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ABSTRACT 
Bézier curves are widely applied in computer aided 
design. In the paper first we shortly say what these 
curves are and how they are constructed, with examples 
added to. Next we present their application to model 
almost oval gear devices. 
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1. BERNSTEIN POLYNOMIALS AND BÉZIER 

CURVES  
In 1886 Karl Weierstrass proved that any continuous 
function on a closed and bounded interval can be 
uniformly approximated on that interval by polynomial 
to any degree of accuracy. This result, known as 
Weierstrass first approximation theorem, has been later 
shown in many ways. In 1912 Sergei Natanovich 
Bernstein presented the constructive proof where there 
are introduced polynomials known as Bernstein 
polynomials. A Bernstein polynomial, Bf,n, of the 
function  f ∈ C<0, 1> and of degree n is defined as 
follows 
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The polynomial ps,k is called k-th basic Bernstein 
polynomial, and the set B = [ ps,0, ps,1, ..., ps,s ] is called 
s-th (standard) Bernstein base. The standard book 
discussing their properties still remains (Lorentz 1953). 
Bernstein polynomials and its generalizations are still 
investigated both in theoretical and applied aspects, and 
find new applications in various areas, see e.g. (Chen 
2000, Ding and Zhang 2003, Hong and Mitchell 2007, 
John 2007, Kowalski 2006, Madi 2004). 

Polynomials ps,k appeared no later than in 1713 
when it was issued the book Ars conjectandi. Its author, 
Jacob Bernoulli (1654-1705), described there so-called 
binomial distribution, later known also as Bernoulli 
distribution. This is a discrete probability distribution, 

which takes values 1 and 0 with the success probability 
t and value 0 with the failure probability 1–t, resp. Then 
the probability to gain k times in s trials is equal ps,k(t). 
For this reason Bernstein’s proof is known also as 
a probabilistic one. 

Let c = (c0, c1, ..., cs ) be a sequence of numbers. 
Bernstein polynomial generated by this sequence is 
the polynomial defined by the formula 
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so it is the Cauchy product, Bc = B⋅c, of the Bernstein 
base B and the column vector c = [ c0, c1, ..., cs ]T 
corresponding to c. A number s is called a potential 
degree of this polynomial. 

The definition of Bernstein polynomial can be 
extended by substituting a vector c by ((s+1), n)-matrix. 
This matrix denoted by P, P = [ Pj,k ]  j = 0, 1, ..., s; k = 1, 2, ..., n, 
we set (again applying Cauchy multiplication) BP = B⋅P, 
so at each point t there holds BP(t) = B(t)⋅P. Just defined 
vector BP is called a Bernstein (polynomial) set 
generated by matrix P.  

With n = 2 this set is composed of n = 2 
polynomials. If Pj,1 = tj = j/(s+1) and Pj,2 = cj, then 
BP(t) = [ t, Bc(t)], so the set BP is simply a parametric 
representation of the Bernstein polynomial which is 
explicitly described by the explicit formula y = Bc(t). 
This is called a standard Bernstein approximation. 

For arbitrary values of two-column matrix P the 
elements of the vector BP are polynomials, the first one 
is determined by the first column of P, and the second 
one by the 2nd column of P, in consequence BP is 
a parametric equation of a flat curve. Analogously, for 
n = 3 the set BP generated by three-column real matrix P 
is a parametric representation of a curve in the space R3. 
Usually the parameter is denoted by t, the spaces R2 and 
R3 are equipped in orthocartesian systems Oxy and 
Oxyz, resp. Lines of the matrix P are the coordinates of 
the points. The graph of the vector BP, i.e. the set 
{ BP(t) : t ∈ R }, is called Beziér curve and we say that 
this curve is generated by the matrix P, or is determined 
by so-called control points, i.e. the points which 
coordinates are given by lines of P. Referring to this 
interpretation we can call any line of the matrix P as its 
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point. The polygonal line joining control points as they 
are listed in P, is called a Bézier polygon, or an initial 
contour of Bernstein approximation. 

