
MODELLING AND SIMULATION USING STATECHART-BASED ACTORS

Franco Cicirelli
(a)

, Angelo Furfaro
(b)

, Libero Nigro
(c)

(a)(b)(c)Laboratorio di Ingegneria del Software

(www.lis.deis.unical.it)

Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria

87036 Rende (CS) – Italy

(a)f.cicirelli@deis.unical.it, (b)a.furfaro@deis.unical.it, (c)l.nigro@unical.it

ABSTRACT

This paper describes an agent infrastructure centred on

statechart-based actors for modelling and simulation of

complex systems. Actors are lightweight reactive

autonomous agents which communicate to one another

by asynchronous message passing. Actor dynamism is

specified through a “distilled statechart” which

simplifies the expression of complex behaviour. The

threadless character of actors conserves memory space

and ensures efficient execution. The paper highlights

current implementation status of statechart actors and

demonstrates their practical use and programming style

in Java through a manufacturing system model.

Simulation experiments are reported. Finally, on-going

and future work are summarized in the conclusions.

Keywords: Multi agent systems, statecharts, modelling

and simulation, Java.

1. INTRODUCTION

Statecharts (Harel and Politi, 1998)(Booch et al., 2000)

are a well-known extension to classical state transition

diagrams with constructs to control state explosion

during development of complex systems. The basic

mechanism consists in the possibility of nesting a sub

automaton within a (macro) state thus encouraging step-

wise refinement of complex behaviour. In addition a

macro state can be and-decomposed for supporting a

notion of concurrent sub automata. Statecharts have

been successfully applied to the design of reactive

event-driven real-time systems (Harel and Polity, 1998;

Selic and Rumbaugh, 1998; Fortino et al., 2001; Furfaro

et al., 2006), as well as to modelling and performance

analysis, e.g. (Vijaykumar et al., 2002-2006).

In the work described in this paper an original

framework in Java is developed which enables

modelling and simulation of agent-based systems

(Wooldridge, 2002; Jang et al., 2003) using statecharts.

The proposal is an evolution of previous work of

authors described in (Fortino et al., 2001; Furfaro et al.,

2006) specifically to support M&S activities. The agent

infrastructure is part of a more general distributed

architecture named Theatre (Cicirelli et al., 2007a). A

particular notion of agents is adopted which rests on

actors (Agha, 1986; Cicirelli et al., 2007b). Actors are

lightweight, threadless reactive components which

communicate to one another by asynchronous message

passing. An actor is characterized by its message

interface, a set of hidden data variables and a behaviour

for responding to messages (events). A multi-actor

subsystem (theatre) is orchestrated by a control machine

which provides basic timing, scheduling and

dispatching message services to actors. In this paper the

behaviour of an actor is specified through a “distilled”

statechart, where only the or-decomposition of states is

admitted. Concurrent sub states are avoided. All of this

complies with the basic assumptions of the adopted

actor computational model where concurrency exists at

the actor level but not within actors. In other words,

concurrency stems from reacting to messages and not

from the use of heavyweight multi-threaded agents

which are difficult to exploit, for space/time constraints,

for M&S of large systems. A message reaction

represents an atomic action which can modify the actor

internal data, generate messages to known actors

(acquaintances) including itself for pro-activity, create

new actors, change the current state of the actor.
In this paper statechart-based actors are

demonstrated by applying them to modelling and

simulation of a manufacturing system. Results from

simulation experiments are reported. Finally,

conclusions are presented together with indications of

future work.

2. A MODELLING EXAMPLE

In the following a system model is described

concerning a manufacturing system. The example is

adapted from (Vijaykumar et al., 2002-2006) where it

was handled by statecharts with and-decomposition and

event broadcasting (Harel and Politi, 1998), and

analytically studied by preliminarily transforming the

model into a continuous time Markov chain (CTMC). In

this paper the model is simulated. Obviously, simulation

opens to the possibility of using probability distribution

functions for event occurrences beyond the exponential

one which is normally a prerequisite for building a

CTMC. In addition, simulation can be exploited for

more general exploration of system behaviour

properties.

301

In the system (see Fig. 1), jobs are first processed

by Machine A and then by Machine B. Job movements

are mediated by a bounded capacity Inventory. A Robot

is actually in charge of loading/unloading machines

with jobs, possibly using the Inventory for temporary

job buffering. Machines and the robot are subject to

failure. Repairing from a failure is responsibility of an

Operator.

