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ABSTRACT 

This paper presents models and ideas at the foundation 

of a new collision detection engine for manufacturing 

systems simulation. The fast and reliable collision 

detection method proposed is based on an hybrid 

approach (usage of mixed type of bounding volumes 

shape and positioning) capable to satisfy the 

requirement of a quick and consistent detection while 

dealing with huge 3D models. 

 

Keywords: complex simulation environment, collision 

detection, real time, multi resolution approximation. 

 

1. INTRODUCTION 

The importance of computer animated simulations is 

ever increasing both in the design and in the production 

phase of manufacturing systems. 

A comprehensive simulation, whether applied to a 

single machining centre or to an entire plant, must be 

capable to represent various aspects of the reality. In a 

modular 3D simulation library (as the one this paper 

refers to, described in (Pedrazzoli 06)) these aspects are 

taken in charge by dedicated engines.  

Among those, the collision detection engine deals 

with the interactions between moving objects. A 

collision detection engine for real time simulation of 

manufacturing environments must satisfy the 

constraints of short response time, low resource usage 

and the capability to deal with huge simulation models. 

These models are mostly exported directly from the 

constructive drawings coming out from CAD software 

in order to cut the simulation set-up costs and increase 

the reliability of the simulation results. Thus, the 

resulting meshes are characterized by an high level of 

detail and a huge number of triangles. 

This paper deals with the design and development 

of a fast and reliable collision detection engine based on 

an hybrid approach (mixed type of bounding volumes 

shape and positioning) capable to satisfy all these 

requirements. 

The article is based on the following structure: 

after a survey on collision detection state of the art, the 

advantages and limitations of the different approaches 

adopted to meet the requirements for collision detection 

engine will be summarized. In the third part the selected 

approach at the base of the engine will be extensively 

explained. Section four details industrial test cases 

results. 

 

2. STATE OF THE ART 

 

2.1. Problem background 

The collision detection engine addressed by this paper is 

conceived in order to be plugged into a framework for 

the 3D simulation of complex manufacturing 

environments, representing either a single machining 

centre or a complete production plant. 

In the specific case, the simulation is connected to 

a real CNC and acts as a substitution of the real 

environment receiving the same inputs usually sent to 

the real machines and emulating their behaviour. This 

kind of application is mainly used in two different 

phases of the machine/plant lifecycle: 

 

1. During the development of the machine/plant 

management logics in order to speed up the debug 

phase of the CNC and PLC without facing the risk to 

damage the real structures (mainly to avoid auto 

collision situations). 

2. In production in order to perform an off-line 

check of complex part programs, thus avoiding possible 

collisions of the machining heads with the fixtures or 

with the work piece. 

 

Therefore the collision detection performed during 

these simulations must be responsive still remaining as 

adherent as possible to the tested mechanical structures. 

For this reason, the developed applications based on this 

framework are required to directly manage the models 

coming from the constructive drawings. 

This approach allows the reuse of machine and 

plants 3D models from the design phase, cutting down 

the simulation set up times and the related costs, thus 

increasing the complexity of the collision check. In fact, 

the great number of different existing CAD systems 

requires the models to be exported to a neutral mesh 

exchange format like VRML (Carey 97), with the result, 
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in the case of highly detailed models, of big non 

optimized meshes. 

This process, along with the huge number of 

contiguous moving parts, could dramatically increase 

the response time of the collision detection engine 

making it unusable for real-time simulations. 

During the development of the here presented 

collision detection engine several approaches described 

in literature have been used to automatically create 

collision structures. Their pros and cons are described in 

detail hereinafter. Common problems detected in all of 

these approaches are, on one side the under-exploitation 

of the knowledge deriving from the kinematic structures 

involved in the simulation and, on the other, the missing 

adaptation to the precision level required by each part of 

the machine/plant. 

For this reason a new hybrid, semi automatically 

defined, multi resolution approximation of CAD models 

is here proposed; this is based on a mixed structure of 

primitives which gives the user the opportunity to take 

advantage of the knowledge deriving from the motion 

logics, the exclusion rules and the required precision 

levels for each of the controlled objects. A 3D 

application has been developed to support the user 

during the process of collision structures definition. 

