

REAL TIME COLLISION DETECTION FOR COMPLEX SIMULATIONS

BASED ON HYBRID MULTI RESOLUTION APPROXIMATION OF CAD MODELS

I.F. Ceruti
(a)

, G. Dal Maso
(b)

, D. Rovere
(c)

, P. Pedrazzoli
(d)

, C. R. Boër
(e)

(a)

 Technology Transfer System s.r.l. - TTS
 (b) (c) (d)

(e)

 University of Applied Science of Southern Switzerland - SUPSI

ceruti@ttsnetwork.com; giovanni.dalmaso@supsi.ch; diego.rovere@supsi.ch;

paolo.pedrazzoli@supsi.ch; claudio.boer@supsi.ch

ABSTRACT

This paper presents models and ideas at the foundation

of a new collision detection engine for manufacturing

systems simulation. The fast and reliable collision

detection method proposed is based on an hybrid

approach (usage of mixed type of bounding volumes

shape and positioning) capable to satisfy the

requirement of a quick and consistent detection while

dealing with huge 3D models.

Keywords: complex simulation environment, collision

detection, real time, multi resolution approximation.

1. INTRODUCTION

The importance of computer animated simulations is

ever increasing both in the design and in the production

phase of manufacturing systems.

A comprehensive simulation, whether applied to a

single machining centre or to an entire plant, must be

capable to represent various aspects of the reality. In a

modular 3D simulation library (as the one this paper

refers to, described in (Pedrazzoli 06)) these aspects are

taken in charge by dedicated engines.

Among those, the collision detection engine deals

with the interactions between moving objects. A

collision detection engine for real time simulation of

manufacturing environments must satisfy the

constraints of short response time, low resource usage

and the capability to deal with huge simulation models.

These models are mostly exported directly from the

constructive drawings coming out from CAD software

in order to cut the simulation set-up costs and increase

the reliability of the simulation results. Thus, the

resulting meshes are characterized by an high level of

detail and a huge number of triangles.

This paper deals with the design and development

of a fast and reliable collision detection engine based on

an hybrid approach (mixed type of bounding volumes

shape and positioning) capable to satisfy all these

requirements.

The article is based on the following structure:

after a survey on collision detection state of the art, the

advantages and limitations of the different approaches

adopted to meet the requirements for collision detection

engine will be summarized. In the third part the selected

approach at the base of the engine will be extensively

explained. Section four details industrial test cases

results.

2. STATE OF THE ART

2.1. Problem background

The collision detection engine addressed by this paper is

conceived in order to be plugged into a framework for

the 3D simulation of complex manufacturing

environments, representing either a single machining

centre or a complete production plant.

In the specific case, the simulation is connected to

a real CNC and acts as a substitution of the real

environment receiving the same inputs usually sent to

the real machines and emulating their behaviour. This

kind of application is mainly used in two different

phases of the machine/plant lifecycle:

1. During the development of the machine/plant

management logics in order to speed up the debug

phase of the CNC and PLC without facing the risk to

damage the real structures (mainly to avoid auto

collision situations).

2. In production in order to perform an off-line

check of complex part programs, thus avoiding possible

collisions of the machining heads with the fixtures or

with the work piece.

Therefore the collision detection performed during

these simulations must be responsive still remaining as

adherent as possible to the tested mechanical structures.

For this reason, the developed applications based on this

framework are required to directly manage the models

coming from the constructive drawings.

This approach allows the reuse of machine and

plants 3D models from the design phase, cutting down

the simulation set up times and the related costs, thus

increasing the complexity of the collision check. In fact,

the great number of different existing CAD systems

requires the models to be exported to a neutral mesh

exchange format like VRML (Carey 97), with the result,

225

mailto:ceruti@ttsnetwork.com
mailto:giovanni.dalmaso@supsi.ch
mailto:diego.rovere@supsi.ch
mailto:paolo.pedrazzoli@supsi.ch
mailto:claudio.boer@supsi.ch

in the case of highly detailed models, of big non

optimized meshes.

This process, along with the huge number of

contiguous moving parts, could dramatically increase

the response time of the collision detection engine

making it unusable for real-time simulations.