Machines, Robot, Operator and the Inventory are

modelled as actors. Event broadcasting is simulated in

Fig. 1 by having a shared environment (passive) object

Env which is updated by robot and machines and

inspected by the robot and the operator to decide next

action.

Inventory

Robot

Operator

Update Env MachineBMachineA Update

Get Put

Load/Unload

EndRepairEndRepair

Load/Unload

Update Check

Check

EndRepair

Figure 1: A manufacturing system model

Figg. from 2 to 5 depict respectively the behaviour

of Machine, Operator, Inventory and Robot actors. The

default state of each statechart is represented by a New

leaf state from which the actors move into operation

when receiving an Init message carrying the

initialization parameters. Or-decomposition of states

means that an actor occupying a macro state can find

itself in one sub state only at each time. However, due

to state hierarchy, for example, when the Robot is in the

U2 sub state, it effectively is simultaneously in the U2,

P, and Robot Top states (such a state chain is said a

configuration). For Robot, Robot Top and P are

examples of macro states. Remaining states are leaf

states (they do not admit further decomposition). State

transitions are represented by edges with arrows. Each

transition is labelled by ev[guard]/action where ev is the

trigger (event causing the transition), guard a logical

condition which enables the transition when it evaluates

to true, and action the action “à la Mealy” associated

with the transition (not shown in the figures for the sake

of simplicity). In Fig. 5 the transition with trigger

Failure is an example of a group transition. It means

that whatever is the internal sub state of P, the arrival of

the Failure message causes the state P to be exited and

state B to be entered, where the Robot requires to be

repaired by the Operator. The transition with trigger

EndRepair transmitted by the Operator, causes the

Robot to return into macro state P with history (see the

shallow connector history H). This way the actor returns

exactly into the internal sub state of P which was

current when it was last left off at the time of Failure.

Another form of history connector (not used in the

example) is H* (deep history) which would case

recursive state re-assumption within P and its current

sub macro state down to a leaf state. In this case H and

H* would be equivalent because all the internal sub

states of P are leaf states.

The transition labelled by Tr[condP] and

connecting state W of Robot to the boundary of state P

asks for the default state of P (leaf state D) to be

entered.

After being initialized, a machine (see Fig. 2) goes

into the W state where it waits for a job to be processed.

From W it moves into P state when loaded by the robot

with a job. In the P state the loaded job is processed. At

processing end, the machine moves into WU waiting for

unloading. The message EndProcess is an internal

message which the machine sends to itself for

simulating the processing time (dwell time in P). During

its stay in P the machine can have a failure in which

case it passes to B state. Failure is another internal

message which the machine sends to itself according to

the next time to failure defined by a corresponding

probability distribution function.

Figure 2: Machine behaviour

Figure 3: Operator behaviour

OperatorTop

Repair

R EndProcess

W

New
Init

Check

Init

MachineTop

Unload

WU

W P

B

New

Load

EndProcess

EndRepair[!loss]

Failure

EndRepair[loss]

302

Figure 4: Inventory behaviour

Figure 5: Robot behaviour

While staying in B the machine is repaired by the

Operator. After repairing (arrival of the external

originated message EndRepair from the Operator), the

machine can return into P for continuing processing of

interrupted job, or it can go back to W if the job is lost.

The two possibilities are controlled by the loss guard

which obeys to loss probability.

The Operator (Fig. 3) waits for a repairing request

in the W state. The Check message is an internal event

to W. It is received from the environment and alerts the

operator to consult the environment for checking if a

machine or the robot are in the B state requiring repair.

If a repair request exists, the operator moves to the R

state where the dwell time models the repairing time,

which obviously is different from Machine A, Machine

B and the Robot. The dwell time is tied to the internal

message EndRepair whose action sends to a machine or

robot a similar EndRepair message.

When faced with the decision of which entity to

repair first, the operator chooses according to the

following priority order: first machine Mb, then

machine Ma, then the Robot.

Fig. 4 portrays the behaviour of the Inventory. It is

a bounded buffer of capacity n, which can be 0 or a

positive value. At each moment the initialized Inventory

can be in one state among Empty, Partial or Full.

Depending on current inventory size a Get/Put message

can switch the inventory between Empty, Partial or Full

as shown in Fig. 4.

When in the state W the robot (Fig. 5) waits for an

operation to be exercised on the machines. Table 1

shows some logical conditions which influence the

order in which the robot decides its next move.

