

MODELING AND SIMULATION OF BEHAVIORAL SCENARIOS BY USING COUPLED
DEVS MODELS

Sqali Mamoun(a), Lucile Torres(b)

(a) (b)LSIS (Laboratoire des Sciences de l’Information et des Systèmes)
Université Paul Cezanne Aix-Marseille III

avenue Escadrille Normandie-Niemen13397 MARSEILLE CEDEX 20

(a) mamoun.sqali@lsis.org, (b)lucile.torres@lsis.org

ABSTRACT
Sequence diagrams, such as those included in UML, are
widely used to express behavioral requirements of a
system. They are employed to refine use cases and to
induce an abstract model of the system behavior. In the
approach we propose, the global behavioral model is
obtained from a set of sequence diagrams and it is
expressed in the DEVS (Discrete EVent System
Specification) formalism. Finally, the DEVS model can
be validated and verified by simulation.

Keywords: Sequence Diagrams, DEVS modeling,
Simulation.

1. INTRODUCTION
In general, the scenarios use Sequence Diagrams (SD)
to represent graphically the interactions between
objects. They can be composed by using flow control
operators (alternative, sequence, parallelism and
repetition) in order to form more complex scenarios. A
SD show, as parallel vertical lines, different processes
or objects that live simultaneously, and, as horizontal
arrows, the messages exchanged between them, in the
order in which they occur.

This allows the specification of simple runtime
scenarios in a graphical manner. It seems illusive, to
define the system by conceiving all its scenarios.
Moreover, designing the system behavior directly with
statecharts is not an intuitive process, since the concept
of state is not obvious in the first stages of the
development process. Many approaches address the
scenario synthesis problem (Liang, Dingel and Diskin
2006) and makes possible to induce a total behavior
model expressed in a state machine format starting from
a set of scenarios. All of them agree with the need to
have a sufficient number of scenarios. They especially
differ in the source notation and semantics, in the target
notation, in their ability to support scenario composition
mechanisms, in their use of merging techniques of
identical states, and in the implemented synthesis
algorithm. We present in the following sections, the SD
notation, the Discret EVent system Specification
(DEVS) formalism, and the synthesis problem.

When the synthesis has been realized, the induced
coupled DEVS model represents the system behavior
that includes all the behaviors expressed by the
scenarios and it is used to validate the specification by
simulation.

2. RECALL
2.1. Sequence Diagrams
A SD is one of the five diagrams used in UML for
modeling the system dynamic aspects of systems. A SD
shows an interaction, consisting of a set of objects and
their relationships. The diagram includes messages that
may be dispatched among them with an emphasis on
their time orderings. Graphically, a SD is a table that
shows objects arranged along the X axis and messages,
ordered in increasing time, along the Y axis.

The vertical lines in the SD represent the lifelines
of the objects taking part in the scenario. Time is usually
assumed to flow downwards along each lifeline. The
directed arrows going across the lifelines represent the
causal links from a sent event (the source of the arrow)
to the corresponding received event (the target of the
arrow), with the label on the arrow denoting the event.

A great number of notations are commonly used
for the description of SD: Message Sequence Charts
(MSC) defined within an international standard (ITU
2000), that can be distinguished between basic MSC
(bMSC) and compound MSC (hMSC for High-Level
MSC), Live Sequence Charts (LSC), which are an
extension of bMSC proposed by (Damm and Harel,
2001), the UML SD (OMG 2005), which are a
simplified version of bMSC (Brian and Hans 2004), …

In this article, we propose a method for translating
a set of SD into state machines represented in the formal
DEVS specification. We use a simple example to
illustrate our approach. This example (see Figure 1)
shows how to obtain a coffee from a coffee machine.
The SD is composed by three objects: Customer,
CoffeeMachine and Stock. Customer is considering as
an environment object.

A SD has a structure (E, ≤, α, Φ, A, I, T) where:

• E is a set of events

285

• ≤ is a partial ordering between events imposed by
lifelines and messages

• α is a set of action names
• Φ denotes the location to an event (i.e the object

affected by the event)
• A is a set of actions (message sending and

receiving);
• I is a set of objects
• T is a set of interaction time constraints;

Figure 1: A SD for making coffee

The behavior represented by a SD is a set of event

sequences determined by the causal priority. The events
are totally ordered for one considered object. The causal
relationship determines a partial order, noted ≤, on the
events between all the objects. This partial order can be
derived from the SD in respect with two principal rules:

• an event e drawn higher than another event e' on
the same lifeline of an object precedes necessarily
e';

• the event associated with a message sending
precedes necessarily the event associated with the
reception of this message (in the case of an
asynchronous communication). For a
synchronous communication, messages are used
to be considered instantaneous in the order to do
not differentiate the message sending from the
message reception.

