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ABSTRACT 
Sequence diagrams, such as those included in UML, are 
widely used to express behavioral requirements of a 
system. They are employed to refine use cases and to 
induce an abstract model of the system behavior. In the 
approach we propose, the global behavioral model is 
obtained from a set of sequence diagrams and it is 
expressed in the DEVS (Discrete EVent System 
Specification) formalism. Finally, the DEVS model can 
be validated and verified by simulation. 

 
Keywords: Sequence Diagrams, DEVS modeling, 
Simulation. 

 
1. INTRODUCTION 
In general, the scenarios use Sequence Diagrams (SD) 
to represent graphically the interactions between 
objects. They can be composed by using flow control 
operators (alternative, sequence, parallelism and 
repetition) in order to form more complex scenarios. A 
SD show, as parallel vertical lines, different processes 
or objects that live simultaneously, and, as horizontal 
arrows, the messages exchanged between them, in the 
order in which they occur.  

This allows the specification of simple runtime 
scenarios in a graphical manner. It seems illusive, to 
define the system by conceiving all its scenarios. 
Moreover, designing the system behavior directly with 
statecharts is not an intuitive process, since the concept 
of state is not obvious in the first stages of the 
development process. Many approaches address the 
scenario synthesis problem (Liang, Dingel and Diskin  
2006) and makes possible to induce a total behavior 
model expressed in a state machine format starting from 
a set of scenarios. All of them agree with the need to 
have a sufficient number of scenarios. They especially 
differ in the source notation and semantics, in the target 
notation, in their ability to support scenario composition 
mechanisms, in their use of merging techniques of   
identical states, and in the implemented synthesis 
algorithm. We present in the following sections, the SD 
notation, the Discret EVent system Specification 
(DEVS) formalism, and the synthesis problem. 

When the synthesis has been realized, the induced 
coupled DEVS model represents the system behavior 
that includes all the behaviors expressed by the 
scenarios and it is used to validate the specification by 
simulation. 

 
2. RECALL 
2.1. Sequence Diagrams 
A SD is one of the five diagrams used in UML for 
modeling the system dynamic aspects of systems. A SD 
shows an interaction, consisting of a set of objects and 
their relationships. The diagram includes messages that 
may be dispatched among them with an emphasis on 
their time orderings. Graphically, a SD is a table that 
shows objects arranged along the X axis and messages, 
ordered in increasing time, along the Y axis.  

The vertical lines in the SD represent the lifelines 
of the objects taking part in the scenario. Time is usually 
assumed to flow downwards along each lifeline. The 
directed arrows going across the lifelines represent the 
causal links from a sent event (the source of the arrow) 
to the corresponding received event (the target of the 
arrow), with the label on the arrow denoting the event.  

A great number of notations are commonly used 
for the description of SD: Message Sequence Charts 
(MSC) defined within an international standard (ITU 
2000), that can be distinguished between basic MSC 
(bMSC) and  compound MSC (hMSC for High-Level 
MSC), Live Sequence Charts (LSC), which are an 
extension of bMSC proposed by (Damm and Harel, 
2001), the UML SD (OMG 2005), which are a 
simplified version of bMSC (Brian and Hans 2004), …  

In this article, we propose a method for translating 
a set of SD into state machines represented in the formal 
DEVS specification. We use a simple example to 
illustrate our approach. This example (see Figure 1) 
shows how to obtain a coffee from a coffee machine. 
The SD is composed by three objects: Customer, 
CoffeeMachine and Stock. Customer is considering as 
an environment object. 

A SD has a structure (E, ≤, α, Φ, A, I, T) where:  
 

• E is a set of events 
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• ≤ is a partial ordering between events imposed by 
lifelines and messages 

• α is a set of action names 
• Φ denotes the location to an event (i.e the object 

affected by the event) 
• A is a set of actions (message sending and 

receiving); 
• I is a set of objects 
• T is a set of interaction time constraints; 

 

 
Figure 1: A SD for making coffee 

 
The behavior represented by a SD is a set of event 

sequences determined by the causal priority. The events 
are totally ordered for one considered object. The causal 
relationship determines a partial order, noted ≤, on the 
events between all the objects.  This partial order can be 
derived from the SD in respect with two principal rules: 
 

• an event e drawn higher than another event e' on 
the same lifeline of an object precedes necessarily 
e'; 

• the event associated with a message sending 
precedes necessarily the event associated with the 
reception of this message (in the case of an 
asynchronous communication). For a 
synchronous communication, messages are used 
to be considered instantaneous in the order to do 
not differentiate the message sending from the 
message reception. 

