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ABSTRACT 
This paper presents a comparative study of four 
inventory models. Three of them are reactive ones, the 
Order Up to Maximum Inventory Level, Base Stock and 
Fixed Lot Size models which don’t use demand 
forecasting to quantify the acquisition decisions. One of 
them, referred as Requirement Planning, operates using 
demand forecast. The Requirement Planning and Base 
Stock models operate with minimal purchase order 
quantity parameter to improve their competitiveness. 
Reorder Level and Safety Stock parameters are 
permitted to be negative. Average operation cost per 
period is the performance measurement considered, 
restricted to a minimum service level. The analysis uses 
a search model jointly a simulator to optimize the 
parameters. The paper analyses the effects, in the 
relative models performance, of the negative parameters 
permission and the value of the Purchase Cost and 
effectuates a sensibility analysis by testing four 
different Service Levels . 
 
Keywords: inventory, simulation, search methods, 
forecast 
 
1. INTRODUCTION 
The importance of customer satisfaction for business 
was demonstrated by Japanese success in the last 
decades. Methods to improve customer service levels 
with good cost performance were developed by them 
and now are used worldwide for the same objective. 

Just-in time (JIT) is one of these methods. Usually 
understood like a production system, it is also a concept 
of ideal materials flow: the production or supply of 
items in the exact demand moment and quantities, 
neither before nor after.  This ideal flow condition is the 
most efficient when low inventory quantities and 
demand satisfaction are the goals of the production 
system. The system is managed to low inventory 
quantities and no shortage. But this is not enough to 
assure cost efficiency. JIT concept often implies a large 
number of acquisition/production orders, which can 
result in large operation costs when the 
purchase/production fixed costs are high. To specify a 
minimum service level and search a model with the 
lowest operation cost is a common way of combine 
these goals. 

To attend the JIT concept and keep the purchase 
cost low are vital to an inventory model achieve good 
performance in this environment.  

Traditional inventory models decide the moment 
and the quantity to replenish inventory using parameters 
and inventory level. They “react” to a system condition, 
justifying the adjective “reactive” that is used here to 
identify them. Reactive models need safety stocks to 
face the total demand variability during the time they 
need to react, and only when demand variability and 
reaction time are close to zero they attain the JIT 
condition. 

Another class of inventory models  can be seen in 
Material Requirements Planning systems (MRP). They 
use forecasts to decide when and how much to buy or to 
produce. Named here Requirements Planning (RP), this 
“active” model can anticipate the demand, adjusting the 
quantities and the times close to the moment of use, the 
JIT condition, reducing the necessity of safety stock 
needed to face only forecast errors, instead of all 
demand variability, which the reactive models need to 
face. This characteristic, combined with good available 
forecasts, permits, in theory, the model to be close with 
JIT concept in demand variation environments. In the 
other hand, it tends to purchase more times than reactive 
models (Stock Base is an exception), incurring in high 
operation costs when the inventory system has high 
purchase cost. 

The comparison of inventory models performances 
in different conditions becomes interesting since each 
model has weak and strong points. 

A comparative cost performance study was 
performed, using 4 inventory models, 3 reactive and the 
RP inventory model. Sixteen different combinations of 
2 purchase costs, 4 service levels and permission for 
models parameters assume negative values (important 
for improve Up to Order Level and Requirements 
Planning performances) were tested in 160 items with 
36 historical demand real data of an mobility products 
company. Simulation and search methods were used to 
optimize models parameters to get, for each model in 
each demand environment, the minimum mean 
operation cost condition. 
 
2. LITERATURE REVISION 
Inventory uses mathematical models since 1913, when 
F. W. Ha rris published his famous article about the 
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economic lot size calculation. During the II World War, 
mathematic formulation of models and parameters 
calculations were focused, particularly for the reorder 
point and lot size under particular situations of demand , 
supplier and costs environments. Several works were 
important references in the dissemination of this 
approach, like the articles of Dvoretzky and Kiefer 
(1952) and Arrow et al. (1958), and the books of 
Hadley and Whitin (1963), Naddor (1966) and Brown 
(1967). 

