more than one method to 
accomplish a goal then selection rules are used to 
choose which method to use. 

 
• Goals are tasks the system’s user wants to 

accomplish. For example, "Create Folder, 
Delete Word". A goal can have a hierarchical 
structure,this means that the achievement of a 
goal may require to accomplish one or more 
sub-goals. 

• Operators are actions allowed by the software 
or actions that used are executing. An operator 
is an atomic level action that can’t be 
composed, and it’s characterized by its 
execution time. The execution of the operators 
causes change in the mental state of the users 
or in the environment state. There are two 
types of operators mental and physical, For 
example the operators "press enter", "point to 
the word", etc . . . . Are the physical operators. 

326



The model also includes mental operators, 
such as "thinking", etc. . . . 

• Methods refer to the process that allows one to 
accomplish a goal. Methods are possible 
sequences of operators and sub-goals that 
completely accomplish goals. For example to 
delete the word just typed, one could press the 
backspace key repeatedly until all characters 
have been erased, or i could move one’s hand 
to the mouse, double-click the word and press 
the delete key. Each of these is a method. 

• Selection Rules are used when there exists 
more than one method that can accomplish the 
same goal. They are the possible rules by 
which the user decides which method to 
choose in order to accomplish a particular goal. 
A rule has the form: 

  If <condition> 
  Then use the method M; 

 
Goms has been used in many applications 
 

• Telephone operator (CPM-GOMS) 
 
• CAD systems (NGOMSL) 
 
• Text editing using the mouse (KLM) 

 
 
2.2. GOMS VARIATION 
There are four different models of GOMS: CMN-
GOMS, KLM, and NGOMSML CPM-GOMS. 
CMN-GOMS stands for Card, Moran and Newell 
GOMS, is the original version of the GOMS technique 
in human computer interaction. This technique requires 
a strict goal-method-operation-selection rules structure. 
KLM stands for Keystroke-Level Model based on 
CMN-GOMS developed by Card, Moran and Newell. 
 NGOMSML stands for Natural GOMS Language, 
developed by David Kieras (Kieras 2006). "An 
NGOMSL model is in program form, and provides 
predictions of operator sequences, execution time, and 
time required to learn the methods. Like CMN-GOMS, 
NGOMSL models explicitly represent the goal 
structure, and thus can represent high-level goals like 
collaboratively writing a research paper" (John and 
Kieras 1996). 
 CPM-GOMS stands for Cognitive, Perceptual, and 
Motor and the project planning technique Critical Path 
Method. CPM-GOMS was developed in 1988 by 
Bonnie John (John and Kieras 1996). CPM-GOMS does 
not make the assumption that operators are performed 
serially, and hence it can model the multitasking 
behavior that can be exhibited by experienced users. 
The technique is also based directly on the model 
human processor a simplified model of human response. 
 In this paper we will introduce the equivalent of the 
Keystroke Level Model GOMS in DEVS. Consequently 
we will only detail the keystroke-level model of GOMS. 
 

2.3. KEYSTROCK-LEVEL MODEL  
KLM is a simplified version of CMN-GOMS. It 
eliminates the goals, methods and rules of selection, 
leaving only the primitive operators. It contains several 
claims simplification, it uses operators at the level of 
primitive keystrokes for prediction. This model seeks to 
predict efficiency (time taken by expert users doing 
routine tasks) by breaking down the user’s behavior into 
a sequence consisting of the five primitive operators.  
The analyst indicates the method for accomplishing the 
goal. This method will be composed only of a sequence 
of strike level primitive operators. 
 
 The KLM contains five types of operators: 
K - To press a key or button. 
P - To point with a mouse to a target on a display 
device. 
H - To home hands on keyboard or other device. 
D - To draw a line segment on a grid. 
M - To mentally prepare to do an action or closely 
related series of primitive actions 
R - To symbolize the system’s response time during 
which the user has to wait for the system. 
 
 Each of these operators has an estimation of their 
execution time. The time needed to execute a task or to 
accomplish a goal is the sum of all the time elapsed in 
the execution of every class of operators. 
Texec = TK + TP + TH + TD + TM + TR 
 
 As we said, every operator is characterized by it’s 
execution time: 
TK = (total duration of the tests) / (number of keys hit 
without error)  
20 s worst typist, 0.28 s average typist (40 wpm), 0.08 s 
best typist (155 wpm) 
 
 Pointing is determined by Fitts’s Law: 
TP =TP = (K0- TK ) + I log2( D/L+0.5 ) 

In general TP ≃ 1.1 s for all pointing tasks. 
TD = 0.9×n 0.16×l + n (n = number of segments to 
draw, l = sum of the segments’ height) 
 
 The homing time is estimated by a simple 
experiment in which the user moves his/her hand back 
and forth from the keyboard to the mouse. TH = 0.4s 
 The M operator represents the time to prepare 
mentally for the next step in the method primarily to 
retrieve that step (the thing on has to do) from long-term 
memory. A step is a chunk of the method, so the M 
operators divide the method into chunks. The resulting 
estimate (from Card & Moran’s paper of 1978) was 

1.35 sec_TM = 1.35.  TR = 0 if n ≤ t , TR = n - t if n ≻ t 
n: time required by the system to process the command 
t: Is the time required by the user to execute an operator 
during the processing of the command. 
 The KLM technique includes a set of five heuristic 
rules for placing mental operators in order to account 

327



for mental preparation time during a task that requires 
several physical operators. 
 