 

 
Figure 1: Bézier polygon and curve determined by the 
sequence ABCDE, where  A  =  (0, 0.1), B = (0.25, 
0.35), C = (0.5, –0.6), D = (0.75, 1.2) and E = (1, 0.8). 
 

 
Figure 2: Bézier polygon and curve determined by the 
sequence ABCDE, where  A =  (0, 0.1), B = (0.25, 0.35), 
C = (0.5, –0.6), D =(0.75, 1.2) and E = (2, 0.8). 
 
Example 1. The vector c = [ 0.1, 0.35, –0.6, 1.2 2 ]T, the 
sequence ABCDE = ( A = (0, 0.1), B = (0.25, 0.35), 
C = (0.5, –0.6), D = (0.75, 1.2), E = (1, 0.8)) and the 
matrix  
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1.00

, (4) 

 
determine the Bernstein set BP(t) = B(t)⋅P = [t, –8.9⋅t4 + 
15.8⋅t3 – 7.2⋅t2 + t – 0.1], see Figure 1. 
Example 2. The vector c = [0, 0.25, 0.5, 0.75, 2 ]T, as 
well as the matrix P differening form the above one 
only at the entry P4,2 = E2, now E2 = 2, generate the 
Bernstein polynomial y = Bc(t), where Bc(t) = B(t)⋅ 
P =  t4 + t, see Figure 2. 
Example 3. With the points A, B, C, D and E as in 
Example 2 we see that both the sequence BACDE and 
the matrix P with lines storing these points in the 
indicated order generate the Bernstein set BP(t) = 
B(t)⋅P = [2.25·t4 – 4·t3 + 4.5·t2 – t + 0.25, –7.65·t4 + 
11.8·t3 –2.7·t2 – t + 0.35]. 
The elements of this vector denoted by x and y, we have 
the relation [ x, y ] = [2.25·t4 – 4·t3 + 4.5·t2 – t + 0.25,  
–7.65·t4 + 11.8·t3 –2.7·t2 – t + 0.35]. 
It is the parametric equation of the curve drawn, as the 
parameter t ∈ <0, 1>, in Figure 3.  
Example 4. With the same points A, B, C, D and E as 
above, but taken in the different order, namely as the 
sequence BACED, we have Bernstein equation  
[ x, y ] =[ –4·t4 + t3 + 4.5·t2 –t + 0.25, –5.65·t4 + 10.2·t3 –
2.7·t2 –t + 0.35]. Its graph, as well as the initial contour 
of Bernstein approximation, is drawn in Figure 4. 

In the years 1959-62 Pierre Bézier and Paul de 
Casteljau started, in Renault and Citroën car enterprises, 
to approximate shapes by curves governed by Bernstein 
sets. This approach gained a wide popularity in the 
mathematical modeling of various shapes and the 
designers using it started to call the graphs of Bernstein 
equations as Bézier curves. Within the area at hand they 
are used only when the parameter t runs from 0 to 1, 
and therefore a Bézier curve is an arc starting at the 
point produced by t = 0  and having its other end for 
t =1; these points are called a starting, or zero, point 
and a last, or s-th, point, if this curve is determined by 
s+1 control points. Directly from the definition of the 
polynomial BP it is easy to see that BP(0) = P0 and 
BP(1) = Ps, if the lines of the generating matrix P are 
indexed from 0 up to s and, at the same time, j-th line 
identifies the j-th control point Pj,  j=0,1,2,...,s. 
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Figure 3: Bézier polygon and curve determined by the 
sequence BACDE, where  A, B, C, D and E are as in 
Figure 2. 
 

 
Figure 4: Bézier polygon and curve determined by the 
sequence ABCED, where  A, B, C, D and E are as in 
Figures 2 and 3. 
 