 

2.2. Previous work 

Collision detection problems have been extensively 

studied in literature (Kockara 07, Lin 98). (Hubbard 93) 

introduces a first classification of collision detections: 

broad-phase collision detection allows detecting objects 

that should be subsequently tested, while and narrow-

phase collision detection determines the exact collision. 

This scheme is broadly used in literature, to classify 

collision detection algorithms (Ericson 05). 

Algorithms for the broad-phase are mainly of three 

kinds: exhaustive, sweep and prune and hash table 

based. Exhaustive approach simply leads all pairs to be 

tested against each other. Sweep and prune (Baraff 03, 

Lin 94) sorts objects through their projection onto the 

coordinate axes and chooses the ones which projection 

overlaps. Hierarchical hash tables (Mirtich 96) divides 

the space into cells and selects objects that overlap the 

same cell. 

Algorithms for narrow phase collision detection 

can be categorized into four groups: feature-based, 

simplex-based, image-space based, volume-based and 

spatial data structures (Moore 98). 

Feature-based algorithms, such as Lin-Canny (Lin 

91), V-Clip (Mirtich 98), and SWIFT (Ehmann 00a, 

Ehmann 00b), directly works on the geometric 

primitives of the object, such as points, vertices and 

faces. Simplex-based operates on the convex hull of its 

points: a well known simplex-based algorithm is GJK 

(Bergen 03). 

Image space base (ISB) techniques are computed 

by image-space occlusion queries which are convenient 

to be implemented on the graphics hardware, the GPU, 

and common hardware, the CPU (Benes 05). Cinder 

(Knott 03) is a well known example of ISB, while 

frontiers on this type of algorithms can be found in 

(Heidelberger 04) and (Govindaraju 04). 

Volume based algorithms are conceptually based 

on the same idea of the ISB techniques; however, they 

use different methods to compute layered depth images 

(Heidelberger 04) and distance fields. This group of 

algorithms are also suitable for GPU implementations. 

In (Gundelman 03) can be found a volume based 

algorithm example. 

There are two types of spatial data structures for 

collision detection: spatial subdivision and bounding 

volume hierarchies (BVH). The first approach 

recursively divides the space, while the second 

recursively or iteratively partitions the object itself. 

With spatial partitioning, splitting of polygons (that is 

commonly used)  causes the increasing of tree depth 

and the lost of performance. In addition, since cell size 

of the spatial partitioning cannot cover objects’ 

primitives tightly, when objects are close, contact status 

determination is difficult.  

On the contrary, BVHs provide smaller and tighter 

hierarchies, and are more suitable for general shapes 

than simplex based and feature based algorithms. BVH 

can be called as discrete representation of level of 

details of objects. At the first level, hierarchy includes 

one bounding volume which is a very coarse 

representation of an object. Further levels include more 

detailed representations of the object. The leaf level (or 

finest level) of the hierarchy generally includes the 

object primitives (lines, triangles, or tetrahedra). 

Bounding volume (BV) does not necessarily enclose its 

children’s bounding volume; instead it must enclose the 

geometry of an object included in the children BVs. 

The selection of the root volume to be descended is 

called traversal rule: generally largest volume is chosen 

in order to lower the chance of finding overlapping. 

Non-overlapping BVs are discarded from further 

consideration (pruning). At last in the traversal, when 

two leaf nodes from two distinct volumes are reached, 

then there are two possibilities: testing whether two 

primitives are colliding (pair-wise test) or testing one 

primitive with the other’s leaf bounding volume 

(primitive-volume test). If objects’ primitives are 

colliding, a pair-wise test should be performed anyway. 

Thus, there is a trade-off between the number of 

iterations and the complexity in the overlap tests. 

(Gottschalk 00) states that recursively traversing 

BVHs is often a bad choice since the number of 

primitives and the hierarchies can be quite large. This 

problem can be solved by using iterative traversal 

technique with FIFO queue (Dingliana 00), with the 

introduction of a priority on the pair-wise BV tests. 

Typical BVs are: axis-aligned bounding boxes 

(AABB) and spheres, usually chosen for the simplicity 

of such structure intersection test, OBBs (Oriented 

Bounding Boxes) and k-DOP (Discrete Orientation 

Polytopes), used for their fitting approximation of the 

object, and recently also cylinder (Ketchel 06) for 

particular geometrical bodies. In addition, with Welzl’s 

algorithm (Fischer 03), finding better fitted spheres, 
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makes spheres preferable over other topological BVs. In 

overall, there is a trade-off between BVH complexity 

and performance (Gottschalk 00). Complex topology 

choices establish tighter fitted BVs and so fewer overlap 

tests but causes performance lost. On the other hand, 

less complex hierarchies provide faster overlap test but 

less tight BVs. 