During the development of the here presented

collision detection engine several approaches described

in literature have been used to automatically create

collision structures. Their pros and cons are described in

detail hereinafter. Common problems detected in all of

these approaches are, on one side the under-exploitation

of the knowledge deriving from the kinematic structures

involved in the simulation and, on the other, the missing

adaptation to the precision level required by each part of

the machine/plant.

For this reason a new hybrid, semi automatically

defined, multi resolution approximation of CAD models

is here proposed; this is based on a mixed structure of

primitives which gives the user the opportunity to take

advantage of the knowledge deriving from the motion

logics, the exclusion rules and the required precision

levels for each of the controlled objects. A 3D

application has been developed to support the user

during the process of collision structures definition.

2.2. Previous work

Collision detection problems have been extensively

studied in literature (Kockara 07, Lin 98). (Hubbard 93)

introduces a first classification of collision detections:

broad-phase collision detection allows detecting objects

that should be subsequently tested, while and narrow-

phase collision detection determines the exact collision.

This scheme is broadly used in literature, to classify

collision detection algorithms (Ericson 05).

Algorithms for the broad-phase are mainly of three

kinds: exhaustive, sweep and prune and hash table

based. Exhaustive approach simply leads all pairs to be

tested against each other. Sweep and prune (Baraff 03,

Lin 94) sorts objects through their projection onto the

coordinate axes and chooses the ones which projection

overlaps. Hierarchical hash tables (Mirtich 96) divides

the space into cells and selects objects that overlap the

same cell.

Algorithms for narrow phase collision detection

can be categorized into four groups: feature-based,

simplex-based, image-space based, volume-based and

spatial data structures (Moore 98).

Feature-based algorithms, such as Lin-Canny (Lin

91), V-Clip (Mirtich 98), and SWIFT (Ehmann 00a,

Ehmann 00b), directly works on the geometric

primitives of the object, such as points, vertices and

faces. Simplex-based operates on the convex hull of its

points: a well known simplex-based algorithm is GJK

(Bergen 03).

Image space base (ISB) techniques are computed

by image-space occlusion queries which are convenient

to be implemented on the graphics hardware, the GPU,

and common hardware, the CPU (Benes 05). Cinder

(Knott 03) is a well known example of ISB, while

frontiers on this type of algorithms can be found in

(Heidelberger 04) and (Govindaraju 04).

Volume based algorithms are conceptually based

on the same idea of the ISB techniques; however, they

use different methods to compute layered depth images

(Heidelberger 04) and distance fields. This group of

algorithms are also suitable for GPU implementations.

In (Gundelman 03) can be found a volume based

algorithm example.

There are two types of spatial data structures for

collision detection: spatial subdivision and bounding

volume hierarchies (BVH). The first approach

recursively divides the space, while the second

recursively or iteratively partitions the object itself.

With spatial partitioning, splitting of polygons (that is

commonly used) causes the increasing of tree depth

and the lost of performance. In addition, since cell size

of the spatial partitioning cannot cover objects’

primitives tightly, when objects are close, contact status

determination is difficult.

On the contrary, BVHs provide smaller and tighter

hierarchies, and are more suitable for general shapes

than simplex based and feature based algorithms. BVH

can be called as discrete representation of level of

details of objects. At the first level, hierarchy includes

one bounding volume which is a very coarse

representation of an object. Further levels include more

detailed representations of the object. The leaf level (or

finest level) of the hierarchy generally includes the

object primitives (lines, triangles, or tetrahedra).

Bounding volume (BV) does not necessarily enclose its

children’s bounding volume; instead it must enclose the

geometry of an object included in the children BVs.

The selection of the root volume to be descended is

called traversal rule: generally largest volume is chosen

in order to lower the chance of finding overlapping.

Non-overlapping BVs are discarded from further

consideration (pruning). At last in the traversal, when

two leaf nodes from two distinct volumes are reached,

then there are two possibilities: testing whether two

primitives are colliding (pair-wise test) or testing one

primitive with the other’s leaf bounding volume

(primitive-volume test). If objects’ primitives are

colliding, a pair-wise test should be performed anyway.

Thus, there is a trade-off between the number of

iterations and the complexity in the overlap tests.

(Gottschalk 00) states that recursively traversing

BVHs is often a bad choice since the number of

primitives and the hierarchies can be quite large. This

problem can be solved by using iterative traversal

technique with FIFO queue (Dingliana 00), with the

introduction of a priority on the pair-wise BV tests.