Table 1: Environmental conditions affecting robot

operation

cond1 = Mb is in WU;
cond2 = Ma is in WU && Mb is in W;

cond3 = Mb is W && (Inv is empty);

cond4 = Ma is in WU && (Inv is Full);
cond5 = Ma is in W;
condP = cond1 || cond2 || cond3 || cond4 || cond5;

As one case see from Fig. 5 the robot gives priority

to unloading machine Mb (cond1 and sub state U2),

then to simultaneously unloading machine Ma and

loading machine Mb (cond2 and sub state UL), then to

loading machine Mb (cond3 and sub state L2), then to

unloading machine Ma (cond4 and sub state U1) and,

finally, to loading machine Ma (cond5 and sub state

L1). Robot effectively passes from state W to state P

(and then to default state D) when condP which is the

logical or of the various conditions is true. From D an

internal immediate message Start is sent to itself for

moving conditionally to a particular processing state

among U2 to L1. The time spent by the robot in any

operating state depends on the particular operation (see

Table 2). Internal message End is self-sent for

witnessing the end of operation, in which case the robot

moves first into the E state and sends itself a Passivate

message whose arrival takes the robot from state E to

state W where the behaviour repeats again.

While being into an operating state, the Robot can

fail (internal message Failure received). In this case the

on-going operation is interrupted and the operator

intervenes for repairing. Which event arrives first

between End and Failure depends on the next time

P

H

U2

UL

L2

U1

L1

D E

B

W

New

RobotTop

Init

Check

Tr[condP]

Passivate

Start[cond1]

Start[cond2]

Start[cond3]

Start[cond3]

Start[cond4]

End

End

End

End

End

Failure

EndRepair

New

Partial

Full

Empty

Init

Put[size<n-1]

InventoryTop

Get[size>1]

Get[size>1]Put[size==n-1]

Get[size==1]Put[size<n-1]

Get[size==1]

Put[size==n-1]

303

respectively for completing the operation and for

failing.

For the purpose of experimentation, all the timed

events in the system are assumed to be exponentially

distributed. Table 2 summarizes the rates (number of

events per time unit) used for simulation (as in

(Vijaykumar et al., 2002-2006)). Loading/unloading

rate of machines are shown as dwell times in the

corresponding operation state of the robot.

Table 2: Simulation parameter values

 Machine A Machine B Robot

Production rate =8,10 or 12 =10

Failure rate =1 =0.5 =1

Repairing rate =10 =15 =10

Loss probability p=0.5 p=0.3

Loading rate
machine A

L1=100

Unloading rate
machine A

U1=100

Loading rate
machine B

L2=100

Unloading rate
machine B

U2=100

Moving rate from
m. A to m. B

UL=70

3. OUTLINE OF JAVA FRAMEWORK FOR

STATECHART-BASED ACTORS

The following recapitulates the most important Java

classes which were developed for supporting

hierarchical actors.

Time, AbsoluteTime, RelativeTime. Are interfaces

specifying a time notion. An absolute time is an instant

in time when something can happen. A relative time is a

duration, e.g. an amount of time measured from now.

The interfaces have methods for adding/subtracting

times as meaningful.

AbsoluteDiscreteTime, AbsoluteDenseTime,

RelativeDiscreteTime, RelativeDenseTime. Are concrete

classes implementing basic time interfaces. A discrete

time is a long. A dense time is a double. The classes

have a value() method which returns discrete/dense

value of a time instance.

Clock. A basic interface for clocks. A clock has a

method for checking current time, and methods for

advancing the clock according to an absolute or relative

time.

SimulationDiscreteTimeClock, SimulationDense-
TmeClock. Are concrete classes implementing a clock

for simulation, based respectively on discrete time or

dense time.

Actor. Is the base abstract class for actors. An

application actor derives directly or indirectly from

Actor. Methods of Actor include send(Message) for

sending a message to an acquaintance, handler(

Message) which triggers an actor into operation for

processing an arrived message (making a state

transition), now() which returns an absolute time

indicating the current time. The ultimate meaning of

now() depends on a control machine.

Message. Is the base class for messages. A

message carries the receiver information.

Timer. Is an heir of Message. A timer is a triple:

<Message timeout, Actor receiver, RelativeTime

firetime>. At fire time the timeout message is consigned

to its receiver actor. A created timer can be set and

reset. Moreover its remaining time to firing and the

elapsed time from its set time can be checked. The

firetime is expected as a relative time which added to

current time establishes the absolute fire time.