The inventory models initially presented by this 
approach, today known as traditional models, allow 
decide when and how much to reorder without demand 
forecast. The demand is considered continuous with 
constant average and explained by a fixed and known 
probability distribution. Studies about inventory models 
during the 60s and 70s adopted demand behavior based 
on static Normal and Poisson distributions, which 
allowed convenient mathematical treatment. Browne 
and Zipkin (1991) studied the limits of this traditional 
approach. Agarwall (1974) is an exception in this 
period, showing that the environment changes are 
important and modify the best model for inventory 
management. 

The first reference to forecasting applied to 
inventory is Brown (1967). This author recommends the 
use of forecasting to calculate reactive inventory models 
parameters to achieve better efficiency. In the 70’s, 
Eilon and Elmaleh (1970) continued this approach. At 
the same time, Just-in-time is discussed in the academy, 
due to the Japanese success in occidental markets, and 
the idea of reorder only the necessary material instead 
of lots starts to be a must. 

The Material Requirements Planning (MRP) 
system appeared in sequence. Initially, its focus was the 
decisions of supply/ production of items with dependent 
demand which appears in production and assembly 
structures of items with independent demand. But the 
need to include trend, seasonality and jumps in demand 
leaded research to decisions based on forecast. The 
chronology and relevant aspects of this can be seen in 
Sipper and Bolfin (1998). Unless the original MRP idea 
was to buy/produce only the necessary quantities, the 
high purchase cost in several items leads to several lot 
forming models applied to MRP systems. Hax (1984) 
and Orlick (1995) present these models. 

Lee and Adam (1986) continued the research of 
forecasting in inventory. They studied the forecast 
errors impact in MRP systems, comparing several 
reactive inventory models performances applied to the 
dependent items.  

Gardner (1990), using real demand historical data 
of independent items, studied the performance of the 
inventory system based on the classical Economic Lot 
Size model. 

Defining the lots acquisitions based on forecast 
demands, generated by four different forecasting 
models, he calculated “trade off” curves between 
inventory investment and customer lead-time. 
Simulation of the system operation during the period of 

historical demand data was used in the calculations. His 
main conclusion was the importance of forecasting 
errors to the amount of inventory investment needed to 
achieve a specific customer lead-time. The smaller the 
error, the smaller the investment needed.  The study is 
important, too, due to the adoption of the joint 
performance measurement of the forecasting and 
inventory models. 

Fildes and Beard (1992) studied the forecasting use 
in the production and inventory control. They analyzed 
the typical characteristics of inventory data and several 
forecasting models, and concluded that researchers 
neglected the production and inventory control area, the 
commercial systems had inadequate forecasting models 
and users experimented unnecessary large errors, 
inventories and poor demand satisfaction. 

The improvement in problems complexity by the 
use of forecasting in inventory systems asked the use of 
simulation and search methods for the definition of 
near- optimal decisions. Examples of it can be seen in 
Fu and Healy (1997) and Lopez-Garcia and Posada-
Bolivar (1999). 

 
2.1. Forecasting Models 
All forecasting models  selected use the smoothing 
logic. Table 1 presents the 4 types and the projection 
equations for forecast calculation. 

 
Table 1: Forecast models and corresponding formulas 

 
These models are analyzed in details in Makridakis 

and Wheelright (1998) and Hanke and Reitsch (1998). 
Based on them, smoothing methods are used to quantify 
the Q, I and F parameters, balancing the importance of 
old and new demand data in the forecasts. 

 
Table 2: Forecast models and corresponding smoothing 
parameters and projection formulas 

 

Model Curve Formula 
Constant Dt = Q + ξσ 

Trend Dt = Qto + I.(t-to) + ξσ 
Cyclical with constant  Dt = Q.St + ξσ 

Cyclical with trend Dt = [Qto + I.(t -to)].St + ξσ 

to = initial date   St = seasonality coefficient of period t 
Q = constant   Dt = demand forecast of period t  

