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ABSTRACT 

This paper describes an agent infrastructure centred on 

statechart-based actors for modelling and simulation of 

complex systems. Actors are lightweight reactive 

autonomous agents which communicate to one another 

by asynchronous message passing. Actor dynamism is 

specified through a “distilled statechart” which 

simplifies the expression of complex behaviour. The 

threadless character of actors conserves memory space 

and ensures efficient execution. The paper highlights 

current implementation status of statechart actors and 

demonstrates their practical use and programming style 

in Java through a manufacturing system model. 

Simulation experiments are reported. Finally, on-going 

and future work are summarized in the conclusions. 

Keywords: Multi agent systems, statecharts, modelling 

and simulation, Java. 

1. INTRODUCTION

Statecharts (Harel and Politi, 1998)(Booch et al., 2000) 

are a well-known extension to classical state transition 

diagrams with constructs to control state explosion 

during development of complex systems. The basic 

mechanism consists in the possibility of nesting a sub 

automaton within a (macro) state thus encouraging step-

wise refinement of complex behaviour. In addition a 

macro state can be and-decomposed for supporting a 

notion of concurrent sub automata. Statecharts have 

been successfully applied to the design of reactive 

event-driven real-time systems (Harel and Polity, 1998; 

Selic and Rumbaugh, 1998; Fortino et al., 2001; Furfaro 

et al., 2006), as well as to modelling and performance 

analysis, e.g. (Vijaykumar et al., 2002-2006). 

In the work described in this paper an original 

framework in Java is developed which enables 

modelling and simulation of agent-based systems 

(Wooldridge, 2002; Jang et al., 2003) using statecharts. 

The proposal is an evolution of previous work of 

authors described in (Fortino et al., 2001; Furfaro et al.,

2006) specifically to support M&S activities. The agent 

infrastructure is part of a more general distributed 

architecture named Theatre (Cicirelli et al., 2007a). A 

particular notion of agents is adopted which rests on 

actors (Agha, 1986; Cicirelli et al., 2007b). Actors are 

lightweight, threadless reactive components which 

communicate to one another by asynchronous message 

passing. An actor is characterized by its message 

interface, a set of hidden data variables and a behaviour 

for responding to messages (events). A multi-actor 

subsystem (theatre) is orchestrated by a control machine 

which provides basic timing, scheduling and 

dispatching message services to actors. In this paper the 

behaviour of an actor is specified through a “distilled” 

statechart, where only the or-decomposition of states is 

admitted. Concurrent sub states are avoided. All of this 

complies with the basic assumptions of the adopted 

actor computational model where concurrency exists at 

the actor level but not within actors. In other words, 

concurrency stems from reacting to messages and not 

from the use of heavyweight multi-threaded agents 

which are difficult to exploit, for space/time constraints, 

for M&S of large systems. A message reaction 

represents an atomic action which can modify the actor 

internal data, generate messages to known actors 

(acquaintances) including itself for pro-activity, create 

new actors, change the current state of the actor. 
In this paper statechart-based actors are 

demonstrated by applying them to modelling and 

simulation of a manufacturing system. Results from 

simulation experiments are reported. Finally, 

conclusions are presented together with indications of 

future work. 

2. A MODELLING EXAMPLE 

In the following a system model is described 

concerning a manufacturing system. The example is 

adapted from (Vijaykumar et al., 2002-2006) where it 

was handled by statecharts with and-decomposition and 

event broadcasting (Harel and Politi, 1998), and 

analytically studied by preliminarily transforming the 

model into a continuous time Markov chain (CTMC). In 

this paper the model is simulated. Obviously, simulation 

opens to the possibility of using probability distribution 

functions for event occurrences beyond the exponential 

one which is normally a prerequisite for building a 

CTMC. In addition, simulation can be exploited for 

more general exploration of system behaviour 

properties. 
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In the system (see Fig. 1), jobs are first processed 

by Machine A and then by Machine B. Job movements 

are mediated by a bounded capacity Inventory. A Robot 

is actually in charge of loading/unloading machines 

with jobs, possibly using the Inventory for temporary 

job buffering. Machines and the robot are subject to 

failure. Repairing from a failure is responsibility of an 

Operator.  

Machines, Robot, Operator and the Inventory are 

modelled as actors. Event broadcasting is simulated in 

Fig. 1 by having a shared environment (passive) object 

Env which is updated by robot and machines and 

inspected by the robot and the operator to decide next 

action. 