Typical BVs are: axis-aligned bounding boxes

(AABB) and spheres, usually chosen for the simplicity

of such structure intersection test, OBBs (Oriented

Bounding Boxes) and k-DOP (Discrete Orientation

Polytopes), used for their fitting approximation of the

object, and recently also cylinder (Ketchel 06) for

particular geometrical bodies. In addition, with Welzl’s

algorithm (Fischer 03), finding better fitted spheres,

226

makes spheres preferable over other topological BVs. In

overall, there is a trade-off between BVH complexity

and performance (Gottschalk 00). Complex topology

choices establish tighter fitted BVs and so fewer overlap

tests but causes performance lost. On the other hand,

less complex hierarchies provide faster overlap test but

less tight BVs.

Recent attempts have been made to summarize

different approaches in an unique algorithm. In (Yoon

04), the CHPM, Clustered Hierarchy of Progress Mesh,

represents a model with a dual hierarchy: one for a

coarse-grained selective refinement, the second for fine-

grained local refinement. This technique also exploits

the idea of error bounded detection, for approximate but

fast intersection spotting.

3. ADOPTED APPROACHES

The here-described technique is the result of an

evolution: different approaches have been adopted and

developed to face the problem described in the previous

sections. Some of them are already known in literature,

while in the present work others are studied and

developed to face the described problem. The aim of

this section is to present an overview of these

algorithms, highlighting the advantages and problems

they showed when concretely used. These problems,

strictly bonded to the selected application field (the real

time simulation environments for big models), leaded

up to the replacement of the algorithm with a more

suitable one.

3.1. Literature Techniques

3.1.1. Triangles

The first idea was to use directly the triangles coming

from the simulation model, surrounded by an OBB as

approximation. This allowed achieving a unchallenged

precision of the response without having any support

structure.

Despite this, triangle technique has clearly visible

problems: apart from requiring a huge number of test to

be performed (each triangle have to be tested against

each other triangle), the triangle-triangle test is one of

the most time-consuming test, bringing the collision test

far from being real time.

3.1.2. BVT (Bounding Volume Tree)

The usage of BVH was considered the solution to be

adopted to speed up the collision tests. The model

meshes were surrounded by binary trees of both spheres

and OBBs: this approach allows performing fast

rejection tests when objects were far apart, preserving

the precision detail of triangles. The BVT structure is

built automatically from the model mesh, assigning

triangles to tree leaves, with a controlled tree depth.

Also this approach shows intrinsic lacks. The

collision detection performances heavily downgrade

when objects are close to each other: almost all leaves

triangles need to be tested: in these cases, very frequent

in considered applications, the bounding volume

structure is just an undesired overhead. An accurate

analysis, as a matter of fact, showed that the efficiency

of the test was strictly linked to mesh layout. Most of

them generate bounding volumes trees with leaves load

balancing problems: many triangles are encapsulated

with few leaves or, on the other hand, many triangles

are shared between leaves.

This brings redundant triangle-triangle test and

pointless tree branches, with children having the same

informative value of their parents. As a consequence,

also the control parameter has been shown to be

completely useless, because of its inability to tune

efficiently the created structure. The resulting collision

detection time was unpredictable, resulting, in most

cases, unacceptably long.

3.1.3. Example

The following figures show an example of problems

described in the previous section.

Figure 1: A possible triangle mesh, composed by

triangles A B C D E F G, which BV (line-dot) is

subsequently cut along the maximum extension. The

second cut is common for both first level children, and

have been indicated once for simplicity.

Figure 2: A hierarchical structure representing the mesh

in [Figure 1]. For each node the related triangles and the

generating cut are indicated.

In [Figure 1] a mesh of an object has been taken

into account. The OBB has been subsequently divided

into children using a simple strategy: the longest

extension axis is split in two parts. Moreover a tree with

a depth of four is considered enough for the example,

227

thus three cuts have been performed (the second cut is

common for both first level children).