I = slope    t = period 

Model 
Curve Smoothing Method Projection 

Constant Simple with α PDt+k = Qt 

Trend Simple with α and β 
(Holt) PDt+k = Qt + k.It 

Cyclical 
with 

constant 

Simple with α ?and γ 
(Winter)  PD t+k = Q t.S t+k-nL 

Cyclical 
with trend 

Simple with α, β and γ 
(Winter)  (Q t + k.I t).S t+k-L 

32



 
Table 3: Formulas used in the period-to-period 
calculations of Q, I and S parameters 

Curve Formula 
Constant Q t= αV t+(1- α)Q t-1 = Q  t-1+α(Vt - Q t-1) 

Trend Qt = α Vt + (1-α) (Q t-1 + I t-1) 
It = β (Qt - Qt-1) + (1- β) I t-1 

Cyclical 
with 

constant 

Qt = α ( Vt /St-L ) + (1-α ) Qt-1  
(L=cycle in periods) 
St= γ (Vt /Qt ) + (1-γ)  St-L 

Cyclical 
with trend 

Qt = α ( Vt /St-L ) + (1-α ) (Qt-1 + I t-1 ) 
(L=cycle in periods) 
It = β (Qt - Qt-1) + (1- β) I t-1 

St= γ  (Vt /Qt ) + (1- γ)  St-L 

 
Table 2 presents the smoothing parameters and 

projection formula for the models. At each period, Q, I 
and S are recalculated, using the real demand occurred 
(V) and Table 3 formulas. The models adjusted to the 
item demand series allow the selection of the 
corresponding α, β and γ for each of them, using the 
search and simulation routine. Again, Makridakis and 
Wheelright (1998) and Hanke and Reitsch (1998) 
provide the optimization method, using 12 initial 
periods to calculate the initial Q, I and S values and the 
last 24 periods to adjust parameters to the minimu m 
error, measured by mean absolute deviation - MAD. 
 
2.2. Inventory Models 
Following, the inventory models selected for this study 
are presented. 

 
2.2.1. Periodic Up to Order Level model (UO) 
In this model, the lot size is calculated to ensure that the 
total stock quantity never exceeds a defined quantity, 
the Order Level (ol) parameter. The decision rule is: 

 
)( stolpoq −=  if  rlst ≤  (1) 

 
0=poq  (zero)    if  rlst >   (2) 

 
where 
poq is the Purchase Order Quantity, the lot size to 

replenish the inventory 
ol is the Order Level parameter 
st is the current stock at the decision moment, 

including the purchased lots still arriving 
rl is the Reorder Level, the quantity parameter that 

starts the purchase activity. 
The periodic review occurs at the end of each 

period. 
 

2.2.2. Periodic Base Stock model (BS) 
The decision rule for this model is  

)( stolpoq −=   (3) 
 

This simple rule implies stock replenishment every 
time a withdraw occurs. It is a particular case of the 
precedent model, where the Reorder Level is equal to 
the Order Level parameter. 

Like the other, it is a model with a one-period 
review. 

 
2.2.3. Periodic Economic Order Quantity model 

(EQ) 
This traditional model has the following decision rule 
 

lsnpoq .=          if   rlst ≤  (4) 
 

0=poq (zero)    if   rlst >  (5) 
 
where 
ls is the fixed lot size, usually calculated using some 

economic criteria 
n is a number of lots (LS sized) that assure the st>=rl 

after this purchase 
Again, the replenish decision occurs at every 1 

period. 
 

2.2.4. Requirements Planning Model (RP) 
This active model uses the following decision rule: 
 

nrpoq =          if     0>nr  (zero) (6) 
 

0=poq (zero) if    0≤nr  (zero) (7) 
 

where 
nr is the Net Requirements needed to satisfy the 

forecast demand of the time defined by the Lead 
Time plus Reviewing Period and also maintains a 
safety stock. 
The general NR formula is: 
 

ssspoqdnr t

lt

j itltit

rplt

i ittlttt +−−= ∑∑ −

= +−+

+

= ++

1

1 ,1 ,,  (8) 

 
where 
nr  is the Net Requirements need to satisfy the demand 

during the next LT + RP periods 
t is the system date when the decision is taken 
lt is Lead Time of the item 
rp is the Reviewing Period 
d is the Demand forecast 
poq is the Purchase Order Quantity 
s is the stock of items  
ss is the Safety Stock 

The first key in the parameters is the date when the 
system takes the decision, which generates the value 
parameter. The second key refers to the deadline to that 
decision. 