ControlMachine. Is the base class for simulation

control engines. Its methods allow to

schedule/unscheduled a message. A fundamental

method is controller() which starts the control-loop of

the engine.

Simulation. Is a concrete class deriving from

ControlMachine. Its constructor receives the simulation

time limit (an absolute time) and a clock to be used for

managing the simulation time. The application passes a

SimulationDenseTimeClock when it wants a dense time

model to be used. Otherwise it has to pass a

SimulationDiscreteTimeClock. Simulation uses a

PriorityQueue for timers and a LinkedList for

immediate concurrent messages, which are to be

processed at current time.

State. Is the base abstract class for states. A state

can be entered in a DEFAULT, THROUGH, HISTORY

and DEEP_HISTORY mode. The THROUGH mode

occurs when a transition reaches its destination state by

crossing a state hierarchy. A state has a parent when it is

nested into a macro state. To each state are associated

the two basic methods entryAction() and exitAction()

which have a default void implementation. They are

executed respectively at each enter and exit from the

state.

MacroState, LeafState. Are concrete classes

extending State, respectively modelling a macro (o

super) state which has inner nested states, and a

LeafState which is a leaf in the state hierarchy tree.

Transition. Is a base abstract class modelling the

concept of a transition in a statechart. A transition
object carries its source state and the trigger message.

Methods void action(Message) and boolean

guard(Message) can be redefined in concrete transition

objects for programming respectively the action and

guard components of the transition.

InternalTransition. Is a concrete class extending

Transition. It models internal events to a state, which do

not cause entryAction()/exitAction() to be executed.

Message Check in Figg. 3 and 5 is modelled by an

internal transition.

Become. Is a concrete class extending Transition in

the more general case of transferring from a source state

to a destination state according to given enter mode.

Following a become requires the exit-path

(configuration) of source state and the enter-path

(configuration) of destination state to be determined.

Such paths extend from source or destination up to and

304

excluding their common ancestor state. Doing a become

will imply exiting the states of the exit-path and

entering the states of the enter-path.

DefaultPolicy. Is a class realizing the Policy

interface. The class provides the default strategy for

choosing among candidate transitions outgoing from a

state (also considering hierarchy), corresponding to a

given trigger. Selection always gives preference to a

transition exiting from an inner state with respect to a

transition exiting from an enclosing state and for a

given state the choice is non-deterministic.

RandomGenerator. Is a concrete class providing

common methods for random variate generators, e.g.

uniform, exponential, normal etc.

4. PROGRAMMING STYLE

To figure out the resultant Java programming style,

Listing 1 shows an excerpt from the Robot actor. The

constructor of the Robot class is in charge of creating

the state hierarchy of the corresponding statechart. Both

states and transition objects must be defined. tR and tF

are two timers for timing robot operation and next

failure occurrence. eval() is an helper method checking

environmental conditions as in Table 1.

Operating states U2, UL etc. redefine the

entryAction() so as to set both tF and tR timers. This is

important because the entry action gets executed every

time the state is entered, e.g. by history.

As one can see the programming style is

essentially declarative. In addition there is no need to

redefine the handler() method coming from the Actor

base class. All of this simplifies programming and

makes it possible to automating translation from visual

design to Java code.

5. SIMULATION EXPERIMENTS

The manufacturing model was simulated using the

parameter values in Table 2, with the aim of validating

the runtime infrastructure of the achieved

implementation of statechart-based actors. Simulation

uses dense time. Each experiment lasts after a time limit

of tEnd=5 10
5. The environment object in Fig. 1 was

extended in order to collect statistical information about

system productivity, utilization of machines, robot and

operator, losses in machines, average inventory size etc.

The system model was studied in three cases: when

machine A has respectively a lower/equal/greater

production rate than B (see Table 2). System properties

were analyzed vs. the inventory bounded capacity

which was varied from 0 to 20 and then unbounded.

Experimental results comply with those reported in

(Vijaykumar et al., 2002-2006), but furnish more

detailed information about system behaviour.

Fig. 6 portrays measured system productivity

(number of unloads from machine B per time unit) vs.

the inventory capacity. As one can see, starting from 0,

an increase in the inventory capacity increases the

system productivity until the system reaches full-busy

condition. In this condition the system exhibits

maximum parallelism among components, with the

inventory which smooths out instantaneous differences

in the production speed of the two machines. The

smoothing effect is obviously greater when the

production rate of machine A grows.

