
WSDL-BASED DEVS AGENT FOR NET-CENTRIC SYSTEMS ENGINEERING

Saurabh Mittal(a), Bernard P. Zeigler(b), Jose L. Risco Martin(c), Jesús M. de la Cruz(c)

(a)DUNIP Technologies, Inc. New Delhi, India
(b)Arizona Center for Integrative Modeling and Simulation
ECE Department, University of Arizona, Tucson, AZ USA

(c) Departamento de Arquitectura de Computadores y Automática
Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain

(a)saurabh.mittal@duniptechnologies.com, (b)zeigler@ece.arizona.edu, (c) jlrisco@dacya.ucm.es, jmcruz@fis.ucm.es

ABSTRACT
This research work provides a methodology to use
Discrete Event Systems Specification (DEVS) to design
and evaluate the performance of web services within a
Service Oriented Architecture (SOA). We will show
how a Web Service Description Language (WSDL)
document can be mapped to a DEVS model in an
automated manner through a DEVS abstract service
wrapper. This work will describe the underlying
architecture of abstract DEVS service wrapper and a
workflow example made executable using the
DEVS/SOA framework. This work will establish DEVS
as a production environment for net-centric systems as
well as a solid M&S analysis tool for SOA design.

Keywords: SOA, WSDL, DEVS/SOA, DEVSML

1. INTRODUCTION
Industry and government are spending extensively to
transition their business processes and governance to
Service Oriented Architecture implementations for
efficient information reuse, integration, collaboration
and cost-sharing. Service Oriented Architecture (SOA)
enables orchestrating web services to execute such
processes using Business Process Execution Language
(BPEL). Business Process Modeling Notation (BPMN)
is another method that outputs BPEL for deployment.
As an example, the Department of Defense’s (DoD
grand vision is the Global Information Grid that is
founded on SOA infrastructure. As illustrated in Figure
1, the SOA infrastructure is to be based on a small set
of capabilities known as Core Enterprise Services
(CES) whose use is mandated to enable interoperability
and increased information sharing within and across
Mission Areas, such as the Warfighter domain,
Business processes, Defense Intelligence, and so on)
(DoD GIG Architecture, 2007). Net-Centric Enterprise
Services (NCES) is DoD’s implementation of its Data
Strategy over the GIG. NCES provide SOA
infrastructure capabilities such as service and metadata
registries, service discovery, user authentication,
machine-to-machine messaging, service management,
orchestration, and service governance.
 However, composing/orchestrating web services in
a process workflow (a.k.a Mission thread in the DoD
domain) is currently bounded by the BPMN/BPEL
technologies. Moreover, there are few methodologies to
support such composition/orchestration. Further, BPMN

and BPEL are not integrated in a robust manner and
different proprietary BPMN diagrams from commercial
tools fail to deliver the same BPEL translations. Today,
these two technologies is by far the only viable means
whereby executives and managers can devise process
flows without touching the technological aspects. With
so much resting on SOA, their reliability and analysis
must be rigorously considered. The BPMN/BPEL
combination neither has any grounding in system
theoretical principles nor can it be used in designing
net-centric systems based on SOA in its current state.

Figure 1: Core Enterprise Services in GIG

 In this research work we provide a proof of concept
of how Discrete Event System Specification (DEVS)
Formalism can deliver another process work flow
mechanism to compose web services in a SOA. We will
show how the resulting agent based DEVS system can
be executed on the recently developed DEVS/SOA
(DUNIP, 2007; Mittal, Martin and Zeigler, 2008)
distributed modeling and simulation framework. In
addition to supporting SOA application development
the framework enables verification and validation
testing of application. The developed DEVS models
from WSDL lie in the subset of DEVS specifications
known as Finite Deterministic DEVS or FDDEVS
(Hwang and Zeigler, 2006; Mittal, Zeigler and Hwang,
2007) that can be used for verification. However, V&V
is not the focus of this paper. We will demonstrate the
execution of the DEVS agent in a complete case-study
in which a workflow is composed and executed using

292

DEVS/SOA framework. The paper is organized as
follows. Section 2 presents the related work in the area
of BPEL, BPMN and Agent based studies focused
towards SOA. Section 3 describes the underlying
technologies that include DEVS, Web Services
framework. Section 4 deals with Abstract DEVS
Service wrapper in detail and also discusses how
statistics gathering is integrated with the wrapper
design. Section 5 presents the implementation of DEVS
WSDL agent and how it can be used in a process
workflow using the proposed Web Services Workflow
Formalism, WSWF. Section 6 presents layered
architecture of Agent-based Test Instrumentation
System on/using Global Information Grid using SOA
(GIG/SOA) that provides a larger perspective on the
application of DEVS-WSDL agent architecture. Finally,
Section 7 presents conclusions and future work.