The following example in Figure 1 helps to 
understand the model operation (suppose ss = 10). 
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Figure 1: Example of Requirements Planning model 
operation 

 
The Net Requirements value in this example is  

 
601020)3020()20304030( =+−+−+++=nr  (9) 

 
The Order decided in the current t = 0 needs to 

satisfy the next 4 periods, because the lot will only 
arrive at the end of period 3, to be used in period 4. To 
order only the necessary quantity, the poq decided in the 
past (and not received) and the current stock is 
subtracted from the initial sum. Finally, a safety stock is 
added to prevent shortages due to forecasting errors. 
Therefore, this model always tries to end the last period 
with only the Safety Stock in the inventory. Safety 
Stock is the single parameter for this pure form model. 

 
2.2.5. Minimum Net Requirements (MNR) 
The Base Stock models and the Requirements Planning 
Model tend to order with low quantities due to their 
decision rules. This is a great difficulty in environments 
where the purchase cost is high. 

To improve the competitiveness of these 2 models, 
a second parameter is  introduced, the Minimum Net 
Requirements. It is the smallest quantity the system 
must order when a quantity different from zero is 
needed. If a quantity greater than MNR is needed, the 
model orders this quantity instead of MNR. The new 
decision rules for Periodic Base Stock and 
Requirements Planning Model are, respectively: 

 
)( stolpoq −=   if  mnrstol ≥− )(  (10) 

 
0=poq          if  mnrstol <− )(  (11) 

 
nrpoq =              if  mnrnr ≥  (12) 

 
mnrpoq =          if   mnrnr <<0  (13) 

 
0=poq  (zero)    if   0≤nr (zero) (14) 

 
These modified rules were used in all simulations 

of this study. 
On a mathematical approach, the parameter reorder 

level (ro) used in UO and RP models would be negative 
in cases of low minimal service level allowed. In the 
real word we do not see negative parameters probably 
by the difficulty of operation with the models.  

This work analyses the different performance of 
the UO and RP mo dels in case of negative parameters 
allowed.  

 
3. MODELLING 
Figure 2 presents the experimental design for models 
comparison. Actual historical data series of 160 items, 
each one with 36 periods, are used to compare the 
inventory models. First, this demand data set was used 
to select the best between the 4 forecasting models, 
which provided the demand forecast in the active 
inventory model. The decision variable was the 
forecasting error, measured by the Mean Absolute 
Deviation (MAD), calculated for the last 24 periods of 
each item. The initial 12 periods were used to calculate 
the forecast parameters seeds required in the simulation 
and search routine. Then, the 4 inventory model 
adjusted to revision period equal to 1 were analysed 
using the same demand data set.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Experimental design for the study 
 
The modeling of the inventory systems uses a 

multistart neighborhood search. Each search 
corresponds to a pair of parameters of the inventory 
model tested. A simulator is used as a function to 
calculate de search function which, in this case, is a cost 
function, and a service level restriction is considered. 
Each simulation runs considering all the 36 months of 
the planning horizon. The simulator and search routine 
is fully parameterized with respect to number of restart 
(5 in this work), search resolution values (3 values of 
0.10, 0.05 and 0.02) and termination criteria (3). 

Best forecasting model 

Inventory models 
Search and Simulation 

routine  
• Best parameters search for 

each inventory model 
• Operation cost calculation 
• Inventory models ranking 

Forecasting models 
Simulation and Search 

routine  
• Best parameters 

search for each 
forecasting model 

• Forecasting errors 
calculations 

• Forecasting models 
ranking 

Historical series data set 
 

Demand of 36 periods of 
160 items 

Unit price of each item 

Results report Next Item 

Pos/Neg Parameters  
Purchase Cost 
Minimum Service level 

Start 

End 

Simulation 
Parameters Data set 
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The initial seed values of the parameters is 
obtained by the traditional calculation present in the 
inventory theory and a routine modify these values 
founding new feasible seeds with best performance than 
the originally ones. 