Recent attempts have been made to summarize 

different approaches in an unique algorithm. In (Yoon 

04), the CHPM, Clustered Hierarchy of Progress Mesh, 

represents a model with a dual hierarchy: one for a 

coarse-grained selective refinement, the second for fine-

grained local refinement. This technique also exploits 

the idea of error bounded detection, for approximate but 

fast intersection spotting. 

 

3. ADOPTED APPROACHES 

The here-described technique is the result of an 

evolution: different approaches have been adopted and 

developed to face the problem described in the previous 

sections. Some of them are already known in literature, 

while in the present work others are studied and 

developed to face the described problem. The aim of 

this section is to present an overview of these 

algorithms, highlighting the advantages and problems 

they showed when concretely used. These problems, 

strictly bonded to the selected application field (the real 

time simulation environments for big models), leaded 

up to the replacement of the algorithm with a more 

suitable one. 

 

3.1. Literature Techniques 

 

3.1.1. Triangles 

The first idea was to use directly the triangles coming 

from the simulation model, surrounded by an OBB as 

approximation. This allowed achieving a unchallenged 

precision of the response without having any support 

structure. 

Despite this, triangle technique has clearly visible 

problems: apart from requiring a huge number of test to 

be performed (each triangle have to be tested against 

each other triangle), the triangle-triangle test is one of 

the most time-consuming test, bringing the collision test 

far from being real time. 

 

3.1.2. BVT (Bounding Volume Tree) 

The usage of BVH was considered the solution to be 

adopted to speed up the collision tests. The model 

meshes were surrounded by binary trees of both spheres 

and OBBs: this approach allows performing fast 

rejection tests when objects were far apart, preserving 

the precision detail of triangles. The BVT structure is 

built automatically from the model mesh, assigning 

triangles to tree leaves, with a controlled tree depth. 

Also this approach shows intrinsic lacks. The 

collision detection performances heavily downgrade 

when objects are close to each other: almost all leaves 

triangles need to be tested: in these cases, very frequent 

in considered applications, the bounding volume 

structure is just an undesired overhead. An accurate 

analysis, as a matter of fact, showed that the efficiency 

of the test was strictly linked to mesh layout. Most of 

them generate bounding volumes trees with leaves load 

balancing problems: many triangles are encapsulated 

with few leaves or, on the other hand, many triangles 

are shared between leaves. 

This brings redundant triangle-triangle test and 

pointless tree branches, with children having the same 

informative value of their parents. As a consequence, 

also the control parameter has been shown to be 

completely useless, because of its inability to tune 

efficiently the created structure. The resulting collision 

detection time was unpredictable, resulting, in most 

cases, unacceptably long. 

 

3.1.3. Example 

The following figures show an example of problems 

described in the previous section. 

 

 
Figure 1: A possible triangle mesh, composed by 

triangles A B C D E F G, which BV (line-dot) is 

subsequently cut along the maximum extension. The 

second cut is common for both first level children, and 

have been indicated once for simplicity. 

 

 
Figure 2: A hierarchical structure representing the mesh 

in [Figure 1]. For each node the related triangles and the 

generating cut are indicated. 

 

In [Figure 1] a mesh of an object has been taken 

into account. The OBB has been subsequently divided 

into children using a simple strategy: the longest 

extension axis is split in two parts. Moreover a tree with 

a depth of four is considered enough for the example, 
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thus three cuts have been performed (the second cut is 

common for both first level children). 

The hierarchy shown in [Figure 2] contains 

examples of all problems affecting hierarchical 

structures built on mesh, as for example BVT. The 

resulting structure is an heavily unbalanced tree: the 

right branch (1) of the root node (R), as a matter of fact, 

contains much more primitives for node than the left 

branch (0). Moreover, considering the leaves of this 

tree, many primitives are shared between nodes (e.g. B 

for all nodes except 000, 101, and 111). Node 01 and its 

children are a typical case of useless branch: it 

replicates the informative content of its parent referring 

triangles A and B. 