2. RELATED WORK
In 2003 there were more than 10 recognized groups
defining standards for BPM related activities, 7 of these
bodies were working on modeling definitions so it’s no
wonder that the whole picture got very confused (Pyke,
2007) Fortunately there has been a lot of consolidation,
and currently only 3 key standards to really take notice:

1. BPMN
2. XPDL
3. BPEL

 The Business Process Modeling Notation (BPMN)
is a standardized graphical notation for graphically
representing business processes workflows. BPMN’s
primary goal is to provide a standard notation that is
readily understandable by all business stakeholders.
Stakeholders in this definition include business analysts,
technical developers and business managers. BPEL is
an "execution language" the goal of which is to enable
definition of web service orchestrations. Ultimately,
BPEL is all about bits and bytes being moved from
place to place and manipulated. XPDL is described not
an executable programming language like BPEL, but
specifically a process design format that literally
represents the "drawing" of the process definition.
XPDL is effectively the file format or "serialization" of
BPMN. More generally, it can also support any design
method or process model that uses the XPDL meta-
model. XPDL is a proven format for process design
interchange, and it is the most practical standard for
establishing a Process Design Ecosystem.
Summarizing, currently there is no popular means other
than BPMN/BPEL to design a web service workflow
orchestration.

3. UNDERLYING TECHNOLOGIES
This section will give an overview of the technologies
used in the development of DEVS Web service M&S
framework.

3.1. DEVS
Discrete Event System Specification (DEVS) (Zeigler,
Kim and Praehofer, 2000) is a formalism, which
provides a means of specifying the components of a
system in a discrete event simulation. In DEVS
formalism, one must specify Basic Models and how
these models are connected together. These basic
models are called Atomic Models (Figure 2a) and larger
models which are obtained by connecting these atomic
blocks in meaningful fashion are called Coupled Models
(Figure 2b). Each of these atomic models has inports (to
receive external events), outports (to send events), set of
state variables, internal transition, external transition,
and time advance functions. Mathematically it is
represented as 8-tuple system as eq. (1) below:

M = <X, S, Y, δint, δext, δcon, λ, ta> eq. (1)

where,

X is the set of input values
S is the set of state
Y is the set of output values
δint: S → S is the internal transition function
δext: Q x Xb → S is the external transition
function, where

Xb is a set of bags over elements in X,
Q is the total state set.

δcon: S x Xb → S is the confluent transition
function, subject to δcon(s,Φ) = δint(s)
λ: S → Yb is the output function
ta: S → R0

+
,inf is the time advance function

 The model’s description (implementation) uses (or
discards) the message in the event to do the
computation and delivers an output message on the
outport and makes a state transition.
 A DEVS-coupled model designates how atomic
models can be coupled together and how they interact
with each other to form a complex model. The coupled
model can be employed as a component in a larger
coupled model and can construct complex models in a
hierarchical way. The specification provides
component and coupling information. The coupled
DEVS model is defined as eq. (2) below:

 A Java-based implementation of DEVS formalism,
DEVSJAVA (Zeigler and Sarjoughian, 2000) can be
used to implement these atomic or coupled models.

M = <X, Y, D, {Mij},{Ij}, {Zij}> eq. (2)

where,
 X is a set of inputs
 Y is a set of outputs
 D is a set of DEVS component names
 For each i ∈ D,
 Mi is a DEVS component model
 Ii is the set of influences for I
 For each j ∈ Ii,

293

 DEVS formalism consists of models, the simulator
and the Experimental Frame as shown in Figure 3. It
categorically separates the three of them and they can
be perceived of components of a DEVS system
architecture. We will focus our attention to the two
types of models i.e. atomic and coupled models.

(a)

(b)

Figure 2: Hierarchical composition of Atomic and
Coupled DEVS models.