 
0: Insert M 

 
• In front of K’s which are not part of an 

argument string. 
• In front of all P’s selecting a command. 

 
1: Remove M between fully anticipated operators. 

 
• PMK�PK 

 
2: if a string of MKs belongs to a cognitive unit delete 
all M but the first. 

 
• 4564.23:MKMKMKMKMKMKMK �MKKK

KKKK  
 
3: if K is a redundant terminator then delete M in front 
of It. 

 
• press Enter, press Enter: MKMK�MKK 

 
4a: if K terminates a constant string (command name) 
delete the M in front of it. 

 
• cd enter: MKKMK�MKKK 

 
4b: if K terminates a variable string (parameter) keep 
theMin front of it. 

 
• cd class enter: 

MKKKMKKKKKMK �MKKKMKKKKKM
K 

 
2.3.1. USE OF KLM 
To use KLM we must perform the three following steps   
 

1. Encode using all physical operators (K, P, H, 
D(n,l), R(t)). 

2. Apply KLM rule number "0" and introduce the 
M. 

3. Apply KLM rule number "1, 2, 3 and 4" to 
remove the M. 

 
 Example: 
Goal: Selection of a text 
Method: 
Grab the mouse 
Point the mouse to the desired location 
Select 

 
First Step: 
H[mouse] P[mouse] K[mouse-button] H[keyboard] 
 
Second Step (Rule 0): 
H[mouse] M P[mouse] M K[mouse-button] 
H[keyboard] 

 

Third Step (Rules 1): H[mouse] M P[mouse] K[mouse-
button] H[keyboard]  
 As a result we obtain: Tmethod = 2TH + TP + TK 
+ TM. 

 
3. DEVS FORMALISM 
DEVS (Zeigler 1984) is a formalism used to represent 
Discrete Event System Specifications; it can represent 
complex system in an effective way. DEVS model is a 
powerful simulation model. It is a modular formalism 
for deterministic and causal systems. It allows for 
component-based design of complex systems. Several 
specific platforms for DEVS models simulation can be 
found.  
 A DEVS model may contain two kinds of DEVS 
components: Atomic DEVS and Coupled DEVS. An 
Atomic DEVS does not contain any component in it. It 
only has a mathematical specification of its behavior. A 
Coupled DEVS is a modular composition of one or 
more Atomic and Coupled DEVS. 
 An atomic DEVS model has the following 
structure: 
D = <XD, YD, SD, δextD, δintD , λD, taD> 
Where: 
XD: is the set of the input ports and values 
YD: is the set of the output ports and values 
SD: the sequential state set 
δextD: Q × X � S, is the external transition function 
where Q = (s, e) � s ∈  S, 0 ≤ e ≤ ta(s) is the total state 
set. 
δintD: S � S, is the internal transition function 
λD: S � Y, is the output function 
taD: S � R+0, ∞ (non-negative real), is the time 
advance  function 
 A coupled model, also called network of models, 
has the following structure: 
N = <X, Y, D, {Md /d∈D}, EIC, EOC, IC> 
X and Y definitions are identical to XD and YD of an 
atomic model. The inputs and outputs are made up of 
ports. Each port can take values and has its own field of 
values. 
X = { (ρ,µ) / ρ ∈  IPorts, µ ∈  Xρ } 
Y = { (ρ,µ) / ρ ∈  OPorts, µ ∈  Yρ } 
D is the set of the model names involved in the coupled 
model.  
 Md is a DEVS model. The variables representing 
the inputs and the outputs of the model will be indexed 
by the model identifier. Hence the following notation: 
Md = <Xd, Yd, Sd, δextd, δintd, λd, tad> 
The inputs and the outputs of the coupled model are 
connected to the inputs and outputs of the included 
models. 
EIC = {((N, a), (d, b))/a ∈  IPorts, b ∈  IPortsd} 
 The set of the coupled model input ports ipN 
associated with the input ports ipd of the models D are 
the components of the coupled model. 
 There is the same situation for the output ports. 
EOC = {((N, a), (d, b))/a  ∈  OPorts, b ∈  OPortsd} 

328



 Inside the coupled model, the outputs of a model 
can be coupled with the inputs of the other models. An 
output of a Model cannot be coupled with one of its 
inputs. 
IC = {((i, a), (j, b))/i,j ∈  D, i, j,a ∈  OPortsi, b ∈  IPorts 
j }. 