Since the cost function in this routine is the 
average operation cost of the planning horizon, a set of 
unit costs was supplied to the software: 

• Purchase cost – cost incurred each time a 
purchase order is decided - 2 values were used 
in the experiment: 9 (high level), and 3 (low 
level) for all items; 

• Holding cost – cost incurred in holding one 
unit of the item during 1 period – this cost was 
equal to 1% of the item acquisition price, 
informed to the system in the simulation 
parameters data set. The current items prices 
are used in this study. 

Once a minimum service level is considered, the 
shortage cost can be disconsidered. The average 
operation cost was the sum of average purchase and 
holding costs, considering only the periods the model 
was running on phase. 

Table 4 presents the 16 combinations of range of 
the parameters: positive/negative parameters allowed, 
purchase costs, and service levels , resulting in 16 
comparative simulation runs. 

 
Table 4: Parameters values used in the simulation runs 

 Positive Purchase Service Level 
Run Y N 9 3 78 84 90 96 

1 o  o  o    
2 o  o   o   
3 o  o    o  
4 o  o     o 
5 o   o o    
6 o   o  o   
7 o   o   o  
8 o   o    o 
9  o o  o    

10  o o   o   
11  o o    o  
12  o o     o 
13  o  o o    
14  o  o  o   
15  o  o   o  
16  o  o    o 

 
A sensibility analysis was made considering the 4 

different Service Levels : 78 %, 84%, 90% and 96%. 
Combination of all tested parameters conditions permits 
a good analysis of the system efficiency and stability. 

Visual Basic Applications software and Excel 
worksheets were the basic tools used for all routines. 

 
4. EXPERIMENTAL RESULTS 
The 16 experimental runs were conducted in an Intel 
Core 2 Duo 1.8 GHz, 2 Gb RAM computer. Each run 
took approximately 3 minutes. The main results were 
the inventory models ranking for each item in each run. 
The model with the lowest Average Operation Cost was 
ranked in the first place, the model with the next lowest 

Average Operation Cost was ranked in the second 
place, and so on. 

At the end of each run, 160 first places were 
obtained. Then, a percentage of first places for each 
inventory model at each run were calculated. These 
percentages are presented in tables 5 to 9, grouped by 
parameters values to permit better analysis. The greatest 
percentage in each run is shaded to identify the best 
performance model. 

Table 5 shows the results of runs where only 
positive values are permitted for parameters ro and ss. 
Clearly, the EQ model has the best performance for 
lower service levels, losing its advantage when the 
service level grows. RP model takes the first position at 
the highest service level value, and this happens in both 
Purchase Cost levels tested, but with more emphasis in 
the lower PC level. The other 2 simulated models show 
similar EQ behaviour when service level grows. 
 
Table 5: Percentage of First Places with Positive 
Parameters Only 

Run PC SL UO BS EQ RP
1 9 78 18.8% 23.8% 41.3% 16.3%
2 9 84 20.0% 18.1% 42.5% 19.4%
3 9 90 20.0% 11.3% 41.9% 26.9%
4 9 96 13.8% 17.5% 33.1% 35.6%
5 3 78 20.0% 20.6% 36.3% 23.1%
6 3 84 15.6% 13.1% 38.8% 32.5%
7 3 90 10.0% 10.0% 40.6% 39.4%
8 3 96 11.3% 10.6% 28.1% 50.0%

Positive Parameters Only

 
 
Table 6: Percentage of First Places with Positive and 
Negative Parameters 

Run PC SL UO BS EQ RP
9 9 78 16.9% 18.1% 26.9% 38.1%

10 9 84 13.8% 12.5% 32.5% 41.3%
11 9 90 15.0% 9.4% 30.0% 45.6%
12 9 96 11.3% 12.5% 24.4% 51.9%
13 3 78 16.9% 16.3% 24.4% 42.5%
14 3 84 14.4% 10.6% 25.0% 50.0%
15 3 90 10.6% 8.1% 27.5% 53.8%
16 3 96 8.8% 8.8% 25.0% 57.5%

Positive and Negative Parameters

 
 
The permission for negative ro and ss values 

generates the runs presented in Table 6. RP model has 
the best performance in all runs, improving the first 
places percentage with the SL growth. The negative 
values empowered the RP, but not UO and EQ models. 
Analysis of differences between 8 and 16 runs in RP 
model, for example, show 5,2% operation cost 
reduction in 54 items with negative ss. 