The hierarchy shown in [Figure 2] contains

examples of all problems affecting hierarchical

structures built on mesh, as for example BVT. The

resulting structure is an heavily unbalanced tree: the

right branch (1) of the root node (R), as a matter of fact,

contains much more primitives for node than the left

branch (0). Moreover, considering the leaves of this

tree, many primitives are shared between nodes (e.g. B

for all nodes except 000, 101, and 111). Node 01 and its

children are a typical case of useless branch: it

replicates the informative content of its parent referring

triangles A and B.

3.2. Developed Techniques

3.2.1. BVMix (Bounding Volume Mix)

As a possible solution to trees with uselessly long

branches, a fixed hierarchy of different bounding

volumes has been adopted, also including space

partition concepts.

This technique, titled BVMix, gives a multi

resolution approximation of the given mesh. The model

is represented, as a first approximation, by a sphere and

by its OBB: this couple of bounding volumes assures a

fast rejection when objects are far apart. The OBB is

then subdivided in twenty-seven children called clusters

obtained cutting the main OBB homogeneously on each

of its axes. Each cluster contains a grid of spheres (leaf

spheres) obtained by subdivision, in a tuneable number,

of the shortest side: each of these spheres is associated

with the triangles of the mesh concerning to the sphere

volume. At the end each empty volume, both cluster

and sphere, is removed from the hierarchy.

BVMix, preserving the triangle precision and the

BVT hierarchical idea and fast rejection idea, is

characterised by a control parameter (number of cluster

side subdivision) able to fit the complexity of the

model. This algorithm gave also the possibility to

approximate the test, ending it at the sphere level: a fast

response, especially in machine debug preliminary

phases, is in most cases a desired feature for a

simulation collision detection algorithm. Despite the

new approximation capabilities, and the performances

improvement in general cases, compared to other

techniques adopted, also BVMix suffers some

problems.

As for BVT, also for BVMix efficiency depends

on mesh layout because triangles are still the final

actors of the collision test, and the problem of triangles

shared between leaves (spheres) is still unresolved. Last

but not least, also in case of usage for approximated

collision test, the user has no control on the

approximation generated by the grid of spheres, not

even tuning properly the control parameter.

3.2.2. Fitting Boxes Algorithm

Analysing the up-to-now described approaches, it's

noticeable that problems for achieving goals of collision

detection engine, with simulations mesh model, comes

from the model mesh layout. Triangles, apart from

being the most precise way for detecting collision, are

the real bottleneck of every algorithm for collision

detection. Thus the hereinafter described approach is

based on the idea to sacrifice the precision of triangles

in favour of a good approximation able to give a fast

and conservative response to collision test.

The last approach described in this section is based

on an approximation of each model with a two level

hierarchy of boxes: we called it the Fitting Boxes

Algorithm. The first level of FBA hierarchy is simply

the model OBB, called master box. The second level is

a set of OBB (aligned with the master box) called sub

boxes: each sub box is obtained by refinement of the

master box or of another sub box.

The refinement operation substitutes a box with a

set of boxes sharing orientation, and whose dimension

is a percentage of the generating box, containing at least

one triangle of the model. The FBA building process

can be made both by the user (who indicates which box

has to be refined and the refinement percentages) or

automatically (just indicating a percentage the algorithm

refines the master box): this process leads to a

controllable resolution of the model.

This structure is then used from the collision

detection engines for the test phase: excluding the

triangle from test phase considerably enhance test

response time in each respective situation of objects

involved. Moreover FBA evidently did not suffer of

problems such as load balancing of the hierarchy (also

because it exploit a two level hierarchy), shared

triangles, or dependence of its efficiency from the level

of detail of the mesh of the model involved in test.

Notwithstanding his effective features, that made

FBA more usable simulations than previous approaches

performed, also FBA has a main disadvantage:

automatic built structures does not always perform a

good approximation of the starting model. Also “hand-

made” structure approximation can be either poor or

needs a great number of boxes to reach a good

approximation: curvatures on object are a clear example

of this lack, and are intrinsic in the choice of box as

approximating structure.

4. HMR APPROACH

None of our previous approaches took into account the

peculiarities of the models used in the simulation

environment. Machine CAD drawings are composed of

a great number of shapes, whose geometry is different

the ones available in classic 3D applications (e.g. trees,

people, animals, vehicles). The presence of shapes with

a lot of rough edges represent a problem when trying to

apply automatic mesh reduction algorithms like edge

collapse (Cignoni 00).