 
2.2.  The DEVS Formalism 
The DEVS formalism introduced by Zeigler (Zeigler 
2000) provides a means for modeling discrete event 
system in a hierarchical and modular manner. The use 
of this formalism facilitates the modeling activity and 
guarantees a best accuracy of the model by 
decomposing the system into component models and by 
specifying the coupling between them. There are two 
kinds of DEVS models, atomic models and coupled 
ones. 

 

2.2.1. Atomic DEVS model  
An atomic model describes the behavior of a 
component, which is indivisible, in a timed state 
transition level. Formally, an atomic model is defined by 
a 7-tuple <X, Y, S, δint, δext, λ, ta> where:  

 
• X is the set of the external input events; 
• Y is the set of the external output events; 
• S is the set of sequential states; 
• δint : S -> S is the internal transition function that 

defines the state changes caused by internal 
events; 

• δext : Q  × X -> S is the external transition 
function, where Q = {(s,e)|s∈S, 0≤e≤ta(s)} is the 
set of total state; this function specifies the state 
changes due to external events, with the ability to 
define a future state according to the elapsed time 
in the current state; 

• λ is the output function that generates output 
events; 

• ta : R+ U {0, ∞} gives the lifetime of the states, 
where R+ U {0, ∞} is the set of positive reals 
with 0 and ∞; ta(s) represents the interval during 
which the model remains in the state s if external 
event occurs.  

 
While the internal transition function expresses the 

autonomous evolution of the model, the external 
transition function defines its evolution when occurring 
external events. 

 
2.2.2. Coupled DEVS model 
A coupled model is a compound component consisting 
of atomic models and/or coupled models. The coupled 
model can itself be employed as a component in a larger 
coupled model, there by giving rise to the construction 
of complex models with hierarchical structures. A 
coupled model is formally defined by a 7-tuple < X, Y, 
M, EIC, EOC, IC, SELECT > where: 

 
• X is the set of input events; 
• Y is the set of output events; 
• M is the set of all the DEVS component models; 
• EIC ⊆ X  × UiXi is the external input coupling 

relation; 
• EOC ⊆ UiYi  × Y is the external output coupling 

relation; 
• IC ⊆  UiXi  × UiYi is the internal coupling 

relation; 
• SELECT: 2M - φ,  M is a function which chooses 

one model when more than 2 models are 
scheduled simultaneously. 

 
EIC, EOC and IC specify the connections between 

the input and output ports of the various DEVS models. 
 
3. STATE OF THE ART 
Many approaches address the scenario synthesis 
problem, like (Harel, Kugler and Pnueli 2005) who 
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proposed a synthesis approach using the scenario-based 
language of Live Sequence Charts (LSC) as 
requirements, and synthesizing a state-based object 
system composed of a collection of finite state 
machines. (Letier, Kramer and Uchitel 2005) who 
presents a technique to generate Labelled Transition 
System (LTS) from Hight Level Message Sequence 
Chart (hMSC), in this approach, complex system 
behaviour can be modelled by parallel composition of 
the component LTS models. Parallel composition 
models components that execute asynchronously but 
synchronize on shared events; also they presented a 
technique to detect implicit scenarios.  

Ziadi, Hélouët and Jézéquel (2004) have proposed 
an idea to synthesize statecharts starting from scenarios 
expressed by UML2.0 Sequence Diagrams, and give an 
algorithm for synthesizing a composition of statecharts 
between them. Also (Damas and Lambeau 2006) has 
presented an approach to generate Lablled Transition 
System from a collection of basics MSC’s, and use a 
technique to merge the identical states. That will help us 
for our approach, and will return our atomic DEVS 
models minimal and determinists. 