Figure 3: DEVS Separation of Model, Simulator and the
Experimental Frame

3.2. Web Services and Interoperability using XML
The Service oriented Architecture (SOA) framework is
the orchestration of multiple web services engaged
towards a business goal. A Web Service is a component
consisting of various W3C standards, in which various
computational components are made available as
‘services’ interacting in an automated manner that
achieve machine-to-machine interoperable interaction
over the network. The interface is specified using Web
Service Description language (WSDL) that contains
information about ports, message types, port types, and
other relating information for binding two interactions.
It is essentially a client server framework, wherein
client requests a ‘service’ using a SOAP message that is
transmitted via HTTP in the XML format. A Web

service is published by any commercial vendor at a
specific URL to be consumed/requested by another
commercial application on the Internet. It is designed
specifically for machine-to-machine interaction. Both
the client and the server encapsulate their messages in
SOAP wrappers.
 The fundamental concept of web services is to
integrate software application as services. Web services
allow the applications to communicate with other
applications using open standards. To offer DEVS-
based simulators as web services, they must have the
following standard technologies: communication
protocol (Simple Object Access Protocol, SOAP),
service description (Web Service Description Language,
WSDL), and service discovery (Universal Description
Discovery and Integration, UDDI).

4. AN ABSTRACT DEVS SERVICE AGENT
As a crucial part of our workflow, we have designed an
Abstract DEVS Service Agent to link DEVS models
with Web Services and to generate statistics regarding
remote method calls and response times.

DEVS
Web Service
Consumer

Internet

request

request response

response

RTT
DEVS
Logger

DEVS ABSTRACT SERVICE AGENT

Figure 4: Schematic showing the architecture of our
DEVS Agent Service model.

 Figure 4 depicts an illustrative example. Our
proposed model consists of two DEVS atomic models.
The DEVS Web Service Consumer invokes the remote
operation provided by means of an external transition.
When the operation is processed, this atomic model
informs about the round-trip-time (RTT) taken by such
operation to the DEVS Logger atomic model as well as
the response provided by the Web Service. At the end
of the simulation, the DEVS Logger provides statistics
such as operations executed successfully, the RTT
consumed per operation, etc.
 The DEVS Web Service Consumer needs to be
configured by means of: (a) the URL of the Web
Service, (b) name of the operations offered, and (c) the
parameters needed by such operations. This information
is specified in the WSDL document.
 In order to avoid to the user to extract this
information by hand, we have implemented a wrapper
which automatically generates the DEVS Web Service
Consumer for a Web Service. Thus, given a WSDL
address, our framework is able to generate the
corresponding DEVS Service Agent.

294

Web services are utilized using web service clients that
are created by various open source and commercially
available tools such as Eclipse Web Service Toolkit
(WST), Netbeans IDE, Websphere etc.. All of them use
the Web Service Description Language (WSDL) as the
input to generate the web service client. In our

implementation we utilize the Axis2 framework to
generate clients. Our choice of Axis2 plugin is driven
by the implementation platform of DEVS/framework
which is Axis/Java. However, it doesn’t matter which
method is used to generate the client.

Figure 5: DEVS wrapper implementation over an Axis web service client

 A DEVS model has two modes of operation: an
internal behavior representation and an external
behavior representation. In developing a DEVS
wrapper, which would be effectively a DEVS web
service client, we will implement the external behavior.
The concept is shown in the top half of Figure 5. The
detail is shown in the lower half of the same Figure 5. It
shows the mapping between the Axis layers,
specifically the Axis binding layer and the DEVS
elements. It describes the external event that is triggered
whenever there is message exchange through the Axis
client. This triggered event informs the DEVS atomic
model that wraps this Axis client. Such an arrangement
does not create any bottleneck or any pipe between the
actual Axis client and the network. The DEVS wrapper
is informed of the round-trip-time (RTT) when the
actual service has been executed its completion.
Consequently, it is a passive observer and offers no
interference to the true communication between the
client and the live web service. By inserting a specific
set of code in any Axis generated client, we can create a
DEVS wrapper that is ready to become a part of a test-
agent federation coupled system, as described in Section
6. Further, having such automated design, it allows
augmentation of a comprehensive log mechanism that
can provide many other instrumentation data than just
RTT.