The approach we are describing exploits a key

factor in simulation environments: the presence of

physical laws that constraints the movements of the

parts composing the machine model. The knowledge of

the kinematics allows defining the degrees of freedom

228

of each part. For example, the limitation of one part

movement can easily determine its bounding box in

each allowed position. This can reduce the complexity

of the approximating model (at least in a coarse-grained

level of detail).

A very important aspect in machine simulation is

the possibility to define a tolerance in the collision

detection precision: some critical parts don’t need to get

too much close to each other for safety reasons (e.g. to

avoid contacts for vibrating parts): in this case the

simulation must report a collision even if the model

meshes do not geometrically intersect.

4.1. Description

The exploitation of the simulation model knowledge

and the inability to use automatic mesh reduction

algorithms lead to an approach that defines and exploits

a hierarchical multi resolution (HMR) approximating

description of the models. This section describes how to

define the approximating volumes, the hierarchical

relationships and, for moving parts, the association with

their degrees of freedom.

An object occupied volume can be defined using a

set of geometric primitives optimized for intersection

test: spheres, boxes and cylinders. These primitives are

well suited for approximating most of the shapes found

in machine CAD models. For example a screw can be

approximated with two cylinders (one for the head and

one for the shaft) or with a single cylinder, depending

on the precision required for that part.

Models could eventually contain part that, even if

made by simple shapes, cannot be well described with

the available primitives. For this reason the here-

described approach also includes the possibility to

define a triangle mesh starting from the object convex

hull. Given that triangle intersection tests are the most

expensive, the number of approximating triangles mesh

has to be low. The impact of the presence of triangle

meshes can moreover be limited using an enclosing

simple volume, like a sphere or a box, for early

exclusion.

The advantages of hierarchical techniques can be

achieved, in this approach, through the organization of

these geometries in trees. This structure is traversed

with the classical collision detection mode: test fails

when a child fails, while succeeds when a leaf

intersects.

The key differentiating point, with respect to

traditional approaches, is the possibility of mixing

different types of geometries allowing choosing the best

fitting shapes for each node composing the tree. It is

also possible to balance the depth of the tree depending

of the required precision weighted against the

complexity of the model.

The position and orientation of the geometry of

each node is associated with that of a node of the

simulation environment scene graph. This association is

a key point in the flexibility of the tree structure: a node

can be associated with a different transformation from

the one linked to his parent or children one. This allows

the independent motion of each tree node.

The resulting structure can be seen as a scene

graph used for collision detection rather than for

rendering. The fact that this structure is explicitly built

gives the possibility to access any node and modify its

properties. For example the enclosing bounding volume

of a multiple drill head can be adjusted depending of the

status of the drill tools: when the simulation control

logic receives the command to extend or retract the

tools, it can also expand or shrink the enclosing

bounding volume to take into account tools positions.

Moreover, with this flexible hierarchy is also

possible to realize culling and Boolean operations on

geometries: a parent-child relation defines, as a matter

of fact, the volume resulting from the difference

between their approximating volumes. A scene graph

like structure allows verifying and fine tuning the

resolution of the approximation: where a greater detail

is needed the structure can be expanded, leaving the

representation coarse-grained in the zone of low

interest. In this way it is possible to balance the

precision and the speed of the collision detection.

Finally, a great advantage of this structure is the

low memory footprint, as each node is the best fitting

shape and the depth and the trees don’t exceed the

necessary.

4.2. Collision structure editor

A collision structure editor has been developed to

support the user during the definition of the collision

structures. In this 3D application it is possible to load

models from VRML files: keeping the hierarchical

structure of shapes of this format, it is possible to easily

indentify and select model parts. Once the user has

selected one or more parts, he can create one of the

available bounding volumes (box, sphere and cylinder).

The user can also define a triangle mesh as bounding

volume. The application computes the best fitting

bounding volume for the selection and, in the case of

the triangle mesh, creates its convex hull.

Figure 3: Collision structure editor

The bounding volumes created are the nodes of

HMR hierarchy. These nodes can be arranged in the

229

desired structure using drag and drop operations on the

tree view on the right side of the application.

