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ABSTRACT 
Random Boolean networks, a generalization of cellular 
automata, were originally introduced as a simple model 
of genetic regulatory networks, but they are also used as 
mathematical models for studying complex dynamical 
systems with a large number of coupled variables. 
Simulating sequentially large networks with high 
connectivity meets often with difficulties on the time 
and the memory. We propose here a multi-agent based 
approach for simulating large random Boolean 
networks, which promises to give an improvement of its 
performance by using multiprocessors systems. 

 
Keywords: Random Boolean network, Multi agent 
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1. INTRODUCTION 
Random Boolean Networks (RBN), also known as 
Kauffman network or Nk-network, were originally 
introduced by Stuart Kauffman (Kaufman 1969) as a 
simple model to study the dynamics of complex genetic 
regulatory systems. In a random Boolean network, each 
gene is represented by a vertex in a directed graph. An 
edge from one vertex to another implies a causal link 
between two genes. The ON state of a vertex 
corresponds to the gene being expressed. Time is 
discrete, and at any time point, the new state of a vertex 
v is a Boolean function of the previous states of the 
vertices which are predecessors of v.  

Up to now, the scope of existing analytical result is 
rather restricted, very few exact solutions have been 
determined. Instead computer simulations and statistical 
analysis are used to gain theoretical understanding. 
There are several tools available for exploration of 
different properties of RBNs, such as DDLab 
(http://www.ddlab.com), RBN Toolbox 
(http://www.teuscher.ch/rbntoolbox), RBNLab 
(http://rbn.sourceforge.net), but none of them can be 
used for the network with many vertex and high 
connectivity. That is because the sequential simulation 
of the large one meets often with difficulties on the time 
and the memory. 

Large simulation consumes usually enormous 
amounts of time on sequential machines, while Multi-
Agent Based Simulation can distribute its agents over 
different processors, thus reduces the computation time, 

even though, it always requests synchronization for 
agents and depends robustly on the communication 
between agents. We believe that it will be an 
appropriate approach for simulating a large random 
Boolean network. 

Having it in mind, we organize the rest of this 
paper as follows. The classical random Boolean 
network and the multi-agent based simulations are 
introduced in the section 2 and section 3 respectively. 
We propose in the section 4 a multi-agent based 
modeling random Boolean network. The section 5 gives 
some experiment results. This paper is closed with the 
conclusion and future work in section 6. 
 
2. RANDOM BOOLEAN NETWORKS 
A Classical RBN is a directed graph consisting of N 
nodes, where each node is connected to k other (or the 
same) nodes. The parameter k is known as the 
connectivity of the network. The set of k nodes 
connected to a given node is referred as its 
neighbourhood. Each node i is characterized by a 
Boolean (or binary) value xi ∈{0,1} and a Boolean (or 
binary) function fi, which assigns to each of the 2k states 
of its k input nodes an output 1 with probability p or 0 
with probability 1-p. The parameter p ∈ [0, 1] is known 
as the bias of the logic function. The k connections and 
the Boolean function of each node are chosen randomly 
at the beginning but remain fixed during the dynamics 
of the network 

In an RBN model, time is viewed as proceeding in 
discrete steps. At each step, the state of each node 
evolves according to its logic function and the previous 
states of its neighbourhoods. Let vi = (x1

i,…xk
i) be set of 

k inputs of node xi, then xi(t+1) = fi(x1
i(t),…xk

i(t)) or 
xi(t+1) = fi(vi(t)). Updating the state of all nodes in 
classical RBN is done synchronously. If v(t) = {v1(t),.. 
vN(t)} is the state vector of the network at time t then 
evolution equation can be written v(t+1) = f(v(t)) with 
f(v(t)) = {f(v1(t),…f(vN(t))} 

Because the number of possible state of a network 
is finite, i.e. it equals to 2N, so giving some initial state, 
evolution of the network in time traces a trajectory 
through the state space. If, after some period of time, 
the network comes back to one of the states it already 
visited L steps in the past, it will forever retrace this 
sequence of L states. We say that the system has fallen 
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into a period L attractor. Attractors of length L = 1 are 
called point attractor or fixed points of the network. 
The attractor states and the transient states leading to 
the attractor together constitute the basin of attraction. 
The number and length of attractors represent two 
important parameters of the cell modelled by a RBN. 
The number of attractors corresponds to the number of 
different cell types. The attractor's length corresponds to 
the cell cycle time which refers to the amount of time 
required for a cell to grow and divide into two daughter 
cells (Kauffman 1993). There are analytic solutions of 
RBN for k = 1 and k = N (Flyvberg and Kjaer 1988; 
Derrida and Flyvbjerg 1987), but finding general 
analytic solution is still an open issue. An example of a 
RBN with N=3 and k= 2 is shown in Figure 1. 