 Having described the basic DEVS Web service
wrapper, the next task in line is the creation of a
coupled model, a web service workflow to be more
specific to actually utilize the DEVS modeling and
simulation capabilities. The coupled model where this
DEVS WSDL model is a component of a bigger
networked model is not the focus of this article and
more details will be available in the extended article. It
is not hard to understand that once you have an atomic
model, it can be easily used as a component in a DEVS
coupled model.

5. IMPLEMENTATION OF DEVS AGENT
This case study demonstrates the execution of a web
service encapsulated in a DEVS wrapper Agent and the
associated obtained statistics.

5.1. Web Service Work Flow Formalism
We compose a process workflow based on certain
goals, objectives or requirements. We can deduce the
information we need to compose a workflow and
develop an automated procedure towards DEVS based
design and analysis. The information set for a Web
Service workflow can be described in a four element
tuple as:

 WSWF: < W,M,F,X>
 where,

295

W: Set of Web service definitions (WSDLs) or
Agents each with a valid URL
M: Set of web service methods
F: defined as <C,L,D>

C is a set of W-M pairs with each pair as a
source or destination
L is a set of partner links with each link
containing a src and dest pair defined in C
D is a type of workflow mode which can
either be a sequence, while, holdSend or
concurrent type, which are corresponding
to the BPEL specifications

 X. Set of messages, where
Each Message contains Data and is defined by
time of entry in system, rate, whether it is
periodic or stochastic and can be either an
Input message or an Output message

5.2. DEVS Wrapper Agent
In this most basic demonstration, we use only one web
service. This web service executes a chat session
between two users. The schematic is shown in Figure 6.
In our example, we execute the session with a live
person and a DEVS agent. The live person here is ‘Jim
Client’ that connects to the CHAT service via an
Internet browser at (CHAT, 2007). The chat session is
executed using the GUI as shown in Figure 7.

Figure 6: Schematic showing basic execution of DEVS
Wrapper agent

 The DEVS agent is defined according to the
WSWF formalism as follows:

<W>: “CHAT”:
<W1:CHAT>:http://150.135.220.240:8080/C

hatServiceCollaboration/services/ChatServic
e?wsdl
 <A1:Jim>: “Jim:localhost:8080”
<M>: “Methods”:
 <M1> postMessage()
 <M2> getAllMessages()
 <M3> getLastMessageId()
 <M4> registerAuthor()
 <M5> getUsers()
 <M6> getAllMessagesForAuthor()
<F>:"Flow specifications"
 <C>

 <C1:Src>A1-M1
 <C2:Src>A1-M2
 <C3:Src>A1-M4
 <C4:Src>A1-M5
 <C5:Dest>W1-M1
 <C6:Dest>W1-M2
 <C7:Dest>W1-M4
 <C8:Dest>W1-M5

 <L>

 <L1>C1-C5
 <L2>C2-C6

 <L3>C3-C7
 <L4>C4-C8
 <D>
 <D1>M1-HoldSend
 <D2>M2-While-infinity
 <D3>M4-HoldSend
 <D4>M5-While-infinity
<X>: Set of Messages
 <InputMsg>
 <I1>W1-M1{string:T1:0:false:false}
 <I2>W1-M4{string:T0:0.1:true:false}
 <OutputMsg>
 <O1>M2{string:T2:1:true:false}
 <O2>M5{string:T2:1:true:false}

Figure 7: Chat Service Client connected to CHAT
Service

 <W> tag contains description of the Chat Web
Service as W1 and the agent description as A1 along
with their URL. <M> contains the list of service
methods that may be used in the process flow. <F>
contains the flow description categorized into <C,L,D>
as per the WSWF. <C> provides the source and
destination specification for a W/A defined in <W>
with <M>. <L> specifies the coupling between the
sources and destinations as defined in <C>. <D>
contains the execution of methods in <M> in logic
implementation. For example, <D1>M1-HoldSend
implies that the method M1 is to executed in HoldSend
manner. Similarly, <D2>M2-While-infinity implies
that M2 will be executed indefinitely when invoked or
bounded by any condition. <X> specifies the input and
output message structures in <InputMsg,OutputMsg>
tags. The structure of <InputMsg> as specified in
WSWF SES is <SystemComponent-Method{Data: time
of Start: R+: isPeriodic: isRandom>. For example, the
specification <I1>W1-M1{string:T1:0:false:false}

implies that the message I1 is an input to W1, method
M1 with data as string. It starts at T1 with period 0. Any
non-zero value means that the message will be
incoming at a periodic rate. The next boolean variable
‘false’ implies that it is not periodic. The last variable
‘false’ implies that it is not random either. Similary,
<I2>W1-M4{string:T0:0.1:true:false} implies that
M4 at W1 is to be invoked by string data message with
a periodic rate of 0.1. The <OutputMsg> has a similar
structure except the fact that it does not contain any

296

information about the system component. It only
contains information about the method in <M> as it is
just an output message. Whenever method <Mx> is
invoked, it returns with the parametric details as in
<O1>M2{string:T2:1:true:false}.