The user can manually edit the properties of the

primitives, such as extensions, location and orientation,

to adjust the automatically computed values. That

means that it is thus possible to define a bounding

volume bigger that the fitting one: this is particularly

useful when tolerances on movements are to be

considered. Objects vibrations and dilatations are only

simple examples of requirements bringing to slight

enlargement of automatic fitting bounding volumes.

5. TEST CASES

In this section the results obtained by the described

algorithms in two different applicative scenarios are

reported. In both cases simulations were made on a

common desktop PC (Pentium 4 3GHz, 2GB RAM,

NVIDIA GeForce 6800 128MB video card) under a

Windows XP SP3 operating system. The collision

detection engine and algorithms are included, as

pluggable modules, in a Java 1.6 simulation

environment: thus all algorithms are implemented in

Java. Performances measures, reported below, refers to

this hardware and software configuration.

5.1. Machine scenario

The described test case concerns a real industrial

scenario of a configurable hole punching machine.

5.1.1. Scenario description

This kind of tool-machine actually has up to 24 heads

(12 for each of the two sides of the wood panel) and

each head has up to 29 tools. The machine also has 5

bridges and 5 supporting structures to keep the panel in

place, and 2 machine moving structures. The heads are

mounted in pair on an axis that can move along the x

direction, while each head can move along the y and z

directions and rotate ±90 degrees around its axis. On the

head each tool can be extended or retracted: thus the

overall shape of the moving head is complex and

dynamic: a schema of the machine is reported in [Figure

4].

Figure 4: Test case machine heads schema. The red

circles highlight possible collision in moving objects in

the scene.

This scenario is particularly challenging for each

collision algorithm because it has 732 different objects

to be checked (267546 combinations of object to be

tested), for a total of about 200 thousands triangles.

This amount of colliding pairs can be divided in

collision groups (groups with objects worth to be

checked for collision) to speed-up the overall test. For

example the tools of a head cannot enter in contact with

each other as they are firmly mounted on the head, and

can thus belong to different collision groups.

A single head, as the blue one in [Figure 4], can

collide with each of the heads of the other side of the

panel, with the head on the same y axis and with the

adjacent heads on the x axis. Tools can enter in contact

with the heads and tools of the other side and with the

adjacent tools and heads on their side, bringing the same

number of objects to be checked as for the head.

Moreover, the first and last heads have only one

adjacent head on the x axis. The number of pairs of

objects to be tested under these hypotheses is around

152 thousands.

Using the previously described method, the

knowledge that heads and tools are moving together can

be exploited. HMR allows seeing tools as children of a

common parent bounding volume: these and the head

are thus children of a common root bounding volume.

This root can collide with the five adjacent ones and

with the ones acting on the other side of the panel. Thus

the number of objects to be checked in the first level of

detection is around 400: only if collision is detected at

first level HMR further checks each child of one

hierarchy against each one of the other. Considering

that most of the time we don’t have collisions don’t

occur (as the CNC is able to generate safe paths in most

of the cases), having a low first level number of objects,

can strongly reduce the total number of checks.

The described machine, and its amount of colliding

objects, has been used as reference environment for the

performed test campaign and as benchmark for all

described algorithms. Moreover, a common simulation

has been set up: all the machine axes have been moved

with a triangular speed motion law, bringing all the

objects involved to collide at least once with the other

movable objects.

5.1.2. Results

Benchmark simulation is formed of many steps

including the update of the environment after the axis

motion and a collision detection check. Number of

primitive tests and time spent while testing are collected

for each algorithm: results are in [Table 1].

Table 1: Results of tested methods for hole punching

machine test case: triangles method results are omitted

since not significant.

 BVT BVMix FBA HMR

Box - Box 16565K 30707K 18654K 1675K

Sph - Sph / 2115M / /

Tri - Tri 5115M 9279M / /

Collision 34099 34099 42062 32185

Time (s) 852,26 1673,69 5,81 4,47

FPS 0,12 0,06 17,21 22,39

230

Results obtained with Triangles algorithm are here

omitted because not significant: time spent for collision

isn’t comparable with any other method tested.

Results show, as previously stated, that HMR

including knowledge on machine in its collision

structure is capable to perform better than other

methods for collision detection. In particular, its frame

rate makes HMR an interactive method for collision

detection. It is worth notice that this result it is not

reached with exact algorithms (Triangles, BVT or

BVMix).