2. DE CASTELJAU ALGORITHM 
Direct computation of any value BP(t) with t ∈ (0, 1) 
needs to know the values of ps,k(t), k=1,2,...,s–1,  so 
there have to be known the binomial coefficients 
s!/{k!⋅(s–k)}. These operations are hard in 
programming: there are quickly produced really large 
numbers (e.g. 20! = 2 432 902 008 176 640 000, 
10! = 3 628 800, 20!/10!2 = 184 756) and the range for 
integer type variables (this overcome usually is not 
signalized by computers), in floating-point arithmetic 
there arise roundings/truncations which may totally 
destruct results. Fortunately, these disadvantages take 
no place when we apply de Casteljau algorithm. This is 

the sequence of operations, and each one of them maps 
the matrix and a number t (it is, as always, the 
parameter of the representation) into a matrix having 
one less line. Lines of the input matrix denoted by 
a1, a2, ..., ar, this transformation, T, works as follows 
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Thus T acts over each column independently. It can be 
represented via the matrix, it transforms a r-dimensional 
vector Wr into the (r–1)-dimensional vector Wr–1, simply 
by Cauchy multiplication Wr–1 = TWr := T(Wr) = Tr⋅Wr, 
where Tr is the matrix of operation T, i.e. it is the  
(r–1, r)-matrix  
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where u := 1 – t, and all elements outside both filled 
lines are 0.  

As above, P0, P1, ..., Ps are control points, they are 
consecutive lines of the generating matrix P,  
P = [ Pj ]j=0..s, and they form the sequence P0P1P2...Ps,. 
de Casteljau algorithm, realized on the sequence 
P0P1P2...Ps, i.e. on the matrix Ws+1 := P , and with the 
value t, is the computation of  consecutive vectors 
Ws := Ts+1Ws+1, Ws–1 := TsWs, ..., W1 := T2W2. One sees 
that the final value  

W1 = T2W2 = T2T3W3 = ... = T2T3...Ts+1Ws+1 = TP = 
 BP(t), where T is the superposition of all 
transformations Tj, so T := T2T3...Ts. (and, in matrix 
approach, the product of all matrices Tj,). The matrix Wi 
is called t-th de Casteljau matrix, and its graph is 
named de Casteljau contour.  
Example 5. Let’s illustrate the work of de Casteljau 
algorithm with the initial contour BACED, where 
A, B, C, D and E are as in Examples 3 and 4, and with 
t = 0.8. We have 

 

W5 = P = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

D
E
C
A
B

 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

8.02
2.175.0
6.05.0
1.00
35.025.0

 (7) 

 
and it is the first of de Casteljau matrices. Next ones are  
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W4 = 
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⎦

⎤
⎢
⎣

⎡
8136.036.1
3964.0578.0

  (10) 

 
and, finally, the last one is   
 
W1 = [1.2036, 0.73016] = BP(0.8).  (11) 
 
The graph of the input matrix P and graphs of all other 
de Casteljau matrices are shown in Figure5. The work 
with t = 4/5 produces successive control points sitting 
on segments of polygonal lines and divided any of them 
in the proportion 4:1. The last matrix, W1, has one line 
only, its graph is the point. In Figure 5 this is the point 
W. It is the point corresponding to the value t = 0.8.  

 

 
Figure 5: Consecutive de Casteljau contours generated 
by the points sequenced BACED and with t = 0.8; the 
last contour is the point W = BP(t = 0.8). 
 
3. DEGREE RISING  
In modeling a Bézier curve, the basic operations are the 
change of (coordinates of) control points, the increasing 
in number of control points, the deletion of a control 
point. It means the change of elements in the generating 
matrix P, the increase or decrease of lines of P, 
respectively.  In general, any such change affects the 
entire curve.  

Potential degree rising of Bézier curve is the 
process resulting in the replacing of a given matrix P by 
the matrix P~ , which row degree is greater by 1 than 

that of P and producing the same curve. It is enough to 
describe this procedure in a standard case, i.e. when the 
Bézier curve is defined by the vector c = [ c0, c1, ..., 
cs ]T. In view of the identity ck = t⋅ck + (1–t)⋅ck it is easy 
to see that  
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where  scswcw =+= 1,00 and  
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 for k=1,2,...,s. (13) 

 

  
Figure 6: Bézier curve generated by any of vectors:  
c = [ 0, 0.25, 0.5, 0.75, 2 ]T,  
w = [ 0.1, 0.3, –0.22, 0.12, 1.12, 0.8]T 
 
Example 6 (see Figure 6) The vectors c = [0, 0.25, 0.5, 
0.75, 2 ]T and w = [ 0.1, 0.3, –0.22, 0.12, 1.12, 0.8]T 
determine the same Bézier curve, y = t4 + t. Denoting 
the augmented matrices of c and w by C and W, 
respectively, we have 
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W = 
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Degree rising is applied when Bézier curve 

approximates a designed shape in a degree not good 
enough and probably the change in the positioning of 
the control points does not results in a better fitting.  

