
MULTI-AGENT BASED SIMULATION OF LARGE RANDOM BOOLEAN NETWORK

Dang Hai PHAM

Laboratoire de Cognition Humaine et Artificielle, Ecole Pratique des Hautes Etudes
41 Rue Gay Lussac, 75005 Paris, France

haipd-fit@mail.hut.edu.vn

ABSTRACT
Random Boolean networks, a generalization of cellular
automata, were originally introduced as a simple model
of genetic regulatory networks, but they are also used as
mathematical models for studying complex dynamical
systems with a large number of coupled variables.
Simulating sequentially large networks with high
connectivity meets often with difficulties on the time
and the memory. We propose here a multi-agent based
approach for simulating large random Boolean
networks, which promises to give an improvement of its
performance by using multiprocessors systems.

Keywords: Random Boolean network, Multi agent
based simulation, Synchronization algorithm

1. INTRODUCTION
Random Boolean Networks (RBN), also known as
Kauffman network or Nk-network, were originally
introduced by Stuart Kauffman (Kaufman 1969) as a
simple model to study the dynamics of complex genetic
regulatory systems. In a random Boolean network, each
gene is represented by a vertex in a directed graph. An
edge from one vertex to another implies a causal link
between two genes. The ON state of a vertex
corresponds to the gene being expressed. Time is
discrete, and at any time point, the new state of a vertex
v is a Boolean function of the previous states of the
vertices which are predecessors of v.

Up to now, the scope of existing analytical result is
rather restricted, very few exact solutions have been
determined. Instead computer simulations and statistical
analysis are used to gain theoretical understanding.
There are several tools available for exploration of
different properties of RBNs, such as DDLab
(http://www.ddlab.com), RBN Toolbox
(http://www.teuscher.ch/rbntoolbox), RBNLab
(http://rbn.sourceforge.net), but none of them can be
used for the network with many vertex and high
connectivity. That is because the sequential simulation
of the large one meets often with difficulties on the time
and the memory.

Large simulation consumes usually enormous
amounts of time on sequential machines, while Multi-
Agent Based Simulation can distribute its agents over
different processors, thus reduces the computation time,

even though, it always requests synchronization for
agents and depends robustly on the communication
between agents. We believe that it will be an
appropriate approach for simulating a large random
Boolean network.

Having it in mind, we organize the rest of this
paper as follows. The classical random Boolean
network and the multi-agent based simulations are
introduced in the section 2 and section 3 respectively.
We propose in the section 4 a multi-agent based
modeling random Boolean network. The section 5 gives
some experiment results. This paper is closed with the
conclusion and future work in section 6.

2. RANDOM BOOLEAN NETWORKS
A Classical RBN is a directed graph consisting of N
nodes, where each node is connected to k other (or the
same) nodes. The parameter k is known as the
connectivity of the network. The set of k nodes
connected to a given node is referred as its
neighbourhood. Each node i is characterized by a
Boolean (or binary) value xi ∈{0,1} and a Boolean (or
binary) function fi, which assigns to each of the 2k states
of its k input nodes an output 1 with probability p or 0
with probability 1-p. The parameter p ∈ [0, 1] is known
as the bias of the logic function. The k connections and
the Boolean function of each node are chosen randomly
at the beginning but remain fixed during the dynamics
of the network

In an RBN model, time is viewed as proceeding in
discrete steps. At each step, the state of each node
evolves according to its logic function and the previous
states of its neighbourhoods. Let vi = (x1

i,…xk
i) be set of

k inputs of node xi, then xi(t+1) = fi(x1
i(t),…xk

i(t)) or
xi(t+1) = fi(vi(t)). Updating the state of all nodes in
classical RBN is done synchronously. If v(t) = {v1(t),..
vN(t)} is the state vector of the network at time t then
evolution equation can be written v(t+1) = f(v(t)) with
f(v(t)) = {f(v1(t),…f(vN(t))}

Because the number of possible state of a network
is finite, i.e. it equals to 2N, so giving some initial state,
evolution of the network in time traces a trajectory
through the state space. If, after some period of time,
the network comes back to one of the states it already
visited L steps in the past, it will forever retrace this
sequence of L states. We say that the system has fallen