2.2. The DEVS Formalism
The DEVS formalism introduced by Zeigler (Zeigler
2000) provides a means for modeling discrete event
system in a hierarchical and modular manner. The use
of this formalism facilitates the modeling activity and
guarantees a best accuracy of the model by
decomposing the system into component models and by
specifying the coupling between them. There are two
kinds of DEVS models, atomic models and coupled
ones.

2.2.1. Atomic DEVS model
An atomic model describes the behavior of a
component, which is indivisible, in a timed state
transition level. Formally, an atomic model is defined by
a 7-tuple <X, Y, S, δint, δext, λ, ta> where:

• X is the set of the external input events;
• Y is the set of the external output events;
• S is the set of sequential states;
• δint : S -> S is the internal transition function that

defines the state changes caused by internal
events;

• δext : Q × X -> S is the external transition
function, where Q = {(s,e)|s∈S, 0≤e≤ta(s)} is the
set of total state; this function specifies the state
changes due to external events, with the ability to
define a future state according to the elapsed time
in the current state;

• λ is the output function that generates output
events;

• ta : R+ U {0, ∞} gives the lifetime of the states,
where R+ U {0, ∞} is the set of positive reals
with 0 and ∞; ta(s) represents the interval during
which the model remains in the state s if external
event occurs.

While the internal transition function expresses the

autonomous evolution of the model, the external
transition function defines its evolution when occurring
external events.

2.2.2. Coupled DEVS model
A coupled model is a compound component consisting
of atomic models and/or coupled models. The coupled
model can itself be employed as a component in a larger
coupled model, there by giving rise to the construction
of complex models with hierarchical structures. A
coupled model is formally defined by a 7-tuple < X, Y,
M, EIC, EOC, IC, SELECT > where:

• X is the set of input events;
• Y is the set of output events;
• M is the set of all the DEVS component models;
• EIC ⊆ X × UiXi is the external input coupling

relation;
• EOC ⊆ UiYi × Y is the external output coupling

relation;
• IC ⊆ UiXi × UiYi is the internal coupling

relation;
• SELECT: 2M - φ, M is a function which chooses

one model when more than 2 models are
scheduled simultaneously.

EIC, EOC and IC specify the connections between

the input and output ports of the various DEVS models.

3. STATE OF THE ART
Many approaches address the scenario synthesis
problem, like (Harel, Kugler and Pnueli 2005) who

286

proposed a synthesis approach using the scenario-based
language of Live Sequence Charts (LSC) as
requirements, and synthesizing a state-based object
system composed of a collection of finite state
machines. (Letier, Kramer and Uchitel 2005) who
presents a technique to generate Labelled Transition
System (LTS) from Hight Level Message Sequence
Chart (hMSC), in this approach, complex system
behaviour can be modelled by parallel composition of
the component LTS models. Parallel composition
models components that execute asynchronously but
synchronize on shared events; also they presented a
technique to detect implicit scenarios.

Ziadi, Hélouët and Jézéquel (2004) have proposed
an idea to synthesize statecharts starting from scenarios
expressed by UML2.0 Sequence Diagrams, and give an
algorithm for synthesizing a composition of statecharts
between them. Also (Damas and Lambeau 2006) has
presented an approach to generate Lablled Transition
System from a collection of basics MSC’s, and use a
technique to merge the identical states. That will help us
for our approach, and will return our atomic DEVS
models minimal and determinists.

4. FROM SEQUENCE DIAGRAMS TO DEVS
4.1. Transformation steps of SD without operators
Let us show transformation from SD sets to DEVS in
the five following steps.

Step I) Constructing an atomic DEVS model for one
object belonging to one scenario:

1. For one object in one SD, identifying an atomic
DEVS model (We consider for this example, the
CoffeeMachine object).

2. Defining input/output events of the atomic DEVS
model (X, Y)

3. Defining a set of states. A state must include
information of input/output events in a SD. As
shown in the figure 2, each state should be
associated with both an external and/or internal
transitions (δint, δext) in an atomic DEVS
model.

Figure 2: Definition rules of the set of states

4. Defining state transitions between states obtained

in 3 from the SD:

A. Showing message transmission among the
defined states (figure 3).

Figure 3: Translating message transmission

B. Merging the start point of the SD and its end

point into the initial state of the DEVS model
(figure 4).

Figure 4: Defining the initial state

C. Translating all the message sequences of the SD

to state transitions of the atomic model, and
minimizing the number of states if equivalent
states exist.