As a matter of fact BVMix, in this test case,

performs worse than BVT: this is understandable

considering that for the rough-edge geometries used

BVT (using boxes as base bounding volumes) is

capable to better approximate geometries than BVMix

(that has spheres as hierarchy leaves). BVMix thus

being more suitable for general geometries, as already

explained, demotes its performance with squared

bodies.

It is moreover useful to notice the number of

detected collisions: HMR is supposed to detect more

collisions, because it doesn’t use the exactness of model

triangles.

Grouping tools under a common bounding volume

allows HMR to handle the case that when tools are

retracted inside the head body, they cannot collide with

anything outside the heads (parent bounding volume is

sized to include only tool outside volume). For other

methods, instead, they always collide with anything

they are checked with. This, once again, makes HMR

faster thanks to included machine knowledge and

explaining the difference in the number of detected

collisions.

5.2. Robot arms scenario

This test case concerns a common industrial

application: the usage of robot arms acting

simultaneously on the environment, for example in an

assembly cell like the one in the simulation pictured in

[Figure 5].

Figure 5: Robot arm scenario. Two robotic arms

(KUKA KR 30 HA) colliding during an assembly task.

5.2.1. Scenario description

In this test case two robot arms are assembling a piece,

acting on the two side of a conveyor system.

While assembling, it is possible that any of the

links of each arm collide both with another of the same

arm (self-collision) and with links of the other arm. A

first kind of collisions is usually avoided thanks to

physical joint limits or through properly writing each

arm task; the other kind is usually managed in the

simulation phase, especially when the number of arms

involved increases.

This robotic scenario, even if common in industrial

applications, is not particularly challenging for collision

detection algorithms: each arm is formed by 6 links and

14 pieces to be checked for collision for a total of about

34 thousands triangles.

5.2.2. Results

Each simulation step requires the motion of all the

joints in a task, forcing each arm link to collide with

each other many times. Also for this test case, results

obtained with Triangles algorithm are omitted because

not significant.

Table 2: Results of tested methods for robot arms test

case. Triangles method results are omitted since not

significant.

 BVT BVMix FBA HMR

Box - Box 307K 3026K 766K 197K

Sph - Sph / 22M / /

Tri - Tri 954M 178M / /

Collision 6284 6284 7328 8060

Time (s) 160,501 33,451 0,222 0,109

FPS 6,23 29,89 4,5K 9,2K

This tests case, besides confirming what previously

stated, shows also how BVT performances heavily can

downgrade depending on the model, also if compared

with another exact algorithm as BVMix.

The arm model is composed by many small

triangles coupled with some long ones: when a BVT

leaf is selected for primitive test, it participates with

many elements, many of which are useless for detecting

collisions. BVMix leaf spheres generally enclose much

less primitives to be tested only when needed: being

small are more punctual bounding volumes.

6. CONCLUSION

In this paper a hierarchical fast and reliable collision

detection method based on an hybrid approach is

presented. This novel technique, called HMR, is capable

both to take into account the geometry structure of a

model (using different kinds of bounding volumes), and

to include knowledge on the model kinematics

peculiarities and physical constraints.

The capability to include model knowledge, rising

from the organization of bounding volumes in

231

hierarchies, allows HMR to achieve interactive collision

detection with a low memory usage.

The stratification of bounding volumes represents

for HMR a smart multi resolution approximation of

moving objects: this representation comes directly from

the human experience. Objects representation and

organization in parent-child hierarchies is created by the

user with the help of a visual editor.

Further investigations will be directed on

exploiting HMR abilities to use more knowledge, e.g.

reusing knowledge related to a single part of the model,

to speed up the collision detection on other model parts.

Another possible improvement will allow HMR to deal

with other bounding volumes types.

REFERENCES

Baraff, D., Witkin, A., Anderson, J., Kass, M., 2003.

Physical based modelling. SIGGRAPH Course

Notes.

Benes, B., Villanueva, N. G., 2005. GI_COLLIDE-

Collision Detection with Geometry Images.

Proceedings of the Spring Conference on

Computer Graphics, 95-102

Bergen, G., 2003. Collision Detection. Interactive 3D

Environments. Interactive 3D Technology Series,

Morgan Kaufmann ed.