308

into a period L attractor. Attractors of length L = 1 are
called point attractor or fixed points of the network.
The attractor states and the transient states leading to
the attractor together constitute the basin of attraction.
The number and length of attractors represent two
important parameters of the cell modelled by a RBN.
The number of attractors corresponds to the number of
different cell types. The attractor's length corresponds to
the cell cycle time which refers to the amount of time
required for a cell to grow and divide into two daughter
cells (Kauffman 1993). There are analytic solutions of
RBN for k = 1 and k = N (Flyvberg and Kjaer 1988;
Derrida and Flyvbjerg 1987), but finding general
analytic solution is still an open issue. An example of a
RBN with N=3 and k= 2 is shown in Figure 1.

Figure 1: Example of classical RBN with N=3 and k=2
a) Directed graph and Boolean function using lookup
table (LUT) for each node. b) State space diagram: there
is one point attractor (110) and one cycle attractor of
period two (101 010)

The parameters k and p determine the dynamics of

the network. For a given bias p, there is a critical line
)1(21 ppKc −= , below which the network is in the

frozen phase and above which the network is in the
chaotic phase (Derrida and Pomeau 1986). On the
critical line between the frozen and the chaotic phases,
the network exhibits self-organized critical behaviour,
ensuring both stability and evolutionary improvements.

In the classical random Boolean networks, one
important aspect is that the networks are assumed to be
synchronous; however it is not very realistic as genes do
not change their state all at the same moment, hence it is
more appropriate to update these systems
asynchronously using a random order. The exploration
of such asynchronous RBNs can be found in (Harvey
and Bossomaier 1997; Di Paolo 2001; Gershenson
2004).

3. MULTI-AGENT BASED SIMULATION
Agent-based simulation models are normally based on a
discrete time model, where system states are changed at
discrete time points only. The two most common types
of such discrete time simulation are called time-stepped
and event-driven (or event-stepped) models (Fujimoto
2000). They are distinguished by the mechanism used to
advance simulation time. In the first approach, the
simulation advances in equal-size time steps. In each
step, the clock is adjusted and the participants are
informed about the new time. They then can check if an
activity has to be executed at this point in time. In the
other one, a timestamp is assigned to each event which
is an abstraction used in simulation to model some
instantaneous action in the real system, to indicate the
point in simulation time, when the event occurs. Each
event usually results in some change in state variables
defined by the model.

In Multi-agent based simulation (MABS), system
entities are modelled using multiple agents which
interact with the other agents by sending messages to
them and to their environment. Agents can be viewed as
threads of control, which execute concurrently
(Wooldridge 2002). Therefore, it is important that the
agents perceive a common view of the virtual
environment. For example, any pair of agents should
perceive a set of messages in the same sequence, or in
other words, each agent has to process events/messages
according to their timestamp order. This is called local
causality constraint (Fujimoto 1990). Two main
approaches have been proposed to ensure that the local
causality constraint is not violated: conservative and
optimistic synchronization.
The first one avoids strictly the causality violations by
processing safe events only. The well-know algorithm
CMB (Bryant 1977; Chandy and Misra 1979) ensures
the local causality constraint is never violated but may
lead to deadlock situation. The null message scheme
(Misra 1986), on its turn, can avoid this deadlock but
may generate an excessive number of null message. In
addition, this technique relies heavily on the concept of
look-ahead (Nicol 1996) and also typically requires a
static connection between agents.
The optimistic approach, in contrast, allows causality
error to occur but provides suitable techniques to
recover from an incorrect system state. The best know is
Time Warp algorithm (Jefferson 1985). It uses a
mechanism called rollback to cancel the erroneous
computation and reprocess messages in their timestamp
order whenever a straggler message occurs. Several
additional strategies of memory management and
cancelling incorrect computation to improve efficiency
of this algorithm can be found in (Fujimoto 1990;
Jefferson 1990; Lin and Preiss 1991). The Time Warp
exploits full parallelism of systems, nevertheless it is
hard to implement because of requiring complex
manipulations.