 

 
Figure 1: Example of classical RBN with N=3 and k=2 
a) Directed graph and Boolean function using lookup 
table (LUT) for each node. b) State space diagram: there 
is one point attractor (110) and one cycle attractor of 
period two (101 010) 

 
The parameters k and p determine the dynamics of 

the network. For a given bias p, there is a critical line 
)1(21 ppKc −= , below which the network is in the 

frozen phase and above which the network is in the 
chaotic phase (Derrida and Pomeau 1986). On the 
critical line between the frozen and the chaotic phases, 
the network exhibits self-organized critical behaviour, 
ensuring both stability and evolutionary improvements.  

In the classical random Boolean networks, one 
important aspect is that the networks are assumed to be 
synchronous; however it is not very realistic as genes do 
not change their state all at the same moment, hence it is 
more appropriate to update these systems 
asynchronously using a random order. The exploration 
of such asynchronous RBNs can be found in (Harvey 
and Bossomaier 1997; Di Paolo 2001; Gershenson 
2004). 

 

3. MULTI-AGENT BASED SIMULATION 
Agent-based simulation models are normally based on a 
discrete time model, where system states are changed at 
discrete time points only. The two most common types 
of such discrete time simulation are called time-stepped 
and event-driven (or event-stepped) models (Fujimoto 
2000). They are distinguished by the mechanism used to 
advance simulation time. In the first approach, the 
simulation advances in equal-size time steps. In each 
step, the clock is adjusted and the participants are 
informed about the new time. They then can check if an 
activity has to be executed at this point in time. In the 
other one, a timestamp is assigned to each event which 
is an abstraction used in simulation to model some 
instantaneous action in the real system, to indicate the 
point in simulation time, when the event occurs. Each 
event usually results in some change in state variables 
defined by the model. 

In Multi-agent based simulation (MABS), system 
entities are modelled using multiple agents which 
interact with the other agents by sending messages to 
them and to their environment. Agents can be viewed as 
threads of control, which execute concurrently 
(Wooldridge 2002). Therefore, it is important that the 
agents perceive a common view of the virtual 
environment. For example, any pair of agents should 
perceive a set of messages in the same sequence, or in 
other words, each agent has to process events/messages 
according to their timestamp order. This is called local 
causality constraint (Fujimoto 1990). Two main 
approaches have been proposed to ensure that the local 
causality constraint is not violated: conservative and 
optimistic synchronization.  
The first one avoids strictly the causality violations by 
processing safe events only. The well-know algorithm 
CMB (Bryant 1977; Chandy and Misra 1979) ensures 
the local causality constraint is never violated but may 
lead to deadlock situation. The null message scheme 
(Misra 1986), on its turn, can avoid this deadlock but 
may generate an excessive number of null message. In 
addition, this technique relies heavily on the concept of 
look-ahead (Nicol 1996) and also typically requires a 
static connection between agents. 
The optimistic approach, in contrast, allows causality 
error to occur but provides suitable techniques to 
recover from an incorrect system state. The best know is 
Time Warp algorithm (Jefferson 1985). It uses a 
mechanism called rollback to cancel the erroneous 
computation and reprocess messages in their timestamp 
order whenever a straggler message occurs. Several 
additional strategies of memory management and 
cancelling incorrect computation to improve efficiency 
of this algorithm can be found in (Fujimoto 1990; 
Jefferson 1990; Lin and Preiss 1991). The Time Warp 
exploits full parallelism of systems, nevertheless it is 
hard to implement because of requiring complex 
manipulations. 

Another problem in multi-agent systems is the 
accessing to shared state variables which are maintained 
by the different agents. This usually leads to an all-to-all 
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communication between agents and results in the 
degradation of simulation performance. Many 
investigations in the context of Multi-Agent Based 
Simulation have addressed to the avoiding this 
broadcast communication. Most of them limit the 
number of agents receiving message based on their 
location or other application-specific attributes. 
Algorithms such as can be found in (Macedonia et al. 
1995; Logan and Theodoropoulos 2001; Ewald et al. 
2006). 

 
4. MODELING RANDOM BOOLEAN 

NETWORK 
We model the Random Boolean Network as a multi 
agent system. Each node of the network is modeled as 
an agent that consist of three main fields: agent's state 
which is a Boolean variable, list of its neighborhoods, 
which is a dynamic array (because the networks can be 
non-homogeneous, k is not the same for all agents, such 
as a scale-free network has an exponential distribution 
of connectivity, so although most nodes may have a 
small connectivity, some can have large values) and a 
lookup table which can be represented as an (array of) 
integer. The agents behave step by step. At each step in 
its evolution, an agent reads the state of all its 
neighborhoods refers to its lookup table and then 
updates its state.  