 It is worth stressing here that the messages flow
through the linkages as specified in <L>. This acts as a
coupling for the DEVS models. There are two DEVS
models in the WSWF instance described above, viz. W1
and A1. Based on the coupling information for ex.
<L4>C4-C8 implies that the source is Agent
<C4:Src>A1-M5 and the destination is Web service
<C8:Dest>W1-M5. The source sends a message invoking
method M5 at the destination. If there is a specification
on how M5 should be invoked in <InputMsg> listing,
then the source has to ensure that it conforms to that
specification. In this example there is no specification
for M5. This implies that there are no parameters to be
passed, but just the invocation. At the destination side,
M5 has a specification
<O2>M5{string:T2:1:true:false}, which implies that
whenever M5 returns a value, it will according to this
<OutputMsg> specification.

The statistics for each of the methods in <M> is
gathered according to the autogenerated agent GUI
monitor at the agent’s end. The statistics are largely the
round trip time (RTT) for each of <M>. The GUI in
Figure 8 also shows the SOAP messages that are
exchanged between the pairs as specified in <W>.

Figure 8: Associated Statistics GUI for an encapsulated
Web Service in DEVS atomic model

6. MULTI-LAYERED AGENT BASED TEST

INSTRUMENTATION SYSTEM USING
GIG/SOA

A DEVS distributed federation is a DEVS coupled
model whose components reside on different network
nodes and whose coupling is implemented through
middleware connectivity characteristic of the
environment, e.g., SOAP for GIG/SOA, The federation
models are executed by DEVS simulator nodes that
provide the time and data exchange coordination as
specified in the DEVS abstract simulator protocol. The
DEVS Agent Monitoring System (TIS) is a DEVS

coupled system that observes and evaluates the
operation of the DEVS coupled system model. The
DEVS models used to observe other participants are the
DEVS test-agents. The TIS should provide a minimally
intrusive test capability to support rigorous, on-going,
repeatable and consistent testing and evaluation (T&E).
Requirements for such a test implementation system
include ability to

1. deploy agents to interface with SoS component
systems in specified assignments

2. enable agents to exchange information and
coordinate their behaviors to achieve specified
experimental frame data processing

3. respond in real-time to queries for test results
while testing is still in progress

4. provide real-time alerts when conditions are
detected that would invalidate results or
otherwise indicate that intervention is required

5. centrally collect and process test results on
demand, periodically, and/or at termination of
testing.

6. support consistent transfer and reuse of test
cases/configurations from past test events to
future test events, enabling life-cycle tracking
of SoS performance.

7. enable rapid development of new test cases
and configurations to keep up with the reduced
SoS development times expected to
characterize the reusable web service-based
development supported on the GIG/SOA.

 Many of these requirements are not achievable with
current manually-based data collection and testing.
Instrumentation and automation are needed to meet
these requirements.
 Net-centric Service Oriented Architecture (SOA)
provides a currently relevant technologically feasible
realization of the concept. As discussed earlier, the
DEVS/SOA infrastructure enables DEVS models, and
test agents in particular, to be deployed to the network
nodes of interest. Details on how such observers can be
auto-generated and be executed using DEVS/SOA are
provided in (Mittal, Zeigler, Martin, Sahin and
Jamshidi, 2008; Zeigler and Hammonds, 2007).

6.1. Deploying Test Agents over the GIG/SOA
Figure 9 depicts a logical formulation test federation
that can observe a SUT to verify the message flow
among components as derived from information
exchange requirements. In this context, a mission
thread is a series of activities executed by operational
nodes. In playing out this thread, DEVS test models are
informed of the current activities (or see to detect their
onset) as well as the operational nodes that execute
these messages. These test models watch messages sent
and received by the components that host the
participating operational nodes. The test models check
whether such messages are the ones that should be sent
or received under the current function.