 
4. FROM SEQUENCE DIAGRAMS TO DEVS 
4.1. Transformation steps of SD without operators 
Let us show transformation from SD sets to DEVS in 
the five following steps. 

 

Step I) Constructing an atomic DEVS model for one 
object belonging to one scenario: 

 

1.  For one object in one SD, identifying an atomic 
DEVS model (We consider for this example, the 
CoffeeMachine object). 

2.  Defining input/output events of the atomic DEVS 
model (X, Y)  

3. Defining a set of states. A state must include 
information of input/output events in a SD. As 
shown in the figure 2, each state should be 
associated with both an external and/or internal 
transitions (δint, δext) in an atomic DEVS 
model. 

 

 
Figure 2: Definition rules of the set of states 

 
4.  Defining state transitions between states obtained 

in 3 from the SD: 

A. Showing message transmission among the 
defined states (figure 3). 

 

 
Figure 3:  Translating message transmission 

 
B. Merging the start point of the SD and its end 

point into the initial state of the DEVS model 
(figure 4). 

 

 
Figure 4: Defining the initial state 

 
C. Translating all the message sequences of the SD 

to state transitions of the atomic model, and 
minimizing the number of states if equivalent 
states exist.  

 

 
Figure 5: Minimizing the number of states 

 
D. After the previous steps A~C, the 

specification of time advance functions in 
atomic DEVS models is remained. If a special 
time constraint is defined in the SD, the 
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condition must be translated in the confirmed 
state. If only an input causes the state transition 
from a state s, it can be describe by a passive 
state with ta(s)= ∞. If a state s’ describes only 
output events, then ta(s’)=1. 

 

Step II) Repeating the first step (I) for all objects of 
the considered SD. This step generates the set of 
atomic models associated with the SD. 

Step III) Repeating the step II for all the SD. This step 
generates the set of atomic models associated with 
the set of SD.  

Step IV) Building one atomic model from the atomic 
models on a given object. This step generates as 
many atomic models as there are objects in the set 
of SD. 

 

 
Figure 6: Example of the steps IV and V 

 

Step V) Building a coupled final model which is 
composed of the atomic models obtained in the 
previous step, so that the output of an atomic 
model is the input of another, then all objects in 
the system can communicate between them. The 
final coupled model describes the overall behavior 
of the system. 

 

An algorithm which translates a basic SD into an 
atomic DEVS model by object was presented in (Sqali 
and Torres 2008a). Also, the principle of the 
construction of an atomic DEVS model by object 
starting from several composed SD, and the 
construction of coupled DEVS model is described in 
(Sqali and Torres  2008b). 

 
4.2. Transformation of SD with seq, loop and alt 

operators  
�  Seq specifies a sequence between two SD (strong 

sequential composition). 
 

Da1 seq Da2 = <X, Y, S, δint, δext, λ, ta>:  
• S =- S1 U S2- {s02} if (Da2 ≠ ∅) 

  - S2 if (Da1= ∅) 
• X = X1 U X2  
• Y = Y1 U Y2 
• δint = δint1U δint1 
• δext = δext1U δext2 

 
� Loop specifies an iteration of a SD 

 
Loop (Da1) = <X, Y, S, δint, δext, λ, ta>:  
• S = - (S1-sn1) U {s01} 

            - s0=s01 
• X=X1 
• Y=Y1 
• δint = δint1U {sn -> s0} ∨ δext = δext1U 

 {Q  ×X -> s0} 
• Loop (Da∅) = Da∅ 

 
� Alt defines a choice between a set of  

 
Da1 alt Da2 = <X, Y, S, δint, δext, λ, ta>:  
• S =-  S1 if (Da1 ≠ ∅ ∧ Da2 = ∅) 

     -  S2 if (Da1 = ∅ ∧ Da2 ≠ ∅) 
           - {s0} if ((Da1 = ∅ ∧ Da2 = ∅) 

             -  S1 U S2 U {s} if (Da1 and DA2 are loops) 
∧ (Da1 ≠ ∅ and Da2 ≠ ∅) 

      - S1 U S2 otherwise 
• s0 =- A new state if (Da1 and DA2 are loops)  ∧  

(Da1 ≠ ∅ and Da2 ≠ ∅) 
             - s01 if Da2 are loops 
             - s02 if Da1 are loops 
• X = X1 U X2  
• Y = Y1 U Y2 
• δint = δint1U δint1 
• δext = δext1U δext2 

 
5. CASE STUDY AND SIMULATION  
Let us consider SD of the figure 1 that contains three 
objects; Customer, CoffeeMachine and Stock. By using 
the previous steps of transformation into DEVS models, 
we first obtain the DEVS atomic models represented in 
the figures 6 and 7. 
 