 

3.2. Developed Techniques 

 

3.2.1. BVMix (Bounding Volume Mix) 

As a possible solution to trees with uselessly long 

branches, a fixed hierarchy of different bounding 

volumes has been adopted, also including space 

partition concepts. 

This technique, titled BVMix, gives a multi 

resolution approximation of the given mesh. The model 

is represented, as a first approximation, by a sphere and 

by its OBB: this couple of bounding volumes assures a 

fast rejection when objects are far apart. The OBB is 

then subdivided in twenty-seven children called clusters 

obtained cutting the main OBB homogeneously on each 

of its axes. Each cluster contains a grid of spheres (leaf 

spheres) obtained by subdivision, in a tuneable number, 

of the shortest side: each of these spheres is associated 

with the triangles of the mesh concerning to the sphere 

volume. At the end each empty volume, both cluster 

and sphere, is removed from the hierarchy. 

BVMix, preserving the triangle precision and the 

BVT hierarchical idea and fast rejection idea, is 

characterised by a control parameter (number of cluster 

side subdivision) able to fit the complexity of the 

model. This algorithm gave also the possibility to 

approximate the test, ending it at the sphere level: a fast 

response, especially in machine debug preliminary 

phases, is in most cases a desired feature for a 

simulation collision detection algorithm. Despite the 

new approximation capabilities, and the performances 

improvement in general cases, compared to other 

techniques adopted, also BVMix suffers some 

problems. 

As for BVT, also for BVMix efficiency depends 

on mesh layout because triangles are still the final 

actors of the collision test, and the problem of triangles 

shared between leaves (spheres) is still unresolved. Last 

but not least, also in case of usage for approximated 

collision test, the user has no control on the 

approximation generated by the grid of spheres, not 

even tuning properly the control parameter. 

 

3.2.2. Fitting Boxes Algorithm 

Analysing the up-to-now described approaches, it's 

noticeable that problems for achieving goals of collision 

detection engine, with simulations mesh model, comes 

from the model mesh layout. Triangles, apart from 

being the most precise way for detecting collision, are 

the real bottleneck of every algorithm for collision 

detection. Thus the hereinafter described approach is 

based on the idea to sacrifice the precision of triangles 

in favour of a good approximation able to give a fast 

and conservative response to collision test. 

The last approach described in this section is based 

on an approximation of each model with a two level 

hierarchy of boxes: we called it the Fitting Boxes 

Algorithm. The first level of FBA hierarchy is simply 

the model OBB, called master box. The second level is 

a set of OBB (aligned with the master box) called sub 

boxes: each sub box is obtained by refinement of the 

master box or of another sub box. 

The refinement operation substitutes a box with a 

set of boxes sharing orientation, and whose dimension 

is a percentage of the generating box, containing at least 

one triangle of the model. The FBA building process 

can be made both by the user (who indicates which box 

has to be refined and the refinement percentages) or 

automatically (just indicating a percentage the algorithm 

refines the master box): this process leads to a 

controllable resolution of the model. 

This structure is then used from the collision 

detection engines for the test phase: excluding the 

triangle from test phase considerably enhance test 

response time in each respective situation of objects 

involved. Moreover FBA evidently did not suffer of 

problems such as load balancing of the hierarchy (also 

because it exploit a two level hierarchy), shared 

triangles, or dependence of its efficiency from the level 

of detail of the mesh of the model involved in test. 

Notwithstanding his effective features, that made 

FBA more usable simulations than previous approaches 

performed, also FBA has a main disadvantage: 

automatic built structures does not always perform a 

good approximation of the starting model. Also “hand-

made” structure approximation can be either poor or 

needs a great number of boxes to reach a good 

approximation: curvatures on object are a clear example 

of this lack, and are intrinsic in the choice of box as 

approximating structure. 

 

4. HMR APPROACH 

None of our previous approaches took into account the 

peculiarities of the models used in the simulation 

environment. Machine CAD drawings are composed of 

a great number of shapes, whose geometry is different 

the ones available in classic 3D applications (e.g. trees, 

people, animals, vehicles). The presence of shapes with 

a lot of rough edges represent a problem when trying to 

apply automatic mesh reduction algorithms like edge 

collapse (Cignoni 00).  