Another problem in multi-agent systems is the
accessing to shared state variables which are maintained
by the different agents. This usually leads to an all-to-all

309

communication between agents and results in the
degradation of simulation performance. Many
investigations in the context of Multi-Agent Based
Simulation have addressed to the avoiding this
broadcast communication. Most of them limit the
number of agents receiving message based on their
location or other application-specific attributes.
Algorithms such as can be found in (Macedonia et al.
1995; Logan and Theodoropoulos 2001; Ewald et al.
2006).

4. MODELING RANDOM BOOLEAN

NETWORK
We model the Random Boolean Network as a multi
agent system. Each node of the network is modeled as
an agent that consist of three main fields: agent's state
which is a Boolean variable, list of its neighborhoods,
which is a dynamic array (because the networks can be
non-homogeneous, k is not the same for all agents, such
as a scale-free network has an exponential distribution
of connectivity, so although most nodes may have a
small connectivity, some can have large values) and a
lookup table which can be represented as an (array of)
integer. The agents behave step by step. At each step in
its evolution, an agent reads the state of all its
neighborhoods refers to its lookup table and then
updates its state.

In the distributed simulation, we can simply model
each agent as a process which behaves independently.
These agents are distributed over different processors
and interacts each other by exchanging messages. At
each step, after updating its state, each process send (k)
messages to (k) its neighborhoods. Clearly, it is an
effectless approach because there are too many of
message sent in each step (kN messages). A more
effective approach decomposes random Boolean
network model by regrouping lightweight agents to a
"big-agent" and assigns a logical process (LP) to
simulate each one. The big-agent contains a Boolean (or
bit) array variable (referred as subNetState) to present
its internal state which is constructed from all state of
its lightweight agents (Figure 2). At each step, instead
of sending directly state to neighborhoods, each
lightweight agent updates appropriate element in this
subNetState variable. Hence, to read state of
neighborhoods, agents only need refer to the
subNetState variables. Obviously it would be possible
for neighborhoods of an agent p simulated by LPi to be
an agent q residing in another LPj . That means agent p
has to refer to qth element of the variable subNetState of
the LPj. Thus each LP, for computing its internal state at
step t + 1, must know the ones which were computed by
all others LPs at step t. In other words, LPs must be
synchronized. Two approaches are suggested.

The first one is based on the distributed memory
model, in which each LPs after finishing its
computation at step t will send its internal state to all
others LPs. It continues to compute next step t + 1 only
when it received subNetState variables from all others
LPs. Suppose that the RBN model is simulated by Q

different LPs, then the number of message must be sent
per step is Q * (Q - 1). That reduces its performance.
Detailed analyses about the performance of this
approach are beyond the scope of this paper, but are
discussed elsewhere.

Figure 2: Decomposing a Random Boolean Network
model.

The other approach is based on the share memory

model, in which each LP when have finished its
computation at step t, writes its subNetState to a
pseudo-share memory. This pseudo-share memory
object can be modelled by a memory logic process
(MLP). The MLP receives all subNetState variables
written from LPs, constructs a netState array that
present the state of RBN and then broadcasts it again to
all LPs (figure 2). In the case of Q logical processes, the
number of message sent per step is 2 * Q.

By broadcasting netState, the MLP forces others
LPs to advance together in lock step. This is a
synchronous simulation and it guarantees that the
causality errors does not happen but the potential for
speedup is limited, especially when the RBN model is
partitioned into too many sub-models, it can create a
bottleneck at the memory logical process and this
reduces its performance.