Inventory

Robot

Operator

Update Env MachineBMachineA Update

Get Put

Load/Unload

EndRepairEndRepair

Load/Unload

Update Check

Check

EndRepair

Figure 1: A manufacturing system model 

Figg. from 2 to 5 depict respectively the behaviour 

of Machine, Operator, Inventory and Robot actors. The 

default state of each statechart is represented by a New 

leaf state from which the actors move into operation 

when receiving an Init message carrying the 

initialization parameters. Or-decomposition of states 

means that an actor occupying a macro state can find 

itself in one sub state only at each time. However, due 

to state hierarchy, for example, when the Robot is in the 

U2 sub state, it effectively is simultaneously in the U2, 

P, and Robot Top states (such a state chain is said a 

configuration). For Robot, Robot Top and P are 

examples of macro states. Remaining states are leaf 

states (they do not admit further decomposition). State 

transitions are represented by edges with arrows. Each 

transition is labelled by ev[guard]/action where ev is the 

trigger (event causing the transition), guard a logical 

condition which enables the transition when it evaluates 

to true, and action the action “à la Mealy” associated 

with the transition (not shown in the figures for the sake 

of simplicity). In Fig. 5 the transition with trigger 

Failure is an example of a group transition. It means 

that whatever is the internal sub state of P, the arrival of 

the Failure message causes the state P to be exited and 

state B to be entered, where the Robot requires to be 

repaired by the Operator. The transition with trigger 

EndRepair transmitted by the Operator, causes the 

Robot to return into macro state P with history (see the 

shallow connector history H). This way the actor returns 

exactly into the internal sub state of P which was 

current when it was last left off at the time of Failure. 

Another form of history connector (not used in the 

example) is H* (deep history) which would case 

recursive state re-assumption within P and its current 

sub macro state down to a leaf state. In this case H and 

H* would be equivalent because all the internal sub 

states of P are leaf states. 

The transition labelled by Tr[condP] and 

connecting state W of Robot to the boundary of state P 

asks for the default state of P (leaf state D) to be 

entered. 

After being initialized, a machine (see Fig. 2) goes 

into the W state where it waits for a job to be processed. 

From W it moves into P state when loaded by the robot 

with a job. In the P state the loaded job is processed. At 

processing end, the machine moves into WU waiting for 

unloading. The message EndProcess is an internal 

message which the machine sends to itself for 

simulating the processing time (dwell time in P). During 

its stay in P the machine can have a failure in which 

case it passes to B state. Failure is another internal 

message which the machine sends to itself according to 

the next time to failure defined by a corresponding 

probability distribution function. 

Figure 2: Machine behaviour 

Figure 3: Operator behaviour 
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Figure 4: Inventory behaviour 

Figure 5: Robot behaviour 

While staying in B the machine is repaired by the 

Operator. After repairing (arrival of the external 

originated message EndRepair from the Operator), the 

machine can return into P for continuing processing of 

interrupted job, or it can go back to W if the job is lost. 

The two possibilities are controlled by the loss guard 

which obeys to loss probability. 

The Operator (Fig. 3) waits for a repairing request 

in the W state. The Check message is an internal event 

to W. It is received from the environment and alerts the 

operator to consult the environment for checking if a 

machine or the robot are in the B state requiring repair. 

If a repair request exists, the operator moves to the R 

state where the dwell time models the repairing time, 

which obviously is different from Machine A, Machine 

B and the Robot. The dwell time is tied to the internal 

message EndRepair whose action sends to a machine or 

robot a similar EndRepair message. 

When faced with the decision of which entity to 

repair first, the operator chooses according to the 

following priority order: first machine Mb, then 

machine Ma, then the Robot. 

Fig. 4 portrays the behaviour of the Inventory. It is 

a bounded buffer of capacity n, which can be 0 or a 

positive value. At each moment the initialized Inventory 

can be in one state among Empty, Partial or Full. 

Depending on current inventory size a Get/Put message 

can switch the inventory between Empty, Partial or Full 

as shown in Fig. 4. 

When in the state W the robot (Fig. 5) waits for an 

operation to be exercised on the machines. Table 1 

shows some logical conditions which influence the 

order in which the robot decides its next move.  