297

 The test-agents are contained in DEVS
Experimental Frames (EF) are implemented as DEVS
models, and distributed EFs are implemented as DEVS
models, or agents as we have called them, reside on
network nodes. Such a federation, illustrated in Figure
10, consists of DEVS simulators executing on web
servers on the nodes exchanging messages and obeying
time relationships under the rules contained within their
hosted DEVS models. This DEVS Agent Monitoring
System that contains DEVS models interacts with real
world web services through the DEVS agents that were
described earlier.

Figure 9: Multi-layered Agent-based test
instrumentation framework

Figure 10: Prototypical DEVS Test Federation

6.2. Implementation of Test Federations
A test federation observes an orchestration of web-
services to verify the message flow among participants
adheres to information exchange requirements. As
derived from requirement, a process workflow is a
series of activities executed by operational nodes and
employing the information processing functions of web-
services. As discussed in (Mittal, Zeigler, Martin, Sahin
and Jamshidi, 2008; Zeigler and Hammonds, 2007), test
agents watch messages sent and received by the services
that host the participating operational nodes. Depending
on the mode of testing, the test architecture may, or may
not, have knowledge of the driving process workflow
under test. If it is available, DEVS test agents can be
aware of the current activity of the operational nodes it
is observing. This enables it to focus more efficiently on
a smaller set of messages that are likely to provide test
opportunities.
 To help automate set-up of the test we use a
capability to inter-covert between DEVS and XML.

DEVSML (Mittal, Martin and Zeigler, 2007) allows
distributing DEVS models in the form of XML
documents to remote nodes where they can be coupled
with local service components to compose a federation
(Mittal, Martin and Zeigler 2007, Mittal, 2007) The
layered middleware architecture capability is shown in
11 and (Mittal, Martin, and Zeigler 2007)

Figure 11: Layered Architecture of DEVSML towards
transparent simulators in Net-centric domain

 At the top is the application layer that contains
model in DEVS/JAVA or DEVSML. The second layer
is the DEVSML layer itself that provides seamless
integration, composition and dynamic scenario
construction resulting in portable models in DEVSML
that are complete in every respect. These DEVSML
models can be ported to any remote location using the
web-service infrastructure and be executed at any
remote location.
 The simulation engine is totally transparent to
model execution over the net-centric infrastructure. The
DEVSML model description files in XML contains
meta-data information about its compliance with
various simulation ‘builds’ or versions to provide true
interoperability between various simulator engine
implementations. Such run-time interoperability
provides great advantage when models from different
repositories are used to compose models using
DEVSML seamless integration capabilities. Recent
articles provide an evidence in the direction to achieve
interoperability for DEVS and non-DEVS models
(Zeigler, Mittal and Hu, 2008; Mittal, Zeigler and
Martin, 2008). Finally, the test federation is illustrated
in Figure 10 where different models (federates) in
DEVSML collaborate for a simulation exercise over
GIG/SOA.
 This section has laid out the framework on the
creation and execution of a DEVS-based test
instrumentation system.

7. CONCLUSIONS
Service Oriented Architecture (SOA) is still under
development and many of the businesses are seriously
considering migration of their IT systems towards
SOAs. DoD’s initiative towards migration of GIG/SOA
and NCES requires reliability and robustness, not only

298

in the execution but in the design and analysis phase as
well. Web service orchestration is not just a research
issue but a more practical issue for which there is dire
need. Further, Service Oriented Architecture must be
taken as another instance of system engineering for
which there must be laid out engineering process.
Modeling and Simulation provides the needed edge.
Lack of methodologies to support design and analysis
of such orchestration except BPEL related efforts cost
millions in failure. This research has proposed that
Discrete Event Formalism can be used to compose and
analyze Web service workflows. The DEVS theory,
which is based on system theoretic concepts, gives solid
grounding in the modeling and simulation domain.
 We have shown how a web service can be
encapsulated into a DEVS atomic model and can be put
towards a coupled DEVS system with other live web
services as well as other DEVS models. We also have
demonstrated the proposed use of Web Service Work
Flow (WSWF) formalism in composing SOA, much
like of the same functionalities of BPEL. We have also
described creation of DEVS net-centric coupled systems
based on SOA. We have also shown how the developed
DEVS coupled system can be simulated using the basic
DEVSJAVA framework as well as distributed
DEVS/SOA framework. Further, on the basis of our
earlier work on DEVS/SOA we have basis for:

• Agent-Implemented Test Instrumentation
• Net-centric Execution using Simulation

Services
• Distributed Multi-level Test Federations
• Analysis that can help optimally tune the

instrumentation to provide confident scalability
predictions.