Let t be the average time value which one
lightweight-agent needs for simulating a step, δ be the
average time value for communicating the state of one
agent (it is usually a bit) between MLP and LPs then the
average simulation time T, which be computed at MLP
in one step can be conjectured:

∆+++= δδ
Q
Nt

Q
NNTMLP (1)

Where, N is number of nodes of the modelling

RBN, Q is number of logical process (so the number of
lightweight agents in each LP is QN) and ∆ is some
delay coefficient of the communication, which could
occur by numerous factors, for example by the waiting
to process when many LPs send their internal state to

310

the MLP at the same time. If the ratio of t to δ is a then
the speedup in the ideal case, ∆ = 0, will be:

1++
=

++
≈

aQ
aQ

Q
Nt

Q
NN

NtSpeedup
δδ

 (2)

Clearly, the speedup depends robustly on the ratio

of computation time to communication time. This ratio
will be theoretic limit of speedup in our synchronous
approach. This also suggests that the simulation on a
multiprocessor system does not suffer from
communication latency, always give a better result.

5. EXPERIMENTAL RESULTS
Currently, many languages and tool that are used for the
distributed and parallel simulation are already available.
Most of them use mainly the integrating of agent
toolkits into a High Level Architecture (HLA) based
distributed simulation and focus mainly on the
interoperability between different sequential simulation
toolkits not on the gaining speedups (Minson and
Theodoropoulos 2004; Wang, Turner, and Wang 2005;
Lees, Logan, and Theodoropoulos 2007). Some others
approaches tend to obtain performance improvements
but in those platforms, the communication between
logical processes uses usually TCP/IP protocol which is
reliable, FIFO and point- to-point (Pawlaszczyk and
Timm 2006; Cicirelli, Furfaro, and Nigro 2007). Thus
the broadcast from the MLP to all other LPs is
essentially sequential: the MLP send continuously
netStatus to LPs one by one. We can conjecture the
speedup in this case as equation below:

1*
2 ++

=
++

≈
aQ

aQ

Q
Nt

Q
NNQ

NtSpeedup
δδ

 (3)

Obviously, this sequential-broadcast degrades the
simulation performance when model is partitioned into
many logical processes.

Our experiments were performed in a network of
512MB, Intel 3.0GHZ computers. The LAN has links
with 100Mb/s in bandwidth. Logical processes have
been implemented with Java language, each one is
executed on a separate processor. To "write"
subNetState from LPs to MLP, standard RMI library
was used, but we use multicast mechanism to broadcast
netState from MLP to all others LPs. To ensure that the
communication is reliable we use a timeout mechanism
and a cyclic redundancy check (CRC) mechanism
(Peterson and Brown 1961). The duplicate appearing
will be eliminated by checking logical time (Lamport
1978) of the message received (netState) with local time
at the receiving LP. It is clear that by using of
mechanisms for checking every packet arrived, it can
reduce the simulation performance but we believe that,
in a Local Area Network, this reduction of performance
is acceptable. Behaviours of the logical process and

memory logical process are given in algorithm 1 and
algorithm 2 respectively.

Algorithm 1: Logical Process
While true Do

Wait netState from MLP
If CRC value is correct Then

If LogicalTime = LocalTime Then
For each agent i in lightweight-agent list Do

subNetState[i]←agent[i].step(netState)
End for
LocalTime++
Send subNetState to MLP

End if
End if

End while

Algorithm 2 Memory Logical Process
While true Do

Broadcast netState with its CRC value to all LPs
Clock.Start()
Repeat

Wait subNetState from any LPi
Update ith partition of the newNetState variable

Until received subNetState variable from all LPs
Clock.Stop()
netState ← newNetState
LogicalTime++

End while

Figure 3 shows the fields of a packet which is

broadcasted from MLP to all others LPs. The first two
fields are sequence number and CRC value of the data
field. The next field identifies the logical time which
denotes how far in simulated time the network has
simulated and the last field is broadcasted data which is
network state (netData). Due to limitation on size of
sent diagram in Java UDP, the packet size must be less
than 64K, including its header, and so if network is too
large, MLP will broadcast continuously netState
variable in some different packets. In those cases, the
SegNbr field identifies order of the sent packets. But in
current implementation, we didn't use this field, so the
largest simulated RBN contain maximum of
approximate 219 nodes.

Figure 3: Fields of a broadcasted packet

To estimate theoretic speedup of the simulation of

large random Boolean network, we compute the ratio of
average time an agent need to simulate a step to average
time for communicating a single bit data between LP
and MLP. We implemented a sequential simulator to
simulate RBNs. 500 classical RBNs of 256K-nodes
with k is 1, 4, 7 were simulated for 100 steps. The
accumulated average simulation time is computed. The
results of this experiment were given in figure 4.