In spite of the name of the considered procedure, 
the polynomials Bc and Bw are of the same algebraic 
degree, but, in general, even a very small change in w 
makes the degree of Bw higher. The inverse process to 
the rising, the deletion of any point results, in general, 
in decrease of the algebraic degree, so it produces 
another Bézier curve. We apply it when a Bézier curve 
determined by s+1 points is good enough and we want 
to check whether it is possible to have good 
approximation with s control points. 

 
4. SMOOTH JOINT OF BÉZIER CURVES 
We say that two polynomials, U and W,  smoothly 
meet each other at a point τ, if at this point they have 
the common value and their derivatives do it, too, i.e. if 
U(τ) = W(τ), U’(τ) = W’(τ). 

Therefore Bernstein polynomials Bc and Bd, 
determined by vectors c = [ ci ] i = 0..γ and d = [ dj ] j = 0..δ, 
resp., are smoothly joined at a point A, if  

• A is the last point of the curve Bc and the initial 
point of Bd,  

• A is collinear with the point no. γ–1 of Bc and 
the point no.1 of Bd.  

For n = 2, so on the plane R2, the smooth joint takes 
place if γ⋅{cγ – cγ–1} = δ⋅{d1 – d0}. Consequently, Bézier 
curves generated by matrices C and D meet smoothly at 
the point A = Cγ = D0, if γ⋅{A – Cγ–1} = δ⋅{D1 –
 A},where Ci and Dj denote i-th point of C, i.e. i-th line 
of the matrix C, and j-th point of D.  

The inverse process, the subdivision of a given 
Bézier curve generated by a matrix B into two Bézier 
curves which meet each other at its arbitrary point, Q, 
means algebraically to produce two matrices, C and D, 
generating such curves. Now Q is the last point of the 
matrix C and the initial point of the matrix D.  

 
5. INVERSE BERNSTEIN APPROXIMATION  
The inverse (standard) Bernstein approximation 
consists in determination of the vector c such that 
Bézier curve generated by c, i.e. y = Bc(t) and 0 ≤ t ≤ 1, 
coincides with a given curve y = f(t) at s+1 points, see 
e.g. (Becker 1979). We find the vector 
c = [c0, c1, c2, ..., cs–2, cs–1, cs]T by taking s+1 points 
Fj = (tj, fj) with abscissas tj := j⋅h, where h := 1/s, 
j=0,1,2,...,s, and ordinates fj = f(tj).  The defining 
condition takes form Br(tj) = fj for j = 0, 1, ..., s, and its 

matrix form is M⋅c = f, where, with no reason to confuse 
by using the same letter f, f = [f0, f1, f2, ... , fs–2, fs–1, fs]T, 
M = [ mj,k ] j, k = 0, 1, 2, .., s,  mj,k = ps,k(j⋅h). 

The resolving system M⋅c = f may be at once 
reduced by 2, because from the equalities Br(0) 
= r0, Br(1) = rs it follows c0 = f0,  cs = fs . If we know 
values d0 = f ’(0) and ds = f  ’(1), then we may reduced it 
by 2 again, because s⋅{ c1 – c0 } = d0,  s⋅{ cs – cs–1 } = ds. 