Tables 7 and 8 present the same data of the 
precedent tables, arranged by Purchase Cost level. RP 
and EQ models present similar performance in both 
levels, with the expected better RP performance in the 
low Purchase Cost level. Again, the permission for 
negative values and the growth in the minimum Service 
Level give big advantage to the RP model. 
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Table 7: First Places Percentages - Purchase Cost = 9 

Run PPO SL UO BS EQ RP
1 Y 78 18.8% 23.8% 41.3% 16.3%
2 Y 84 20.0% 18.1% 42.5% 19.4%
3 Y 90 20.0% 11.3% 41.9% 26.9%
4 Y 96 13.8% 17.5% 33.1% 35.6%
9 N 78 16.9% 18.1% 26.9% 38.1%

10 N 84 13.8% 12.5% 32.5% 41.3%
11 N 90 15.0% 9.4% 30.0% 45.6%
12 N 96 11.3% 12.5% 24.4% 51.9%

Purchase Cost = 9

 
Table 8: First Places Percentages - Purchase Cost = 3 

Run PPO SL UO BS EQ RP
5 Y 78 20.0% 20.6% 36.3% 23.1%
6 Y 84 15.6% 13.1% 38.8% 32.5%
7 Y 90 10.0% 10.0% 40.6% 39.4%
8 Y 96 11.3% 10.6% 28.1% 50.0%

13 N 78 16.9% 16.3% 24.4% 42.5%
14 N 84 14.4% 10.6% 25.0% 50.0%
15 N 90 10.6% 9.4% 27.5% 53.8%
16 N 96 9.4% 9.4% 25.0% 57.5%

Purchase Cost = 3

 
Table 9: Percentage of First Places with different 
Service Levels  

Run PPO PC SL UO BS EQ RP
1 Y 9 78 18.8% 23.8% 41.3% 16.3%
5 Y 3 78 20.0% 20.6% 36.3% 23.1%
9 N 9 78 16.9% 18.1% 26.9% 38.1%
13 N 3 78 16.9% 16.3% 24.4% 42.5%
2 Y 9 84 20.0% 18.1% 42.5% 19.4%
6 Y 3 84 15.6% 13.1% 38.8% 32.5%
10 N 9 84 13.8% 12.5% 32.5% 41.3%
14 N 3 84 14.4% 10.6% 25.0% 50.0%
3 Y 9 90 20.0% 11.3% 41.9% 26.9%
7 Y 3 90 10.0% 10.0% 40.6% 39.4%
11 N 9 90 15.0% 9.4% 30.0% 45.6%
15 N 3 90 10.6% 9.4% 27.5% 53.8%
4 Y 9 96 13.8% 17.5% 33.1% 35.6%
8 Y 3 96 11.3% 10.6% 28.1% 50.0%
12 N 9 96 11.3% 12.5% 24.4% 51.9%
16 N 3 96 9.4% 9.4% 25.0% 57.5%

 
Finally, table 9 shows the data arranged by Service 

Level. The same pattern (EQ better when negative 
values aren’t permitted and RP when it is possible) is 
present in all levels except in the highest 96% SL value, 
where RP model wins in all combinations.  
 
5. CONCLUSION 
The results indicate the best overall performance of the 
Periodic Economic Order Quantity (EQ) and 
Requirements Planning (RP) models. The EQ prevails 
when low minimum Service Levels (SL) and positive 
values are used. Its advantage decreases with the 
minimum Service Level growth and disappears when 
the RP Safety Stock parameter (ss) is free to receive 
negative values. The same flexibility in the UO and EQ 
Reorder Point parameter (ro) results in no performance 
improvements. 
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