Figure 5: Minimizing the number of states

D. After the previous steps A~C, the

specification of time advance functions in
atomic DEVS models is remained. If a special
time constraint is defined in the SD, the

287

condition must be translated in the confirmed
state. If only an input causes the state transition
from a state s, it can be describe by a passive
state with ta(s)= ∞. If a state s’ describes only
output events, then ta(s’)=1.

Step II) Repeating the first step (I) for all objects of
the considered SD. This step generates the set of
atomic models associated with the SD.

Step III) Repeating the step II for all the SD. This step
generates the set of atomic models associated with
the set of SD.

Step IV) Building one atomic model from the atomic
models on a given object. This step generates as
many atomic models as there are objects in the set
of SD.

Figure 6: Example of the steps IV and V

Step V) Building a coupled final model which is
composed of the atomic models obtained in the
previous step, so that the output of an atomic
model is the input of another, then all objects in
the system can communicate between them. The
final coupled model describes the overall behavior
of the system.

An algorithm which translates a basic SD into an
atomic DEVS model by object was presented in (Sqali
and Torres 2008a). Also, the principle of the
construction of an atomic DEVS model by object
starting from several composed SD, and the
construction of coupled DEVS model is described in
(Sqali and Torres 2008b).

4.2. Transformation of SD with seq, loop and alt

operators
� Seq specifies a sequence between two SD (strong

sequential composition).

Da1 seq Da2 = <X, Y, S, δint, δext, λ, ta>:
• S =- S1 U S2- {s02} if (Da2 ≠ ∅)

 - S2 if (Da1= ∅)
• X = X1 U X2
• Y = Y1 U Y2
• δint = δint1U δint1
• δext = δext1U δext2

� Loop specifies an iteration of a SD

Loop (Da1) = <X, Y, S, δint, δext, λ, ta>:
• S = - (S1-sn1) U {s01}

 - s0=s01
• X=X1
• Y=Y1
• δint = δint1U {sn -> s0} ∨ δext = δext1U

 {Q ×X -> s0}
• Loop (Da∅) = Da∅

� Alt defines a choice between a set of

Da1 alt Da2 = <X, Y, S, δint, δext, λ, ta>:
• S =- S1 if (Da1 ≠ ∅ ∧ Da2 = ∅)

 - S2 if (Da1 = ∅ ∧ Da2 ≠ ∅)
 - {s0} if ((Da1 = ∅ ∧ Da2 = ∅)

 - S1 U S2 U {s} if (Da1 and DA2 are loops)
∧ (Da1 ≠ ∅ and Da2 ≠ ∅)

 - S1 U S2 otherwise
• s0 =- A new state if (Da1 and DA2 are loops) ∧

(Da1 ≠ ∅ and Da2 ≠ ∅)
 - s01 if Da2 are loops
 - s02 if Da1 are loops
• X = X1 U X2
• Y = Y1 U Y2
• δint = δint1U δint1
• δext = δext1U δext2

5. CASE STUDY AND SIMULATION
Let us consider SD of the figure 1 that contains three
objects; Customer, CoffeeMachine and Stock. By using
the previous steps of transformation into DEVS models,
we first obtain the DEVS atomic models represented in
the figures 6 and 7.

Figure 6: An atomic DEVS model for the object Stock

288

Figure 7: An atomic DEVS model for the object
CoffeeMachine

After the global atomic models for all objects of the
system have been built, we construct the coupled model
given in the figure 8 who describes the overall behavior
of the system.

 Figure 8: A final coupled model

To validate the specification of the system

behavior from the final coupled DEVS model, we use
the LSIS-DME tool developed within our laboratory.
From a model and a set of data, the simulator provides
the simulation results. The dataset is defined by the user
who enters all external events supposed to occur during
the simulation. For that, he entered for each event the
port of the model on which the event will occur and the
value of the event. For the final model, with the inputs
specified in the figures 9 and 11, the results obtained
during the simulation are given in the figures 10 and 12
respectively. The simulation of the global DEVS model
produces a sequence of events for the considered
sequence of input events belonging to the set of event

sequences defined by the SD. We note that the
behaviors obtained are exactly the same as those
specified in the SD.