 
Example 7. We find the vector c, which generates the 
Bernstein polynomial Bc assuming at points j⋅h, 
j=0,1,..,s, h=1/s, s=6, values f(j⋅h), where f(t) = sin(π⋅t). 
Now  

 
f = [ 0, 1/2, 2/3 , 1, 2/3 , 1/2, 0 ]T, (16) 
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⎥
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46656000000
156251875093752500375301
4096122881536010240384076864
72943741093514580109354374729
6476838401024015360122884096

130375250093751875015625
00000046656

46656
1

 (17) 

 
and the solution of the resolving system M⋅c = f is  

 
c = [0, 6160 –3375q, 9720q –16208, 22536 –12555q, 
9720q –16208, 6160 –3375q, 0]T/600, (18) 
 
where q := 3 . In Figure 7 we see points Pj with 
ordinates equal to these numbers, they sit on the 
polygon of the Bézier curve determined by them. 
Moreover, we see the graph of the approximation error 
(to be visible, it is magnified 10000 times). The Bézier 
curve we produced practically coincides with the given 
arc y = sin(π⋅x).  

 

 
Figure 7: Graphs y = f(x) = sin(π⋅x), x ∈ <0, 1>, points 
Fj = (j/6, fj = f(j/6)), j = 0, 1, ..., 6, sitting on this graph, 
points Pj = (j/6, cj) generating the Bernstein polynomial 
BP and the graph y = 104⋅{BP – f}(x) showing the error 
of the approximation of the function f  by the 
polynomial BP. 
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6. APPROXIMATING NONCIRCULAR WHEEL 
Let’s consider a variable-speed toothed belt 
transmission system created by combining the 
geometric and kinematic characteristics of a non-
circular transmission system with a timing belt 
transmission system. 

The required degree of speed variability is 
obtained by the use of pulleys constructed with wheel 
rims having shapes of ellipses, ovals or non-circular 
disks (figure 8).  

 

Figure 8: Wheels of the variable-speed transmission 
system: a) the noncircular wheel, b) the elliptical wheel 

 
The construction must meet some conditions. 

Namely, the length of the belt must be equal to the 
length of system envelope. In order to ensure correct 
operation of a variable-speed transmission system the 
active and passive sections of the belt must be tight 
thanks to constant action of applicable force. 
Circumferences of the wheels are the product of the 
pitch of the belt and an integer number. Thus, one is 
able to determine the average transmission ratio of the 
system as the relation of wheels' circumferences or their 
number of teeth. Driving cyclicity can be guaranteed 
only by toothed belts whose plastic strain will increase 
during operation only slightly. At the same time the 
belts must be initially pre-tightened in order to avoid 
belt's slip or skipping on the teeth of the wheels.  

A model of a two-wheel transmission system 
consisting of an elliptical driving wheel and 
a noncircular driven wheel is presented in Figure 9. 

 

 
Figure 9: The view of variable-speed toothed belt 
transmission system with an eccentrically mounted 
wheel 

 
In the research on effective parts of some devices 

(see Figure 8 – photo) there appear problems to get their 
mathematical expressions for the border line in aim to, 
e.g., to reproduce them on computer-controlled punch 

or cutting machineries, to project teeth of gears. In 
considered case the curve is close to, but it is not an 
ellipse or any other standard shape. Therefore we look 
for the Bernstein parameterization. There are offered 
computer programs to find it, e.g. (Zhao and Shene 
1999), but we worked in our own program, called 
BezierFit, elaborated within Delphi system from Code 
Gear. 

 

 
Figure 10: BezierFit program by Karol Gajda 

 
Working in this program we look at the screen, see 

Figure 10. In the background of its working area there is 
displayed, from a BMP file, the line to be modeled, and 
there is the reason we opt for our own program. In this 
area we may place controlling points (the first placing 
defines the input matrix P), we can move them, we can 
delete any point, we can add points in the way to keep 
up-to-now curve unchanged. Every operation is at 
instance visualized as the Bézier curve. In the 
operational area of the screen there are buttons 
activating offered operations. Here are, e.g., the 
positioning of control points (by mouse or by setting the 
coordinates), the memorizing of produced coefficients 
(they are saved as a text file *.BFP), smooth closing 
(choosing it we close smoothly the profile, i.e., in the 
way that the last point coincides with the starting point 
P0), the positioning of points on a given profile (and 
then, by the inverse Bernstein approximation, the 
program produces the appropriate control points). 
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