Table 1: Environmental conditions affecting robot 

operation 

cond1 = Mb is in WU; 
cond2 = Ma is in WU && Mb is in W; 

cond3 = Mb is W && (Inv is empty); 

cond4 = Ma is in WU && (Inv is Full); 
cond5 = Ma is in W; 
condP = cond1 || cond2 || cond3 || cond4 || cond5; 

As one case see from Fig. 5 the robot gives priority 

to unloading machine Mb (cond1 and sub state U2), 

then to simultaneously unloading machine Ma and 

loading machine Mb (cond2 and sub state UL), then to 

loading machine Mb (cond3 and sub state L2), then to 

unloading machine Ma (cond4 and sub state U1) and, 

finally, to loading machine Ma (cond5 and sub state 

L1). Robot effectively passes from state W to state P 

(and then to default state D) when condP which is the 

logical or of the various conditions is true. From D an 

internal immediate message Start is sent to itself for 

moving conditionally to a particular processing state 

among U2 to L1. The time spent by the robot in any 

operating state depends on the particular operation (see 

Table 2). Internal message End is self-sent for 

witnessing the end of operation, in which case the robot 

moves first into the E state and sends itself a Passivate 

message whose arrival takes the robot from state E to 

state W where the behaviour repeats again. 

While being into an operating state, the Robot can 

fail (internal message Failure received). In this case the 

on-going operation is interrupted and the operator 

intervenes for repairing. Which event arrives first 

between End and Failure depends on the next time 
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respectively for completing the operation and for 

failing. 

For the purpose of experimentation, all the timed 

events in the system are assumed to be exponentially 

distributed. Table 2 summarizes the rates (number of 

events per time unit) used for simulation (as in 

(Vijaykumar et al., 2002-2006)). Loading/unloading 

rate of machines are shown as dwell times in the 

corresponding operation state of the robot. 

Table 2: Simulation parameter values 

 Machine A Machine B Robot 

Production rate =8,10 or 12 =10

Failure rate =1 =0.5 =1

Repairing rate =10 =15 =10

Loss probability p=0.5 p=0.3  

Loading rate 
machine A 

L1=100

Unloading rate 
machine A 

U1=100

Loading rate 
machine B 

L2=100

Unloading rate 
machine B 

U2=100

Moving rate from 
m. A to m. B 

UL=70

3. OUTLINE OF JAVA FRAMEWORK FOR 

STATECHART-BASED ACTORS 

The following recapitulates the most important Java 

classes which were developed for supporting 

hierarchical actors. 

Time, AbsoluteTime, RelativeTime. Are interfaces 

specifying a time notion. An absolute time is an instant 

in time when something can happen. A relative time is a 

duration, e.g. an amount of time measured from now. 

The interfaces have methods for adding/subtracting 

times as meaningful.  

AbsoluteDiscreteTime, AbsoluteDenseTime,

RelativeDiscreteTime, RelativeDenseTime. Are concrete 

classes implementing basic time interfaces. A discrete 

time is a long. A dense time is a double. The classes 

have a value() method which returns discrete/dense 

value of a time instance. 

Clock. A basic interface for clocks. A clock has a 

method for checking current time, and methods for 

advancing the clock according to an absolute or relative 

time. 

SimulationDiscreteTimeClock, SimulationDense-
TmeClock. Are concrete classes implementing a clock 

for simulation, based respectively on discrete time or 

dense time. 

Actor. Is the base abstract class for actors. An 

application actor derives directly or indirectly from 

Actor. Methods of Actor include send( Message ) for 

sending a message to an acquaintance, handler( 

Message ) which triggers an actor into operation for 

processing an arrived message (making a state 

transition), now() which returns an absolute time 

indicating the current time. The ultimate meaning of 

now() depends on a control machine. 

Message. Is the base class for messages. A 

message carries the receiver information. 

Timer. Is an heir of Message. A timer is a triple: 

<Message timeout, Actor receiver, RelativeTime 

firetime>. At fire time the timeout message is consigned 

to its receiver actor. A created timer can be set and 

reset. Moreover its remaining time to firing and the 

elapsed time from its set time can be checked. The 

firetime is expected as a relative time which added to 

current time establishes the absolute fire time. 

ControlMachine. Is the base class for simulation 

control engines. Its methods allow to 

schedule/unscheduled a message. A fundamental 

method is controller() which starts the control-loop of 

the engine. 

Simulation. Is a concrete class deriving from 

ControlMachine. Its constructor receives the simulation 

time limit (an absolute time) and a clock to be used for 

managing the simulation time. The application passes a 

SimulationDenseTimeClock when it wants a dense time 

model to be used. Otherwise it has to pass a 

SimulationDiscreteTimeClock. Simulation uses a 

PriorityQueue for timers and a LinkedList for 

immediate concurrent messages, which are to be 

processed at current time. 

State. Is the base abstract class for states. A state 

can be entered in a DEFAULT, THROUGH, HISTORY 

and DEEP_HISTORY mode. The THROUGH mode 

occurs when a transition reaches its destination state by 

crossing a state hierarchy. A state has a parent when it is 

nested into a macro state. To each state are associated 

the two basic methods entryAction() and exitAction() 

which have a default void implementation. They are 

executed respectively at each enter and exit from the 

state.