The approach we are describing exploits a key 

factor in simulation environments: the presence of 

physical laws that constraints the movements of the 

parts composing the machine model. The knowledge of 

the kinematics allows defining the degrees of freedom 
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of each part. For example, the limitation of one part 

movement can easily determine its bounding box in 

each allowed position. This can reduce the complexity 

of the approximating model (at least in a coarse-grained 

level of detail). 

A very important aspect in machine simulation is 

the possibility to define a tolerance in the collision 

detection precision: some critical parts don’t need to get 

too much close to each other for safety reasons (e.g. to 

avoid contacts for vibrating parts): in this case the 

simulation must report a collision even if the model 

meshes do not geometrically intersect. 

 

4.1. Description 

The exploitation of the simulation model knowledge 

and the inability to use automatic mesh reduction 

algorithms lead to an approach that defines and exploits 

a hierarchical multi resolution (HMR) approximating 

description of the models. This section describes how to 

define the approximating volumes, the hierarchical 

relationships and, for moving parts, the association with 

their degrees of freedom. 

An object occupied volume can be defined using a 

set of geometric primitives optimized for intersection 

test: spheres, boxes and cylinders. These primitives are 

well suited for approximating most of the shapes found 

in machine CAD models. For example a screw can be 

approximated with two cylinders (one for the head and 

one for the shaft) or with a single cylinder, depending 

on the precision required for that part. 

Models could eventually contain part that, even if 

made by simple shapes, cannot be well described with 

the available primitives. For this reason the here-

described approach also includes the possibility to 

define a triangle mesh starting from the object convex 

hull. Given that triangle intersection tests are the most 

expensive, the number of approximating triangles mesh 

has to be low. The impact of the presence of triangle 

meshes can moreover be limited using an enclosing 

simple volume, like a sphere or a box, for early 

exclusion. 

The advantages of hierarchical techniques can be 

achieved, in this approach, through the organization of 

these geometries in trees. This structure is traversed 

with the classical collision detection mode: test fails 

when a child fails, while succeeds when a leaf 

intersects. 

The key differentiating point, with respect to 

traditional approaches, is the possibility of mixing 

different types of geometries allowing choosing the best 

fitting shapes for each node composing the tree. It is 

also possible to balance the depth of the tree depending 

of the required precision weighted against the 

complexity of the model.  

The position and orientation of the geometry of 

each node is associated with that of a node of the 

simulation environment scene graph. This association is 

a key point in the flexibility of the tree structure: a node 

can be associated with a different transformation from 

the one linked to his parent or children one. This allows 

the independent motion of each tree node. 

The resulting structure can be seen as a scene 

graph used for collision detection rather than for 

rendering. The fact that this structure is explicitly built 

gives the possibility to access any node and modify its 

properties. For example the enclosing bounding volume 

of a multiple drill head can be adjusted depending of the 

status of the drill tools: when the simulation control 

logic receives the command to extend or retract the 

tools, it can also expand or shrink the enclosing 

bounding volume to take into account tools positions. 

Moreover, with this flexible hierarchy is also 

possible to realize culling and Boolean operations on 

geometries: a parent-child relation defines, as a matter 

of fact, the volume resulting from the difference 

between their approximating volumes. A scene graph 

like structure allows verifying and fine tuning the 

resolution of the approximation: where a greater detail 

is needed the structure can be expanded, leaving the 

representation coarse-grained in the zone of low 

interest. In this way it is possible to balance the 

precision and the speed of the collision detection. 

Finally, a great advantage of this structure is the 

low memory footprint, as each node is the best fitting 

shape and the depth and the trees don’t exceed the 

necessary. 

 

4.2. Collision structure editor 

A collision structure editor has been developed to 

support the user during the definition of the collision 

structures. In this 3D application it is possible to load 

models from VRML files: keeping the hierarchical 

structure of shapes of this format, it is possible to easily 

indentify and select model parts. Once the user has 

selected one or more parts, he can create one of the 

available bounding volumes (box, sphere and cylinder). 

The user can also define a triangle mesh as bounding 

volume. The application computes the best fitting 

bounding volume for the selection and, in the case of 

the triangle mesh, creates its convex hull. 

 

 
Figure 3: Collision structure editor 

 

The bounding volumes created are the nodes of 

HMR hierarchy. These nodes can be arranged in the 
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desired structure using drag and drop operations on the 

tree view on the right side of the application. 