• Mission Thread testing and data gathering:
• Definition and implementation of military-

relevant mission threads to enable constructing
and/or validating models of user activity.

• Comparison with current commercial testing
tools shows that by replicating such models in
large numbers it will be possible to produce
more reliable load models than offered by
conventional use of scripts.

 We have taken the challenge of constructing net-
centric systems as one of designing an infrastructure to
integrate existing Web services as components, each
with its own structure and behavior with DEVS
components and agents. The net-centric system is
analogous to a System of System (SoS) where in
hierarchical coupled models could be created. Various
workflows can be integrated together using component
based design. The net-centric system can be specified in
many available frameworks such as BPMN/BPEL,
UML, or by using an integrative systems engineering-
based framework such as DEVS.
 In this research, we illustrated how M&S can be
used strategically to provide early feasibility studies and
aid the design process. We have established the
capability to develop a live workflow example with

complete DEVS interface. In this role, DEVS acts as a
full net-centric production environment. Being DEVS
enabled, it is also executable as a system under test
(SUT) model towards various verification and
validation analysis that can be performed by coupling
this SUT with other DEVS test models. Last but not the
least, the developed DEVS system can be executed by
both real and virtual users to the advantage of various
performance and evaluation studies.
 As components comprising SoS are designed and
analyzed, their integration and communication is the
most critical part that must be addressed by the
employed SoS M&S framework. We discussed DoD’s
Global Information Grid (GIG) as providing an
integration infrastructure for SoS in the context of
constructing collaborations of web services using the
Service Oriented Architecture (SOA). The present
research is being considered and refined for testing
GIG/SOA at Joint Interoperability Test Command
[JITC], which is the agency to test future DoD systems.
Clearly, the theory and methodology for such net-
centric SoS development and testing are at their early
stages.

REFERENCES
ACIMS software site, Available from

http://www.acims.arizona.edu/SOFTWARE/softw
are.shtml [Accessed July 2008]

IBM, BEA Systems, Microsoft, SAP AG, Siebel, 2007,
Business Process Execution Language for Web
Services version 1.1, Available from
http://www.ibm.com/developerworks/library/speci
fication/ws-bpel/ [Accessed July 2008]

Business Process Modeling Notation
http://www.bpmn.org [Accessed July 2008]

Mittal, S., 2007, CHAT SOA web service, Available
from http://www.saurabh-
mittal.com/demos/ChatClient, [Accessed July
2008]

Mittal, S., 2007, DUNIP: A Prototype Demonstration,
Available from
http://www.acims.arizona.edu/dunip/dunip.avi
[Accessed July 2008]

Joint Interoperability Test Command, a Defense
Information Systems Agency at
http://jitc.fhu.disa.mil/ [Accessed July 2008]

Department of Defense GIG Architectural Vision, Ver.
1.0, 2007, prepared by DoD CIO, available from
 http://www.defenselink.mil/cio-
nii/docs/GIGArchVision.pdf [Accessed July 2008]

Hwang, M.H., Zeigler, B.P., 2006, A Modular
Verification Framework using Finite and
Deterministic DEVS, Proceedings of 2006 DEVS
Symposium, pp. 57-65, April, Huntsville,
Alabama, USA

Mittal, S., Martin, J.L., Zeigler, B.P., 2007,
DEVS/SOA: A Cross Platform framework for
Net-Centric Modeling and Simulation in DEVS
Unified Process, SIMULATION: Transactions of
SCS, under review

299

Mittal, S., Martin, J.L., Zeigler, B.P., 2007, DEVSML:
Automating DEVS Simulation over SOA using
Transparent Simulators”, DEVS Symposium,
March, Norfolk Virginia

Mittal, S., Martin, J.L., Zeigler, B.P., 2007, DEVS-
Based Web Services for Net-centric T&E,
Summer Computer Simulation Conference, San
Diego, CA, USA

Mittal, S, 2007, DEVS Unified Process for Integrated
Development and Testing of Service Oriented
Architectures, Ph. D. Dissertation, Dept. of
Electrical and Computer Engineering, University
of Arizona