Listing 1: A fragment from the Robot constructor

4

4.5

5

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

P
ro

d
u

ct
io

n
s

/ti
m

e
 u

n
it

beta(mA)=8

beta(mA)=10
beta(mA)=12

Figure 6: Observed system productivity vs. inventory

capacity.

…
public Robot(){ //constructor
 super(new DefaultPolicy());
 //make state hierarchy
 MacroState Top=new MacroState(null);
 State New=new LeafState(Top);
 State W=new LeafState(Top);
 State B=new LeafState(Top);
 MacroState P=new MacroState(Top);
 Top.setDefaultChild(New);
 State D=new LeafState(P);
 State E=new LeafState(P);
 State U2=new LeafState(P){
 public void entryAction(){
 tR.set(new End(), Robot.this,
 new RelativeDenseTime(rg.exponential(deltaU2)));
 tF.set(new Failure(), Robot.this,
 new RelativeDenseTime(rg.exponential(lambdar)));
 }
 };
 State UL=new LeafState(P){
 public void entryAction(){
 tR.set(new End(), Robot.this,
 new RelativeDenseTime(rg.exponential(alfaUL)));
 tF.set(new Failure(), Robot.this,
 new RelativeDenseTime(rg.exponential(lambdar)));
 }
 };
 …//similar definitions for L2, U1 and L1 sub states
 //make state transitions
 new Become(New, W, State.Mode.DEFAULT, Init.class){
 public void action(Message m){ … }
 };
 new InternalTransition(W, Check.class){
 public void action(Message m){ send(new Tr()); }
 };
 new Become(W, P, State.Mode.DEFAULT, Tr.class){
 public void action(Message m){ send(new Start()); }
 public boolean guard(Message m){ eval(); return condP; }
 };
 new Become(B, P, State.Mode.HISTORY, EndRepair.class){
 public void action(Message m){ env.setRbInB(false); }
 };
 …//other transitions
 init(Top); //initializes actor top state
}//end constructor

305

The positive effect of using a not zero inventory

size can be checked in Fig. 7 which shows the waiting

time for unloading machine A vs. the inventory

capacity. This statistic was achieved by summing up the

dwell time of machine A in state WU, waiting for the

robot to unload the finished product, and then dividing

the sum for the simulation time limit.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

W
a
it

 t
im

e
 f

o
r

u
n

lo
a
d

in
g

 m
A

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 7: Average wait time for unloading machine A

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

W
ai

t t
im

e
fo

r
u

n
lo

a
d

in
g

 m
B

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 8: Average wait time for unloading machine B

For completeness, Fig. 8 illustrates the wait time

for unloading machine B, which has priority with

respect to unloading machine A. As expected, machine

B has a lower wait time. The two wait times become

similar in full-busy operation of the system.

System behaviour can also be studied by watching

the utilization factor (cumulative service time divided

by the simulation time limit) of the various components

(see Figg. 9 to 12).

Machine B utilization grows as the production rate

of machine A augments and the inventory capacity is

increased so as to buffer products delivered by machine

A.

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

M
a

ch
in

e
 A

 u
til

iz
at

io
n

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 9: Machine A utilization vs. inventory capacity

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
Invetory capacity

M
ac

h
in

e
B

 u
ti

li
za

ti
o

n

beta(mA)=8
beta(mA)=10
beta(mA)=12

Figure 10: Machine B utilization vs. inventory capacity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

R
o

b
o

t
u

ti
liz

a
tio

n

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 11: Robot utilization vs. inventory capacity

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

O
p

er
at

o
r

u
ti

liz
at

io
n

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 12: Operator utilization vs. inventory capacity

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

A
ve

ra
g

e
in

ve
n

to
ry

 s
iz

e

beta(mA)=8
beta(mA)=10
beta(mA)=12

Figure 13: Average inventory size vs. inventory

capacity

At best operating conditions, the utilization of

machine B is about 73%. From the perspective of

machine A, robot availability and synchronization

306

concerns have the effect to diminish a little machine A

utilization as its production rate augments from 8 to 12.

However, system productivity and utilization of

machine B are good in any case due to the inventory

mediation. The incidence on the overall system

behaviour of repairing failed components can be

checked on Fig. 12 which portrays the operator

utilization.

Fig. 13 depicts specifically the inventory usage, by

showing the (temporal) average size of the inventory

(collected through a path object) vs. the inventory

capacity. When the production speed of machine A is 8,

the average size of the inventory is definitely about 1.87

(even with unbounded capacity). With an unbounded

inventory, though, it was found an instantaneous peek

value of the inventory size of about 40.