The user can manually edit the properties of the 

primitives, such as extensions, location and orientation, 

to adjust the automatically computed values. That 

means that it is thus possible to define a bounding 

volume bigger that the fitting one: this is particularly 

useful when tolerances on movements are to be 

considered. Objects vibrations and dilatations are only 

simple examples of requirements bringing to slight 

enlargement of automatic fitting bounding volumes. 

 

5. TEST CASES 

In this section the results obtained by the described 

algorithms in two different applicative scenarios are 

reported. In both cases simulations were made on a 

common desktop PC (Pentium 4 3GHz, 2GB RAM, 

NVIDIA GeForce 6800 128MB video card) under a 

Windows XP SP3 operating system. The collision 

detection engine and algorithms are included, as 

pluggable modules, in a Java 1.6 simulation 

environment: thus all algorithms are implemented in 

Java. Performances measures, reported below, refers to 

this hardware and software configuration. 

 

5.1. Machine scenario 

The described test case concerns a real industrial 

scenario of a configurable hole punching machine. 

 

5.1.1. Scenario description 

This kind of tool-machine actually has up to 24 heads 

(12 for each of the two sides of the wood panel) and 

each head has up to 29 tools. The machine also has 5 

bridges and 5 supporting structures to keep the panel in 

place, and 2 machine moving structures. The heads are 

mounted in pair on an axis that can move along the x 

direction, while each head can move along the y and z 

directions and rotate ±90 degrees around its axis. On the 

head each tool can be extended or retracted: thus the 

overall shape of the moving head is complex and 

dynamic: a schema of the machine is reported in [Figure 

4].  

 

 
Figure 4: Test case machine heads schema. The red 

circles highlight possible collision in moving objects in 

the scene. 

 

This scenario is particularly challenging for each 

collision algorithm because it has 732 different objects 

to be checked (267546 combinations of object to be 

tested), for a total of about 200 thousands triangles. 

This amount of colliding pairs can be divided in 

collision groups (groups with objects worth to be 

checked for collision) to speed-up the overall test. For 

example the tools of a head cannot enter in contact with 

each other as they are firmly mounted on the head, and 

can thus belong to different collision groups. 

A single head, as the blue one in [Figure 4], can 

collide with each of the heads of the other side of the 

panel, with the head on the same y axis and with the 

adjacent heads on the x axis. Tools can enter in contact 

with the heads and tools of the other side and with the 

adjacent tools and heads on their side, bringing the same 

number of objects to be checked as for the head. 

Moreover, the first and last heads have only one 

adjacent head on the x axis. The number of pairs of 

objects to be tested under these hypotheses is around 

152 thousands. 

Using the previously described method, the 

knowledge that heads and tools are moving together can 

be exploited. HMR allows seeing tools as children of a 

common parent bounding volume: these and the head 

are thus children of a common root bounding volume. 

This root can collide with the five adjacent ones and 

with the ones acting on the other side of the panel. Thus 

the number of objects to be checked in the first level of 

detection is around 400: only if collision is detected at 

first level HMR further checks each child of one 

hierarchy against each one of the other. Considering 

that most of the time we don’t have collisions don’t 

occur (as the CNC is able to generate safe paths in most 

of the cases), having a low first level number of objects, 

can strongly reduce the total number of checks. 

The described machine, and its amount of colliding 

objects, has been used as reference environment for the 

performed test campaign and as benchmark for all 

described algorithms. Moreover, a common simulation 

has been set up: all the machine axes have been moved 

with a triangular speed motion law, bringing all the 

objects involved to collide at least once with the other 

movable objects. 

 

5.1.2. Results 

Benchmark simulation is formed of many steps 

including the update of the environment after the axis 

motion and a collision detection check. Number of 

primitive tests and time spent while testing are collected 

for each algorithm: results are in [Table 1]. 

 

Table 1: Results of tested methods for hole punching 

machine test case: triangles method results are omitted 

since not significant. 

 BVT BVMix FBA HMR 

Box - Box 16565K 30707K 18654K 1675K 

Sph - Sph / 2115M / / 

Tri - Tri 5115M 9279M / / 

Collision 34099 34099 42062 32185 

Time (s) 852,26 1673,69 5,81 4,47 

FPS 0,12 0,06 17,21 22,39 
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Results obtained with Triangles algorithm are here 

omitted because not significant: time spent for collision 

isn’t comparable with any other method tested. 