311

Figure 4: The average time value to simulate a 256K-
nodes RBN for 100 steps

The communication time contain the time for

writing data to output port at the sending process, the
time for transferring data in the link and the time for
reading all data from input port at the receiving process.
We use two processes executing on the two separates
processors: One process sends a volume of data and
another process receives this data and then resends
immediately it to the sender. The communication time
is computed at the first process when it begins sending a
volume of data until it receives whole those data. The
sending process iterates this procedure in 500 times and
the accumulated average time value for communicating
a bit data between processes is computed. Figure 5
shows the result of this experiment in the case of
volume size being 50Kb. In fact, this average time
depends on the buffer size. The smaller buffer size is,
the larger average time is.

Figure 5: The average time value for broadcasting a bit
of data

By using results of two experiments above, we can

compute the ideal theoretic speedup according to
equation 2. Figure 6 illustrates that result.

To validate these theoretic results, we simulated
500 classical random Boolean networks, each of which
is composed 256K nodes. For each network, we
simulate it in 500 steps. The number of logical process
is equal to the number of processor. Figure 7 shows the
speedup of this experiment with different values of
parameter k.

Figure 6: The theoretic ideal speedup for the
synchronous simulation of large random Boolean
networks

We observe that the real speedup is smaller than
the theoretic one, especially when there are more
processors. This is mainly due to the considerable
bottleneck at the MLP. Nevertheless, in a real share
memory multiprocessors system, because each LP
writes really to a disjoint memory area, we believe that
this bottleneck will not happen.

Figure 7: The real speedup for the synchronous
simulation of 256K nodes RBN with different
connectivities.

6. CONCLUSION
We have introduced classical random Boolean network.
A simple multi-agent based approach for implementing
large-scale simulation of random Boolean network has
been suggested. The theoretic analysis of dependence
between the performance and the ratio of computation
to communication are presented. Future efforts might be
directed toward simulating large random Boolean
networks and other large multi agent systems on multi
processors systems.

ACKNOWLEDGMENTS
I am deeply thankful to Professor Marc Bui of the Ecole
Pratique des Hautes Etudes (EPHE) for his help,
advice and stimulating ideas. I would like to thank the
Laboratoire de Cognition Humaine et ARTificielle
(CHArt) at Ecole Pratique des Hautes Etudes, and in
particular to professor François Jouen of the Ecole

312

Pratique des Hautes Etudes for providing a proper
environment for the initial preparation of this paper.

REFERENCES
Bryant, 1977. Simulation of packet communications

architecture computer systems. Massachussets
Institute of Technology.

Chandy, K.M. and Misra, J., 1979. Distributed
simulation: A case study in design and verification
of distributed programs. IEEE Transactions on
Software Engineering SE-5 (5): 440-452.

Cicirelli, F., Furfaro, A. and Nigro, L., 2007. Exploiting
agents for modelling and simulation of coverage
control protocols in large sensor networks. The
Journal of Systems and Software 80 (11): 1817-
1832.

Derrida, B. and Flyvbjerg, H., 1987. The random map
model: A disordered model with deterministic
dynamics. Journal de Physique, 48: 971-978.

Derrida, B. and Pomeau., Y. 1986. Random networks of
automata: a simple annealed approximation.
Europhys. Lett. 2: 45-59.

Di Paolo, E.A., 2001. Rhythmic and non-rhythmic
attractors in asynchronous random Boolean
networks. Biosystems 59 (3): 85-95.

 Ewald, R., Chen, D., Theodoropoulos, G., Lees, M.,
Logan, B., Oguara, T., and Uhrmacher, A. M.,
2006. Performance Analysis of Shared Data
Access Algorithms for Distributed Simulation of
Multi-Agent Systems. Proceedings of the 20th
Workshop on Principles of Advanced and
Distributed Simulation (PADS'06), 29-36.

