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ABSTRACT 
The paper shows how it is possible to combine 
symbolic computations with numerical methods in 
order to achieve the controller action under specified 
conditions. The corresponding calculations are based on 
the nonlinear state space model resulted from dynamics 
decomposition. The controlled system is represented by 
the triple integrator with input saturation. The design 
combines the well known time optimal control with the 
linear pole assignment control, i.e. the control consist of 
n phases similar to the time optimal control, however 
the transients between these phases are “smooth” and 
the dynamics of the transients is given by the closed 
loop poles. For modeling and simulations the computer 
algebra system Maple has been used. 

 
Keywords: nonlinear model, symbolic calculations, pole 
assignment control, time optimal control 

 
1. INTRODUCTION 
Recent decade in the control design is characteristic by 
a revival of theory of constrained systems. The 
minimum time control, which was dominating the 
control design from late 40-ties to the beginning of 70-
ties in the 20th century (see e.g. Pavlov 1966; Athans 
and Falb 1966) is, however, replaced by several new 
approaches as the predictive control (see e.g. Bemporad 
et al. 2002; El-Farra et al. 2003), different anti-windup 
solutions, positive invariance sets, etc. Motivation 
comes from different fields – from the traffic control, 
robot control, control of unstable systems, etc. A 
common feature of the new approaches is that they are 
rather complex - even in the case of simple control 
problems. So, they are not easy to understand and to 
apply. Traditionally, the engineering community 
preferred simpler solutions, as e.g. that one proposed by 
Kiendl and Schneider (1972), which was later used in 
robot control (Kunze 1984; Patzelt 1981). 

Parallel to this, family of new not yet widely 
known solutions (Huba 1994; Huba and Bisták 1995; 
Huba and Bisták 1999; Huba 2006) was developed also 
thanks to new possibilities given by the modelling and 
simulation software tools. They are relatively simple for 
understanding, easy to implement and so appropriate 
also for extremely fast application and easy to tune by a 

procedure that can be considered as a generalization of 
the well-known method by Ziegler and Nichols. For the 
controller design purposes we usually use the computer 
algebra system Maple (mainly for symbolic 
calculations) beside the well-known Matlab (suitable for 
numeric methods and simulations). The whole 
presented design is carried out in the Maple 
environment. 

In this paper, the family of the already known 
approaches is extended by the control design, which is 
based on the decomposition of the closed loop 
dynamics into particular modes defined by chosen real 
closed loop poles. This decomposition results in 
nonlinear state space model that is built in the Maple 
environment. Then the control law is calculated after 
localizing the current state in the nonlinear model and is 
related to the distance from the corresponding target 
object. 
 
2. LINEAR POLE ASSIGNMENT CONTROL 

BASED ON MODES DECOMPOSITION 
Let us consider the 3rd order integrator 
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whereby  is the representative point,  is the input 
vector and   is the system matrix. 

x b
A

The linear pole assignment controller fulfills three 
rules:  

 
1. It  decreases the distance of the representative 

point from the plane. 
2. It decreases the oriented distance of the 

representative point lying in that plane from 
the line. 

3. Along that line the controller decreases the 
oriented distance from the origin. 

 
Let us consider closed loop system with the 

following poles 0123 <<< ααα . Since the 
eigenvectors  
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are not collinear, they form a basis, which can be used 
for expressing any state as a sum of three modes 
 

332211 vvvx qqq ++= ,  (3) Rqqq ∈321 ,,
 
Then one can write   
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After denoting  each subsystem can be 
expressed as 

iii q vx =
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So the 3rd order dynamics can be decomposed into 

three 1st order ones. The appropriate interpretation and 
the appropriate choice of the oriented distance 
measurement from the representative point  to the 
plane (or the line) lead to three control phases well 
known from the time optimal control. All of the 
coordinates ( ) are equivalent in this linear 
case. Let us assign following: 

x

321 ,, xxx

 
1. The 1st equation describes the transient into 

the origin along the line given by . The 
dynamics is given by 

1v

1α . 
2. The 2nd equation describes the transient in the 

plane given by  to the line given by  
measuring oriented distance in the direction of 

. The dynamics of the transient is given by 
the second pole 

21, vv 1v

2v

2α . 
3. Similarly to 1. and 2. the 3rd equation describes 

the transient to the plane using the 
measurement direction of . The dynamics of 
this transient is given by 

3v

3α . 
 