Carey, R. & Gavin, B., 1997. The Annotated VRML 2.0

Reference Manual. Addison-Wesley

Cignoni, P., Costanza, D., Montani, C., Rocchini, C., R.

Scopigno, 2000. Simplification of Tetrahedral

Meshes with Accurate Error Evaluation.

Proceedings of the conference on Visualization,

85-92

Dingliana, J., O’Sullivan, C., 2000. Graceful

Degradation of Collision Handling in Physically

Based Animation. Proceedings Eurographics

Computer Graphics Forum, 19: 239-247

Ehmann, S. A., Lin, M., 2000. Accelerated Proximity

Queries between Convex Polyhedra by Multi-level

Voronoi Marching. IEEE/RSJ International

Conference on Intelligent Robots and Systems, 3 :

2101-2106

Ehmann, S. A., Lin, M., 2000. Swift: Accelerated

Proximity Queries between Convex Polyhedra by

Multi-level Voronoi Marching. Tech report.

Department of Computer Science, University of

North Carolina at Chapel Hill.

Ericson, C., 2005. Real-Time Collision Detection.

Morgan Kaufman.

Fischer, K., Gartner, B., 2003. The Smallest Enclosing

Ball of Balls: Combinatorial Structure and

Algorithms. Proceedings of 19th Annual

Symposium on Computational Geometry (SCG),

291-301

Gottschalk, S., 2000. Collision Queries using Oriented

Bounding Boxes. PhD Thesis. Department of

Computer Science, University of North Carolina.

Govindaraju, N., Lin, M., Manocha:, D., 2004. Fast and

Reliable Collision Detection Using Graphics

Hardware. Tech report. Department of Computer

Science, University of North Carolina at Chapel

Hill.

Gundelman, E., Bridson, R., Fedkiw, R, 2003.

Nonconvex Rigid Bodies with Stacking.

Proceedings of ACM SIGGRAPH

Heidelberger, B., Teschner, M., Gross, M., 2004.

Detection of collisions and self-collisions using

image-space techniques. Journal of WSCG, 12 : 1-

3

Hubbard, P. M., 1993. Interactive Collision Detection.

Proceedings of IEEE Symphosium on Research

Frontiers in Virtual Reality, 24-31.

Ketchel, J. S., Larochelle, P. M., 2006. Collision

Detection of Cylindrical Rigid Bodies for Motion

Planning. Proceedings of the 2006 IEEE

International Conference on Robotics and

Automation, 1530-1535.

Knott, D., Pai, D., 2003. Cinder: Collision and

Interference Detection in Real-Time Using

Graphics Hardware. Proceeding of Graphics

Interface, 73-80.

Kockara, S., Halic, T., Iqbal, K., Bayrak, C., Rowe, R.,

2007. Collision detection: a survey. IEEE

International Conference on Systems, Man and

Cybernetics, 4046-4051

Lin, M., Canny, J. A, 1991. Fast algorithm for

incremental distance calculation. Proceedings of

the 1991 IEEE International Conference on

Robotics and Automation

Lin, M., Gottschalk, S., 1998. Collision Detection

between Geometric Models: A Survey.

Proceedings of IMA Conference on Mathematics

of Surfaces, 37-56

Lin, M., Manocha, D., 1994. Efficient Contact

Determination between Geometric Models. Tech

report. Department of Computer Science,

University of North Carolina at Chapel Hill.

Mirtich, B., 1996. Impulse Based Dynamic Simulation

of Rigid Body Systems. PhD Thesis. University of

California, Berkley

Mirtich, B., 1998. V-Clip: Fast and Robust Polyhedral

Collision Detection. ACM Transactions on

Graphics, 17 : 177-208

Moore, M., Williams, J., 1998. Collision Detection and

Response for Computer Animation. Computer

Graphics, 22 : 289-298

Pedrazzoli, P., Sacco, M.; Jönsson, A., Boër, C.R.,

2006. Virtual Factory Framework: key enabler for

future manufacturing. Digital enterprise

technology: perspectives and future challenges,

Springer, 1, 83-90

Yoon, S., Salomon, B., Lin, M., Manocha, D., 2004.

Fast collision detection between massive models

using dynamic simplification. Proceedings of the

2004 Eurographics/ACM SIGGRAPH symposium

on Geometry processing, 71 : 136 -146

232