Flyvberg, H. and N. Kjaer. 1988. Exact solution of the
Kauffman model with connectivity one. Journal de
Physique A 21 (7): 1695-1718.

Fujimoto, R.M, 1990. Parallel discrete event simulation.
Communication of the ACM 33 (10): 30-53.

Fujimoto, R.M., 2000. Parallel and Distributed
Simulation Systems. John Wiley & Sons.

Gershenson, C., 2004. Introduction to Random Boolean
Networks. Workshop and Tutorial Proceedings
Ninth International Conference on Simulation and
Synthesis of Living Systems (ALife IX), 160-173.

Harvey, I. and Bossomaier, T., 1997. Time out of joint:
Attractors in asynchronous random Boolean
networks." Proceedingsof the Fourth European
Conference on Artificial Life (ECAL97), 67-75.

Jefferson, D. R. 1985. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):
404-205.

Jefferson, D. R. 1990, August. Virtual time II: Storage
management in distributed simulation. Proceeding
of the 9th Annual ACM Symposium on Principles
of Distributed, 75-89.

Kauffman, S., 1969. Metabolic stability and epigenesist
in randomly constructed genetic net. Journal of
Theoretical Biology, 22 (3): 437 - 467.

Kauffman, S., 1993. The Origins of Order: Self-
Organization and Selection in Evolution. New
York: Oxford University Press.

Lamport, L., 1978. Time, Clocks, and the Ordering of
Events in a Distributed System. Comm. ACM, 21
(7): 558- 565.

Lees, M., Logan, B. and Theodoropoulos, G.K., 2007.
Distributed simulation of agent-based systems
with HLA. ACM Transactions on Modelling and
Computer Simulation (TOMACS), 17 (3): 11.

Lin, Y. and Preiss, B.R., 1991. Optimal Memory
Management for time wrap parallel simulation.
ACM Transactions on Modelling and Computer
Simulation 1 (4): 283-307.

Logan, B. and Theodoropoulos, G., 2001. The
distributed simulation of Multi Agent Systems.
Proceedings of the IEEE, Volume 89, 174-186.

Macedonia, M. R., Zyda, M.J., Pratt, D.R., Brutzman,
D.P. and Barham, P.T., 1995. Exploiting Reality
with Multicast Groups. IEEE Computer Graphics
and Applications 15(5), 38-45.

Minson, R. and Theodoropoulos, G., 2004. Distributing
RePast Agent-Based Simulations with HLA.
Proceedings of the 2004 European Simulation
Interoperability Workshop. Paper No. 04E-SIW-
046. Edinburgh

Misra, J., 1986. Distributed discrete – event simulation.
ACM Computing Survey, 18 (1): 39-65.

Nicol, D. M., 1996. Principles of conservative parallel
simulation. Proceedings of the 1996 Winter
Simulation Conference. 128-135.

Pawlaszczyk, D. and Timm, I.J., 2006. A Hybrid Time
Management Approach to Agent Based
Simulation. Proceedings of the 29th Annual
German Conference on Artificial Intelligence (KI
2006), 374-388.

Peterson, W. and Brown, D.T. 1961. Cyclic Codes for
Error Detection. Proceedings of the IRE, 49(1):
228-235.

Wang, F., Turner, S.J. and Wang, L., 2005. Agent
Communication in Distributed Simulations.
Lecture Notes in Computer Science 3415:11-24.

Wooldridge, M., 2002. An Introduction to Multi Agent
Systems. John Wiley & Sons.

AUTHORS BIOGRAPHY
PHAM Dang Hai received the engineering diploma in
Information Technology from the Hanoi University of
Technology, Viet Nam, in 1995 and the diploma of
master in Information Technology from the Institut de
la Francophonie pour l'Informatique, Viet Nam, in
1997. From 1997 to 2004, he was a lecturer at the
Department of computer science, Faculty of
Information Technology, Hanoi University of
Technology, Viet Nam. He is presently a Phd student at
the Ecole Pratique de Hautes Etudes, Paris, France. His
current research interest includes Parallel and
Distributed simulation, Multi-agent based simulation.

313