MacroState, LeafState. Are concrete classes 

extending State, respectively modelling a macro (o 

super) state which has inner nested states, and a 

LeafState which is a leaf in the state hierarchy tree. 

Transition. Is a base abstract class modelling the 

concept of a transition in a statechart. A transition 
object carries its source state and the trigger message. 

Methods void action(Message) and boolean 

guard(Message) can be redefined in concrete transition 

objects for programming respectively the action and 

guard components of the transition. 

InternalTransition. Is a concrete class extending 

Transition. It models internal events to a state, which do 

not cause entryAction()/exitAction() to be executed. 

Message Check in Figg. 3 and 5 is modelled by an 

internal transition. 

Become. Is a concrete class extending Transition in 

the more general case of transferring from a source state 

to a destination state according to given enter mode. 

Following a become requires the exit-path 

(configuration) of source state and the enter-path 

(configuration) of destination state to be determined. 

Such paths extend from source or destination up to and 
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excluding their common ancestor state. Doing a become 

will imply exiting the states of the exit-path and 

entering the states of the enter-path. 

DefaultPolicy. Is a class realizing the Policy

interface. The class provides the default strategy for 

choosing among candidate transitions outgoing from a 

state (also considering hierarchy), corresponding to a 

given trigger. Selection always gives preference to a 

transition exiting from an inner state with respect to a 

transition exiting from an enclosing state and for a 

given state the choice is non-deterministic. 

RandomGenerator. Is a concrete class providing 

common methods for random variate generators, e.g. 

uniform, exponential, normal etc. 

4. PROGRAMMING STYLE 

To figure out the resultant Java programming style, 

Listing 1 shows an excerpt from the Robot actor. The 

constructor of the Robot class is in charge of creating 

the state hierarchy of the corresponding statechart. Both 

states and transition objects must be defined. tR and tF 

are two timers for timing robot operation and next 

failure occurrence. eval() is an helper method checking 

environmental conditions as in Table 1. 

Operating states U2, UL etc. redefine the 

entryAction() so as to set both tF and tR timers. This is 

important because the entry action gets executed every 

time the state is entered, e.g. by history. 

As one can see the programming style is 

essentially declarative. In addition there is no need to 

redefine the handler() method coming from the Actor 

base class. All of this simplifies programming and 

makes it possible to automating translation from visual 

design to Java code. 

5. SIMULATION EXPERIMENTS 

The manufacturing model was simulated using the 

parameter values in Table 2, with the aim of validating 

the runtime infrastructure of the achieved 

implementation of statechart-based actors. Simulation 

uses dense time. Each experiment lasts after a time limit 

of tEnd=5 10
5. The environment object in Fig. 1 was 

extended in order to collect statistical information about 

system productivity, utilization of machines, robot and 

operator, losses in machines, average inventory size etc. 

The system model was studied in three cases: when 

machine A has respectively a lower/equal/greater 

production rate than B (see Table 2). System properties 

were analyzed vs. the inventory bounded capacity 

which was varied from 0 to 20 and then unbounded. 

Experimental results comply with those reported in 

(Vijaykumar et al., 2002-2006), but furnish more 

detailed information about system behaviour. 

Fig. 6 portrays measured system productivity 

(number of unloads from machine B per time unit) vs. 

the inventory capacity. As one can see, starting from 0, 

an increase in the inventory capacity increases the 

system productivity until the system reaches full-busy 

condition. In this condition the system exhibits 

maximum parallelism among components, with the 

inventory which smooths out instantaneous differences 

in the production speed of the two machines. The 

smoothing effect is obviously greater when the 

production rate of machine A grows.  

Listing 1: A fragment from the Robot constructor 
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Figure 6: Observed system productivity vs. inventory 

capacity.