In the distributed simulation, we can simply model 
each agent as a process which behaves independently. 
These agents are distributed over different processors 
and interacts each other by exchanging messages. At 
each step, after updating its state, each process send (k) 
messages to (k) its neighborhoods. Clearly, it is an 
effectless approach because there are too many of 
message sent in each step (kN messages). A more 
effective approach decomposes random Boolean 
network model by regrouping lightweight agents to a 
"big-agent" and assigns a logical process (LP) to 
simulate each one. The big-agent contains a Boolean (or 
bit) array variable (referred as subNetState) to present 
its internal state which is constructed from all state of 
its lightweight agents (Figure 2). At each step, instead 
of sending directly state to neighborhoods, each 
lightweight agent updates appropriate element in this 
subNetState variable. Hence, to read state of 
neighborhoods, agents only need refer to the 
subNetState variables. Obviously it would be possible 
for neighborhoods of an agent p simulated by LPi to be 
an agent q residing in another LPj . That means agent p 
has to refer to qth element of the variable subNetState of 
the LPj. Thus each LP, for computing its internal state at 
step t + 1, must know the ones which were computed by 
all others LPs at step t. In other words, LPs must be 
synchronized. Two approaches are suggested. 

The first one is based on the distributed memory 
model, in which each LPs after finishing its 
computation at step t will send its internal state to all 
others LPs. It continues to compute next step t + 1 only 
when it received subNetState variables from all others 
LPs. Suppose that the RBN model is simulated by Q 

different LPs, then the number of message must be sent 
per step is Q * (Q - 1). That reduces its performance. 
Detailed analyses about the performance of this 
approach are beyond the scope of this paper, but are 
discussed elsewhere. 

 

 
Figure 2: Decomposing a Random Boolean Network 
model. 

 
The other approach is based on the share memory 

model, in which each LP when have finished its 
computation at step t, writes its subNetState to a 
pseudo-share memory. This pseudo-share memory 
object can be modelled by a memory logic process 
(MLP). The MLP receives all subNetState variables 
written from LPs, constructs a netState array that 
present the state of RBN and then broadcasts it again to 
all LPs (figure 2). In the case of Q logical processes, the 
number of message sent per step is 2 * Q. 

By broadcasting netState, the MLP forces others 
LPs to advance together in lock step. This is a 
synchronous simulation and it guarantees that the 
causality errors does not happen but the potential for 
speedup is limited, especially when the RBN model is 
partitioned into too many sub-models, it can create a 
bottleneck at the memory logical process and this 
reduces its performance.  

Let t be the average time value which one 
lightweight-agent needs for simulating a step, δ be the 
average time value for communicating the state of one 
agent (it is usually a bit) between MLP and LPs then the 
average simulation time T, which be computed at MLP 
in one step can be conjectured:  

 

∆+++= δδ
Q
Nt

Q
NNTMLP   (1) 

 
Where, N is number of nodes of the modelling 

RBN, Q is number of logical process (so the number of 
lightweight agents in each LP is QN ) and ∆ is some 
delay coefficient of the communication, which could 
occur by numerous factors, for example by the waiting 
to process when many LPs send their internal state to 
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the MLP at the same time. If the ratio of t to δ is a then 
the speedup in the ideal case, ∆ = 0, will be: 
 

1++
=

++
≈

aQ
aQ

Q
Nt

Q
NN

NtSpeedup
δδ

 (2) 

 
Clearly, the speedup depends robustly on the ratio 

of computation time to communication time. This ratio 
will be theoretic limit of speedup in our synchronous 
approach. This also suggests that the simulation on a 
multiprocessor system does not suffer from 
communication latency, always give a better result. 

 
5. EXPERIMENTAL RESULTS 
Currently, many languages and tool that are used for the 
distributed and parallel simulation are already available. 
Most of them use mainly the integrating of agent 
toolkits into a High Level Architecture (HLA) based 
distributed simulation and focus mainly on the 
interoperability between different sequential simulation 
toolkits not on the gaining speedups (Minson and 
Theodoropoulos 2004; Wang, Turner, and Wang 2005; 
Lees, Logan, and Theodoropoulos 2007). Some others 
approaches tend to obtain performance improvements 
but in those platforms, the communication between 
logical processes uses usually TCP/IP protocol which is 
reliable, FIFO and point- to-point (Pawlaszczyk and 
Timm 2006; Cicirelli, Furfaro, and Nigro 2007). Thus 
the broadcast from the MLP to all other LPs is 
essentially sequential: the MLP send continuously 
netStatus to LPs one by one. We can conjecture the 
speedup in this case as equation below: 

 

1*
2 ++

=
++

≈
aQ

aQ

Q
Nt

Q
NNQ

NtSpeedup
δδ

 (3) 

 
Obviously, this sequential-broadcast degrades the 
simulation performance when model is partitioned into 
many logical processes. 