Mittal, S., Hwang, M.H., Zeigler, B.P, 2007, XFD-
DEVS: An Implementation of W3C Schema for
Finite Deterministic DEVS, Demo available at:
http://www.saurabh-mittal.com/fddevs

Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F.,
Jamshidi, M., 2008, Modeling and Simulation for
System of Systems Engineering, in Jamshidi, M.,
ed. Systems of Systems engineering for 21st
Century, in press

Mittal, S., Martin, J.L.R., Zeigler, B.P., Nutaro, J.J.,
2008, Design and Analysis of Service Oriented
Architectures using DEVS/SOA-Based Modeling
and Simulation, submitted to SIMULATION:
Transactions of SCS

Mittal, S., Zeigler, B.P., Martin, J.L.R., 2008,
Implementation of Formal Standard for
Interoperability in M&S/System of Systems
Integration with DEVS/SOA, Abstract accepted,
manuscript in review at International Command
and Control, C2 Journal

Net-Centric Enterprise Service
http://www.disa.mil/nces/ [Accessed July 2008]

Pyke, Jon, 2007, XPDL: The Silent Workhorse of BPM,
Available from
http://www.bpm.com/FeatureRO.asp?FeatureId=2
32 [Accessed July 2008]

Mittal, S., 2007, DEVS/SOA sample demonstration in
.avi format, Available from http://www.saurabh-
mittal.com/demos/demoSOADEVS.avi [Accessed
July 2008]

W3C Recommendation, 2007, Simple Object Access
Protocol, Available from
http://www.w3.org/TR/soap12-part1/ [Accessed
July 2008]

W3C Recommendation, 2001, Web Services
Description Language, Available from
http://www.w3.org/TR/wsdl [Accessed July 2008]

Zeigler, B.P., Kim, T.G. and Praehofer, H., 2000,
Theory of Modeling and Simulation. New York,
NY, Academic Press.

Zeigler, B.P., Sarjoughian, H., DEVSJAVA, 2000:
Available from
http://www.acims.arizona.edu/SOFTWARE/devsj
ava_licensed/CBMSManuscript.zip [Accessed
July 2008]

Zeigler, B.P., and Hammonds, P., 2007, Modeling &
Simulation-Based Data Engineering: Introducing

Pragmatics into Ontologies for Net-Centric
Information Exchange, New York, NY: Academic
Press.

Zeigler, B.P., Mittal, S., Hu, X., 2008, Towards a
Formal Standard for Interoperability in
M&S/Systems of Systems Engineering, Critical
Issues in C4I, AFCEA-George Mason University
Symposium, May, Washington, D.C, USA

AUTHORS BIOGRAPHY
Saurabh Mittal is the CEO at DUNIP Technologies,
India. Previously he worked as Research Assistant
Professor at the Department of Electrical and Computer
Engineering at the University of Arizona where he
received his Ph. D in 2007. His areas of interest
include Web-based M&S using SOA, executable
architectures, Distributed Simulation, and System of
Systems engineering using DoDAF. He can be reached
at saurabh.mittal@duniptechnologies.com

 José L. Risco-Martín is an Assistant Professor in
Complutense University of Madrid, Spain. He received
his PhD from Complutense University of Madrid in
2004. His research interests are computational theory of
modeling and simulation, with emphasis on DEVS,
Dynamic memory management of embedded systems,
and net-centric computing. He can be reached at
jlrisco@dacya.ucm.es

Bernard P. Zeigler is Professor of Electrical and
Computer Engineering at the University of Arizona,
Tucson and Director of the Arizona Center for
Integrative Modeling and Simulation. He is developing
DEVS-methodology approaches for testing mission
thread end-to-end interoperability and combat
effectiveness of Defense Department acquisitions and
transitions to the Global Information Grid with its
Service Oriented Architecture (GIG/SOA). He can be
reached at zeigler@ece.arizona.edu

Jesús M. de la Cruz is Professor at the Department of
Computer Architecture and Automation at the
Complutense University of Madrid, Spain, where he is
the head of the Automatic Control and Robotics
Group. His interest covers broad aspects of automatic
control and its pplications, real time control, simulation,
optimization, statistical learning, and robotics. He can
be reached at jmcruz@fis.ucm.es.

300