By increasing machine A production speed, as

expected, machine A tends to fill up the inventory as

much as possible. In particular, for beta(mA)=10 (the

two machines have identical speed), the average

inventory size tends to be about 8 with a peek value,

with an unbounded inventory, of about 90. In the case

beta(mA)=12, the inventory is more intensely occupied.

As witnessed by Fig. 13, the inventory average size

continually increases, meaning that as long as there is a

free slot in the inventory, machine A tends to fill it. The

average inventory size, with capacity set to 20, was

found to be about 13.5. Using unbounded capacity, it

emerged that the average inventory size is about 139000

with a peek value of about 277000.

CONCLUSIONS

This paper argues that statechart-based actors (agents)

have the potential to be really useful in the modelling

and simulation of complex systems. A flexible and

efficient (from both time and space) Java framework

was developed which can directly be used through

programming.

On-going and future work is geared at:

porting the implementation in the Theatre

architecture (Cicirelli et al., 2007b) for distributed

simulation of very large systems, e.g. over HLA

extending the realization toward design and

implementation of embedded real-time systems

experimenting with the use of statechart actors in

the support of Parallel DEVS systems (Zeigler et

al., 2000; Cicirelli et al., 2008)

implementing a graphical tool for visual design of

statechart actors and automatic generation of Java

code.

REFERENCES

Agha, G., 1986. Actors: A model for concurrent

computation in distributed systems.

Cambridge:MIT Press.

Booch, G., Rumbaugh, J. and Jacobson, I., 2000. The

Unified Modeling Language User Guide. Reading,

MA:Addison-Wesley.

Cicirelli, F., Furfaro, A., Giordano, A., and Nigro, L.,

2007a. An agent infrastructure for distributed

simulations over HLA and a case study using

unmanned aerial vehicles. Proceedings of 40
th

Annual Simulation Symposium, IEEE Computer

Society Press, pp. 231-238. March 26-28, Norfolk

(VA, USA).

Cicirelli, F., Furfaro, A., Nigro, L. and Pupo, F., 2007b.

A component-based architecture for modelling and

simulation of adaptive complex systems.

Proceedings of 21st European Conference on

Modelling and Simulation (ECMS’07), pp. 156-

163. June 4-6, Prague.

Cicirelli, F., Furfaro, A. and Nigro, L., 2008. Actor-

based simulation of PDEVS Systems over HLA.

Proceedings of 41st Annual Simulation Symposium
(ANSS'08), pp. 229-236. April 14-16, Ottawa,

Canada.

Fortino, G., Nigro, L., Pupo, F. and Spezzano, D., 2001.

Super actors for real-time. Proceedings of Sixth

Int. Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS01), IEEE Computer

Society, pp. 142-149. Rome (Italy).

Furfaro, A., Nigro, L. and Pupo, F., 2006. Modular

design of real-time systems using hierarchical

communicating real-time state machines. Real-

Time Systems, 32(1-2), 105-123.

Harel, D. and Politi, M., 1998. Modeling reactive
systems with statecharts. Mc Graw-Hill.

Jang, M.-W., Reddy, S., Tosic, P., Chen, L. and Agha,

G., 2003. An actor-based simulation for studying

uav coordination. Proceedings of the 15th

European Simulation Symposium (ESS 2003), pp.

593–601. October, Delft (The Netherlands).

Selic, B. and Rumbaugh, J., 1998. Using UML for

modeling complex real-time systems. Available

on-line at: http://www.ibm.com/developerworks/

rational/library/content/03July/1000/1155/1155_u

mlmodeling.pdf [accessed April, 2008]

Vijaykumar, N.L., de Carvalho, S.V. and Abdurahiman,

V., 2002. On proposing statecharts to specify

performance models. Int. Trans. in Operational
Research, 9, 321-336.

Vijaykumar, N.L., de Carvalho, S.V., Andrade, V.M.B.

and Abdurahiman, V., 2006. Introducing

probabilities in statecharts to specify reactive

systems for performance analysis. Computer and

Operations Research, 33(8), 2369-2386.

Wooldridge, M., 2002. An introduction to multi-agent

systems. John Wiley & Sons, Ltd.

Zeigler, B. P., Praehofer, H. and Kim, T., 2000. Theory

of modeling and simulation. New York: Academic

Press. 2nd edition.

307