Our experiments were performed in a network of 
512MB, Intel 3.0GHZ computers. The LAN has links 
with 100Mb/s in bandwidth. Logical processes have 
been implemented with Java language, each one is 
executed on a separate processor. To "write" 
subNetState from LPs to MLP, standard RMI library 
was used, but we use multicast mechanism to broadcast 
netState from MLP to all others LPs. To ensure that the 
communication is reliable we use a timeout mechanism 
and a cyclic redundancy check (CRC) mechanism 
(Peterson and Brown 1961). The duplicate appearing 
will be eliminated by checking logical time (Lamport 
1978) of the message received (netState) with local time 
at the receiving LP. It is clear that by using of 
mechanisms for checking every packet arrived, it can 
reduce the simulation performance but we believe that, 
in a Local Area Network, this reduction of performance 
is acceptable. Behaviours of the logical process and 

memory logical process are given in algorithm 1 and 
algorithm 2 respectively. 

 
Algorithm 1:  Logical Process 
While true Do 

Wait netState from MLP 
If CRC value is correct Then 

If LogicalTime = LocalTime Then 
For each agent i in lightweight-agent list Do 

subNetState[i]←agent[i].step(netState) 
End for 
LocalTime++ 
Send subNetState to MLP 

End if 
End if 

End while 
 

Algorithm 2 Memory Logical Process 
While true Do 

Broadcast netState with its CRC value to all LPs 
Clock.Start() 
Repeat 

Wait subNetState from any LPi 
Update ith partition of the newNetState variable 

Until received subNetState variable from all LPs 
Clock.Stop() 
netState ← newNetState 
LogicalTime++ 

End while 
 
Figure 3 shows the fields of a packet which is 

broadcasted from MLP to all others LPs. The first two 
fields are sequence number and CRC value of the data 
field. The next field identifies the logical time which 
denotes how far in simulated time the network has 
simulated and the last field is broadcasted data which is 
network state (netData). Due to limitation on size of 
sent diagram in Java UDP, the packet size must be less 
than 64K, including its header, and so if network is too 
large, MLP will broadcast continuously netState 
variable in some different packets. In those cases, the 
SegNbr field identifies order of the sent packets. But in 
current implementation, we didn't use this field, so the 
largest simulated RBN contain maximum of 
approximate 219 nodes.  

 

 
Figure 3: Fields of a broadcasted packet 

 
To estimate theoretic speedup of the simulation of 

large random Boolean network, we compute the ratio of 
average time an agent need to simulate a step to average 
time for communicating a single bit data between LP 
and MLP. We implemented a sequential simulator to 
simulate RBNs. 500 classical RBNs of 256K-nodes 
with k is 1, 4, 7 were simulated for 100 steps. The 
accumulated average simulation time is computed. The 
results of this experiment were given in figure 4.  
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Figure 4: The average time value to simulate a 256K-
nodes RBN for 100 steps 

 
The communication time contain the time for 

writing data to output port at the sending process, the 
time for transferring data in the link and the time for 
reading all data from input port at the receiving process. 
We use two processes executing on the two separates 
processors: One process sends a volume of data and 
another process receives this data and then resends 
immediately it to the sender. The communication time 
is computed at the first process when it begins sending a 
volume of data until it receives whole those data. The 
sending process iterates this procedure in 500 times and 
the accumulated average time value for communicating 
a bit data between processes is computed. Figure 5 
shows the result of this experiment in the case of 
volume size being 50Kb. In fact, this average time 
depends on the buffer size. The smaller buffer size is, 
the larger average time is.  

 

 
Figure 5: The average time value for broadcasting a bit 
of data 

 
By using  results of two experiments above, we can 

compute the ideal theoretic speedup according to 
equation 2. Figure 6 illustrates that result. 

To validate these theoretic results, we simulated 
500 classical random Boolean networks, each of which 
is composed 256K nodes. For each network, we 
simulate it in 500 steps. The number of logical process 
is equal to the number of processor. Figure 7 shows the 
speedup of this experiment with different values of 
parameter k. 

 

 
Figure 6: The theoretic ideal speedup for the 
synchronous simulation of large random Boolean 
networks 
 

We observe that the real speedup is smaller than 
the theoretic one, especially when there are more 
processors. This is mainly due to the considerable 
bottleneck at the MLP. Nevertheless, in a real share 
memory multiprocessors system, because each LP 
writes really to a disjoint memory area, we believe that 
this bottleneck will not happen. 

 

 
Figure 7: The real speedup for the synchronous 
simulation of 256K nodes RBN with different 
connectivities. 

 
6. CONCLUSION 
We have introduced classical random Boolean network. 
A simple multi-agent based approach for implementing 
large-scale simulation of random Boolean network has 
been suggested. The theoretic analysis of dependence 
between the performance and the ratio of computation 
to communication are presented. Future efforts might be 
directed toward simulating large random Boolean 
networks and other large multi agent systems on multi 
processors systems. 
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