 
4. GOMS TO DEVS 
We chose to transform GOMS models to the DEVS 
formalism for many reasons some of these reason are: 
 

1. They have many common properties. GOMS 
Goal has hierarchical structure; DEVS have a 
hierarchical structure "Coupled Model". 
GOMS has an atomic element named operator 
that can’t be decomposed and has an execution 
time property, the same for DEVS models, 
which have an atomic element named state that 
has its time life period assigned etc. 

2. DEVS is very powerful in simulation, and we 
have a powerful simulator for DEVS models 
named LSISDME. 

GOMS has some limitations, like for example that 
it doesn’t take into account the fatigue of the user. So in 
the work presented in (Seck, Frydman and Giambiasi 
2004). 

3.  a model for fatigue and stress of users is 
defined under DEVS. So the transformation of 
GOMS models to DEVS will help us to extend 
GOMS in order to add the model of fatigue 
and stress to GOMS. 

 
5. TRANSFORMATION 
In this paper we present only the transformation of 
KLM into DEVS models. 
After studying the two approaches "DEVS-
KLMGOMS" we propose the following rules for 
transformation:  

 
• A KLM-GOMS model Corresponds to an 

atomic DEVS model that has 1 input and 1 
output. 

• The Goal is the name of the DEVS model 
• The number of phases in this model is 

equivalent to the number of operators + two 
phases, one for the initial phase and the other 
for the end phase. The Life time of each phase 
is equivalent to the execution time of the 
corresponding operator. 

• The phases are connected together by internal 
transitions. 

 
Applying these rules to a KLM-GOMS example 

will give: 
 

KLM GOMS: 
Goal: 
Select Text 
Method: 
H[mouse]MP[mouse]K[mouse button]H[keyboard] 

 
 The above KLM example mentioned is equivalent 
in DEVS to (Figure 1). Which is an atomic DEVS 
model having 2 initial phases “init and End phases” plus 
“n” other phases. The n represent the number of 
operators used in the model etc…  
 

 
Figure 1: DEVS “Select Text” KLM Goal 

 
6. RESULTS 
By giving the equivalence for GOMS keystrock level 
model in DEVS, we have added many features to its 
initial representation. 
 First of all the proposed keystrock DEVS 
representation gives an effective way for simulating 
keystrock model. This simulation can be done 
automatically in an easy way using our laboratory 
simulator “LSISDME”. 
 Secondly, any change or add of new operators can 
be done easily without any modification or 
recompilation of the simulation tool “LSISDME”. Other 
simulators have to be modified and recompiled in order 
to take into account new operators or new functions. 

 Another important point for the transformation 
to DEVS is that we have now the capability to add 
existing models such as the stress model defined by 
(Seck, Frydman and Giambiasi 2004) and take into 
account this human factor. Note that coupling the 
Keystrock and the stress models will extend the original 
one (Keystrock Level GOMS) and solve some of the 
disadvantages of GOMS models. 

 
7. CONCLUSION 
In this paper we introduced GOMS models and the 
DEVS formalism; we explained the reasons of our 
choice for the DEVS formalism for simulation GOMS 
Model. We have detailed the KeyStrock Level Model, 
and we defined all its’ elements in the DEVS 
formalism. In this work we succeeded in finding a new 
simulation tool for the Keystrock Level Model that is 
effective and gives good results. This transformation 
into DEVS has many advantages, first we have obtained 
an effective simulation tool for Keystrock level models, 
and secondly we can easily interpret these models and 
extend them in order to add many other modules. We 
can also do the simulation in interactive mode, and 
implement the core of the DEVS simulator in a user 
training applications. The current prospects relate to 
complete transformation of all GOMS model family to 
the DEVS formalism in order to simulate it, and then 
extend it so as to take in consideration the user stress 
and fatigue, Also we will model the task of search of 
information on the web and simulate it. 
 

329



REFERENCES 
Card, S. K.; Newell, A. and Moran,  T. P. 1983. The 

Psychology of Human-Computer Interaction. 
Lawrence Erlbaum Associates, Inc. Mahwah, NJ, 
USA. 

Kieras, D.E. 2006. A Guide to GOMS Model Usability 
Evaluation using GOMSL and GLEAN4. 
University of Michigan 

John B. E.  and Kieras D. E. 1996. The GOMS family of 
user interface analysis techniques: comparison 
and contrast. ACM Transactions on Computer-
Human Interaction, 3(4):320–351. 

Seck M., Frydman C., and Giambiasi N. 2004. Using 
DEVS for modeling and simulation of human 
behavior. In Lecture Notes in Computer Science 
special issue DEVS modelling and simulation, 
volume 3397, page 692, février 2005. Pub. 
Springer Verlag - Ed. Tag Gon Kim - ISSN : 
0302–9743 - ISBN : 3–540-24476-X  

Zeigler B. P. 1984. Theory of Modelling and 
Simulation. Krieger Publishing Co., Inc. 
Melbourne, FL, USA. 

330