 
Figure 6: An atomic DEVS model for the object Stock 
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Figure 7: An  atomic DEVS model for the object 
CoffeeMachine  
 

After the global atomic models for all objects of the 
system have been built, we construct the coupled model 
given in the figure 8 who describes the overall behavior 
of the system. 
 

 
 Figure 8: A final coupled model 

 
To validate the specification of the system 

behavior from the final coupled DEVS model, we use 
the LSIS-DME tool developed within our laboratory. 
From a model and a set of data, the simulator provides 
the simulation results. The dataset is defined by the user 
who enters all external events supposed to occur during 
the simulation. For that, he entered for each event the 
port of the model on which the event will occur and the 
value of the event. For the final model, with the inputs 
specified in the figures 9 and 11, the results obtained 
during the simulation are given in the figures 10 and 12 
respectively. The simulation of the global DEVS model 
produces a sequence of events for the considered 
sequence of input events belonging to the set of event 

sequences defined by the SD. We note that the 
behaviors obtained are exactly the same as those 
specified in the SD. 
 

 
Figure 9: Filling input schedules 

 

 
Figure 10: Simulation results for Figure 9 

 

 
Figure 11: Another filling input schedules 

 
Figure 12: Simulation results for Figure 11 

 
The LSIS_DME tool also provides an interface 

XML to describe models DEVS textually. This makes 
possible to transform models DEVS obtained under 
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format XML. We can thereafter modify them and 
simulate them. For this, we propose to use XML and 
XSL to realize the synthesis in models DEVS expressed 
in XML 
 

 
Figure 13: Transformation using XML 

 
The transformation procedure consists to:   
 

1) Generate a XML representation of an atomic 
DEVS model for each object in all the scenarios of 
the system, by defining the XML format of the 
scenarios class with a DTD grammar, to apply XSL 
language on XML representation of the scenarios 
models, and generate a XML document for each 
object of the system. 

2) Construct a final coupled DEVS model, composed 
of the various atomic models obtained, describing 
the total behavior of the system. 

 
By using the library saxon8.jar, we import the 

javax.xml.transform.*; javax.xml.transform.stream._ 
Stream_Result; and javax.xml.transform.stream._ 
StreamSource;. The following code creates an XSL 
transformer which has as parameters the path of 
scenario XML document which we want to transform, 
and generates a DEVS XML file. 
 
// Create a transform factory instance. 
TransformerFactory tfactory = TransformerFactory_ 
.newInstance(); 
// Create a transformer for the stylesheet. 
Transformer trans = null; 
     try { 

          trans = tfactory.newTransformer(new 
StreamSource("C:/Path/convert.xsl")); 

     } 
     catch (TransformerConfigurationException ex) { 
// Transform the source XML to System.out. 
     try { 

trans.transform( 
new StreamSource("C:/Path/scenario.xml), new 
StreamResult( new 
File("exampleSimple.out"))); 

     } 
     catch (TransformerException ex)        
 
6. CONCLUSION 
Many approaches address the scenario synthesis 
problem. All of them agree with the need to have a 
sufficient number of scenarios. They especially differ in 
the source notation and semantics, in the target notation, 
and the identification of common states for merging 
scenarios (Liang, Dingel and Diskin 2006).  

We have presented the Sequence Diagrams 
synthesis into a DEVS model in order to verify and 
validate by simulation the behavioral specification given 
by the scenarios. We have chosen a scenario semantics 
restricted to event sequences with the notion of 
(repetition, alternativity and sequence). Thereafter, we 
proposed to use XML and XSL to realize the synthesis 
in DEVS models expressed in XML (José, Risco-Martin 
and Mittal 2007). 
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