…
public Robot(){ //constructor 
 super( new DefaultPolicy() );  
 //make state hierarchy 
 MacroState Top=new MacroState(null); 
 State New=new LeafState(Top); 
 State W=new LeafState(Top); 
 State B=new LeafState(Top); 
 MacroState P=new MacroState(Top); 
 Top.setDefaultChild(New); 
 State D=new LeafState(P); 
 State E=new LeafState(P); 
 State U2=new LeafState(P){ 
  public void entryAction(){ 
   tR.set( new End(), Robot.this,  
                               new RelativeDenseTime(rg.exponential(deltaU2)) ); 
   tF.set( new Failure(), Robot.this,  
                               new RelativeDenseTime(rg.exponential(lambdar)) ); 
  } 
 }; 
 State UL=new LeafState(P){ 
  public void entryAction(){ 
   tR.set( new End(), Robot.this,  
                               new RelativeDenseTime(rg.exponential(alfaUL)) ); 
   tF.set( new Failure(), Robot.this,  
                               new RelativeDenseTime(rg.exponential(lambdar)) ); 
  } 
 }; 
 …//similar definitions for L2, U1 and L1 sub states 
 //make state transitions 
 new Become( New, W, State.Mode.DEFAULT, Init.class ){ 
  public void action( Message m ){ …  } 
 }; 
 new InternalTransition( W, Check.class ){ 
  public void action( Message m ){ send( new Tr() ); } 
 }; 
 new Become( W, P, State.Mode.DEFAULT, Tr.class ){ 
  public void action( Message m ){ send( new Start() ); } 
  public boolean guard( Message m ){ eval(); return condP; } 
 }; 
 new Become( B, P, State.Mode.HISTORY, EndRepair.class ){ 
  public void action( Message m ){ env.setRbInB(false); } 
 }; 
 …//other transitions 
 init( Top ); //initializes actor top state  
}//end constructor 
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The positive effect of using a not zero inventory 

size can be checked in Fig. 7 which shows the waiting 

time for unloading machine A vs. the inventory 

capacity. This statistic was achieved by summing up the 

dwell time of machine A in state WU, waiting for the 

robot to unload the finished product, and then dividing 

the sum for the simulation time limit.  
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Figure 7: Average wait time for unloading machine A 
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Figure 8: Average wait time for unloading machine B 

For completeness, Fig. 8 illustrates the wait time 

for unloading machine B, which has priority with 

respect to unloading machine A. As expected, machine 

B has a lower wait time. The two wait times become 

similar in full-busy operation of the system. 

System behaviour can also be studied by watching 

the utilization factor (cumulative service time divided 

by the simulation time limit) of the various components 

(see Figg. 9 to 12). 

Machine B utilization grows as the production rate 

of machine A augments and the inventory capacity is 

increased so as to buffer products delivered by machine 

A.

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

M
a

ch
in

e
 A

 u
til

iz
at

io
n

beta(mA)=8

beta(mA)=10

beta(mA)=12

Figure 9: Machine A utilization vs. inventory capacity 
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Figure 10: Machine B utilization vs. inventory capacity 
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Figure 11: Robot utilization vs. inventory capacity 
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Figure 12: Operator utilization vs. inventory capacity 
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Figure 13: Average inventory size vs. inventory 

capacity

At best operating conditions, the utilization of 

machine B is about 73%. From the perspective of 

machine A, robot availability and synchronization 
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concerns have the effect to diminish a little machine A 

utilization as its production rate augments from 8 to 12. 

However, system productivity and utilization of 

machine B are good in any case due to the inventory 

mediation. The incidence on the overall system 

behaviour of repairing failed components can be 

checked on Fig. 12 which portrays the operator 

utilization. 

Fig. 13 depicts specifically the inventory usage, by 

showing the (temporal) average size of the inventory 

(collected through a path object) vs. the inventory 

capacity. When the production speed of machine A is 8, 

the average size of the inventory is definitely about 1.87 

(even with unbounded capacity). With an unbounded 

inventory, though, it was found an instantaneous peek 

value of the inventory size of about 40. 

By increasing machine A production speed, as 

expected, machine A tends to fill up the inventory as 

much as possible. In particular, for beta(mA)=10 (the 

two machines have identical speed), the average 

inventory size tends to be about 8 with a peek value, 

with an unbounded inventory, of about 90. In the case 

beta(mA)=12, the inventory is more intensely occupied. 

As witnessed by Fig. 13, the inventory average size 

continually increases, meaning that as long as there is a 

free slot in the inventory, machine A tends to fill it. The 

average inventory size, with capacity set to 20, was 

found to be about 13.5. Using unbounded capacity, it 

emerged that the average inventory size is about 139000 

with a peek value of about 277000. 

CONCLUSIONS 

This paper argues that statechart-based actors (agents) 

have the potential to be really useful in the modelling 

and simulation of complex systems. A flexible and 

efficient (from both time and space) Java framework 

was developed which can directly be used through 

programming. 

On-going and future work is geared at: 

porting the implementation in the Theatre 

architecture (Cicirelli et al., 2007b) for distributed 

simulation of very large systems, e.g. over HLA 

extending the realization toward design and 

implementation of embedded real-time systems 

experimenting with the use of statechart actors in 

the support of Parallel DEVS systems (Zeigler et

al., 2000; Cicirelli et al., 2008) 

implementing a graphical tool for visual design of 

statechart actors and automatic generation of Java 

code. 
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