Figure 9: Filling input schedules

Figure 10: Simulation results for Figure 9

Figure 11: Another filling input schedules

Figure 12: Simulation results for Figure 11

The LSIS_DME tool also provides an interface

XML to describe models DEVS textually. This makes
possible to transform models DEVS obtained under

289

format XML. We can thereafter modify them and
simulate them. For this, we propose to use XML and
XSL to realize the synthesis in models DEVS expressed
in XML

Figure 13: Transformation using XML

The transformation procedure consists to:

1) Generate a XML representation of an atomic
DEVS model for each object in all the scenarios of
the system, by defining the XML format of the
scenarios class with a DTD grammar, to apply XSL
language on XML representation of the scenarios
models, and generate a XML document for each
object of the system.

2) Construct a final coupled DEVS model, composed
of the various atomic models obtained, describing
the total behavior of the system.

By using the library saxon8.jar, we import the

javax.xml.transform.*; javax.xml.transform.stream._
Stream_Result; and javax.xml.transform.stream._
StreamSource;. The following code creates an XSL
transformer which has as parameters the path of
scenario XML document which we want to transform,
and generates a DEVS XML file.

// Create a transform factory instance.
TransformerFactory tfactory = TransformerFactory_
.newInstance();
// Create a transformer for the stylesheet.
Transformer trans = null;
 try {

 trans = tfactory.newTransformer(new
StreamSource("C:/Path/convert.xsl"));

 }
 catch (TransformerConfigurationException ex) {
// Transform the source XML to System.out.
 try {

trans.transform(
new StreamSource("C:/Path/scenario.xml), new
StreamResult(new
File("exampleSimple.out")));

 }
 catch (TransformerException ex)

6. CONCLUSION
Many approaches address the scenario synthesis
problem. All of them agree with the need to have a
sufficient number of scenarios. They especially differ in
the source notation and semantics, in the target notation,
and the identification of common states for merging
scenarios (Liang, Dingel and Diskin 2006).

We have presented the Sequence Diagrams
synthesis into a DEVS model in order to verify and
validate by simulation the behavioral specification given
by the scenarios. We have chosen a scenario semantics
restricted to event sequences with the notion of
(repetition, alternativity and sequence). Thereafter, we
proposed to use XML and XSL to realize the synthesis
in DEVS models expressed in XML (José, Risco-Martin
and Mittal 2007).

REFERENCES
Brian, L., Hans, E., 2004. UML 2 toolkit. Whiley

Publishing OMG press
.
Zeigler, B., Herbert, P., Tag Gon, K., 2000. Theory of

Modeling and Simulation. ACADEMIC PRESS.

Damas, C., Lambeau, B., Lamsweerde A., 2006.

Scenarios, Goals, and State Machines: a Win-Win
Partnershi for Model Synthesis. 14th ACM
SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 197-
207. Portland, Oregon, USA.

Damm, W., Harel, D., 2001. LSCs: Breathing life into

message sequence charts. Formal Methods in
System Design, 19(1):45--80.

David, H., Kugler, H., Pnueli, A., 2005. Synthesis
Revisited: Generating Statechart Models from
Scenario-Based Requirements. Formal Methods in
Software and Systems Modeling.

Letier, E., Kramer, J., Magee, J., Uchitel, S., 2005.

Monitoring and Control in Scenario-Based
Requirements Analysis. International Conference
on Software Engineering, Proceedings of the 27th
international conference on Software engineering.

José, L., Risco-Martin, Mittal, S., 2007, A W3C XML

Schema for DEVS Scenarios, submitted to DEVS
Integrative M&S Symposium DEVS' 07, Spring
Simulation Multi-Conference, March.

290

ITU, 2000. Message Sequence Charts.
Recommendation Z.120. International
Telecommunications Union. Telecommunication
Standardisation Sector.

Liang, H., Dingel, J., Diskin, Z., A, 2006. Comparative

Survey of Scenario-based to State-based Model
Synthesis Approaches. SCESM'06 : International
Workshop on Scenarios and State Machines:
Models, Algorithms, and Tool, pp.5-12. May,
Shangaï, China.

OMG, 2005. UML 2.0 Specification. Object

Management Group. Avaibale from:
http://www.omg.org [August 2005].

Sqali, M., Torres, L., Frydman, C., 2008. Synthèse de

scénarios en DEVS (a), 7ème conférence
internationale de Modélisation et SIMulation
(MOSIM08). Paris, 31 mars-2 avril, .

Sqali, M., Torres, L., Frydman, C., 2008. Synthetizing

scenarios to DEVS models (b). Poster Session of
SpringSim08. Ottawa,Canada.

Ziadi, T., Hélouët, L., Jézéquel, J., 2004. Revisiting

Statechart Synthesis with an Algebraic Approach.
Proc. of 26th International Conference on
Software Engineering (ICSE), IEEE Computer
Society.p. 242-251.Edinburgh, May.

291