Results show, as previously stated, that HMR 

including knowledge on machine in its collision 

structure is capable to perform better than other 

methods for collision detection. In particular, its frame 

rate makes HMR an interactive method for collision 

detection. It is worth notice that this result it is not 

reached with exact algorithms (Triangles, BVT or 

BVMix). 

As a matter of fact BVMix, in this test case, 

performs worse than BVT: this is understandable 

considering that for the rough-edge geometries used 

BVT (using boxes as base bounding volumes) is 

capable to better approximate geometries than BVMix 

(that has spheres as hierarchy leaves). BVMix thus 

being more suitable for general geometries, as already 

explained, demotes its performance with squared 

bodies. 

It is moreover useful to notice the number of 

detected collisions: HMR is supposed to detect more 

collisions, because it doesn’t use the exactness of model 

triangles. 

Grouping tools under a common bounding volume 

allows HMR to handle the case that when tools are 

retracted inside the head body, they cannot collide with 

anything outside the heads (parent bounding volume is 

sized to include only tool outside volume). For other 

methods, instead, they always collide with anything 

they are checked with. This, once again, makes HMR 

faster thanks to included machine knowledge and 

explaining the difference in the number of detected 

collisions. 

 

5.2. Robot arms scenario 

This test case concerns a common industrial 

application: the usage of robot arms acting 

simultaneously on the environment, for example in an 

assembly cell like the one in the simulation pictured in 

[Figure 5]. 

 

 
Figure 5: Robot arm scenario. Two robotic arms 

(KUKA KR 30 HA) colliding during an assembly task. 

 

5.2.1. Scenario description 

In this test case two robot arms are assembling a piece, 

acting on the two side of a conveyor system. 

While assembling, it is possible that any of the 

links of each arm collide both with another of the same 

arm (self-collision) and with links of the other arm. A 

first kind of collisions is usually avoided thanks to 

physical joint limits or through properly writing each 

arm task; the other kind is usually managed in the 

simulation phase, especially when the number of arms 

involved increases. 

This robotic scenario, even if common in industrial 

applications, is not particularly challenging for collision 

detection algorithms: each arm is formed by 6 links and 

14 pieces to be checked for collision for a total of about 

34 thousands triangles. 

 

5.2.2. Results 

Each simulation step requires the motion of all the 

joints in a task, forcing each arm link to collide with 

each other many times. Also for this test case, results 

obtained with Triangles algorithm are omitted because 

not significant. 

 

Table 2: Results of tested methods for robot arms test 

case. Triangles method results are omitted since not 

significant. 

 BVT BVMix FBA HMR 

Box - Box 307K 3026K 766K 197K 

Sph - Sph / 22M / / 

Tri - Tri 954M 178M / / 

Collision 6284 6284 7328 8060 

Time (s) 160,501 33,451 0,222 0,109 

FPS 6,23 29,89 4,5K 9,2K 

 

This tests case, besides confirming what previously 

stated, shows also how BVT performances heavily can 

downgrade depending on the model, also if compared 

with another exact algorithm as BVMix. 

The arm model is composed by many small 

triangles coupled with some long ones: when a BVT 

leaf is selected for primitive test, it participates with 

many elements, many of which are useless for detecting 

collisions. BVMix leaf spheres generally enclose much 

less primitives to be tested only when needed: being 

small are more punctual bounding volumes. 

 

6. CONCLUSION 

In this paper a hierarchical fast and reliable collision 

detection method based on an hybrid approach is 

presented. This novel technique, called HMR, is capable 

both to take into account the geometry structure of a 

model (using different kinds of bounding volumes), and 

to include knowledge on the model kinematics 

peculiarities and physical constraints. 

The capability to include model knowledge, rising 

from the organization of bounding volumes in 

231



 

 

hierarchies, allows HMR to achieve interactive collision 

detection with a low memory usage. 

The stratification of bounding volumes represents 

for HMR a smart multi resolution approximation of 

moving objects: this representation comes directly from 

the human experience. Objects representation and 

organization in parent-child hierarchies is created by the 

user with the help of a visual editor. 

Further investigations will be directed on 

exploiting HMR abilities to use more knowledge, e.g. 

reusing knowledge related to a single part of the model, 

to speed up the collision detection on other model parts. 

Another possible improvement will allow HMR to deal 

with other bounding volumes types. 
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