The total control signal is then the following sum 
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The control algorithm described above guarantees  

that all three control phases are running in parallel and 
this is equal to the result of the well-known Ackerman’s 
formula. The Fig. 1 shows the new base described 
above. This new base creates the model for linear pole 

assignment control that is simply represented by three 
eigenvectors  and . The control low can be 
computed by calculation of the distance between the 
representative point   and lines given by these three 
vectors. In the nonlinear case when the input constraints 
are present the model for pole assignment control will 
be more complicated because it consists of line 
segments (corresponding to linear control), curves a 
surfaces as it is shown below. 

21, vv 3v

x
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Figure  1: New basis of  phase space 
 

3. NON-LINEAR (CONSTRAINED) POLE 
ASSIGNEMNT CONTROL BASED ON 
MODES DECOMPOSITION  

Let us consider a constrained control signal 
 

21 UUu∈   (7) 
 
The transient of the representative point with an initial 
state on the line given by the eigenvector  outside  
the proportional band does not follow this line. The 
particular subsystems do not change themselves only in 
their own coordinates , but also in the other 
subsystems coordinates. There is necessary to assign the 
coordinate to each of the control phases. The following 
assignment has been used: 

1v

ix

 
1. The transient of the representative point in the 

phase space to the reference surface (RS) is 
given by 33, vα . 

2. The transient along the RS to the reference 
curve (RC) is given by 22 , vα . 

3. The transient along the RC into the origin is 
given by 11, vα . 

 
The control phases in this control algorithm 

combine the time optimal control with the linear pole 
assignment control. Each control phase is given by 
particular constraint of the control signal, but the 
transition between the control phases is described by the 
chosen corresponding closed loop pole. So each control 
phase is given by two parameters:  
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iα - describes the dynamics of the transient of the 
representative point  inside the linear subsystem 
(proportional band) 

ix

it - the time, which is needed to reach the “linear” 
subspace under influence of limit control values.. 

One part of the final control phase (the linear one), 
corresponding to the transient into the origin, when the 
other coordinates  and  are zeroes, is given by the 
closed loop pole 

3x 2x

1α  only along the line given by the 
eigenvector , where the coordinate  1v

 

1vvx jj UU −∈ 311   (8) 

 
Let us assign the constraint of the control signal in 

the final control phase as  where jU
 
2,1=j   (9) 

 
The linear control interval is restricted by 
 

jj UUq −∈ 31   (10) 

 
The second part of the final control phase (non-

linear) is described by the time , that represents the 
time of the transient of the representative point using 

 to the border points of the linear subsystem 

. The 2nd part is created by points  as 
the result of backward integration of (1) on the interval 

1t

jUu =

11 vj
j UX = 1x

10 tt∈  using  and starting from the point 

. One gets 

jUu =

1Xj
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So the  represents all the points of the 1st 

subsystem, and these points are given by the parameter 
 for the points ,

1x

1q 01 =t 131 vx jj UU −∈  and also by 

,  for the points outside the linear part 
(8). So let us introduce the following generalized 
denotation , i.e. the points lying in the 
proportional band (the control signal is not saturated) 
are represented as  and the points lying outside 
(8) with saturated control signal are represented as 

. The control signal for points in the 

proportional band 

01 ≠t jUq =1

),( 111 tqx

)0,( 11 qx

),( 11 tU jx

0)0,( 11111 vxx Uq ∈=  is 

111 αzu = . The control signal for the points outside the 
proportional band  is . Such a 
representation of these points describes the transient 
along the RC with dynamics given by the closed loop 
pole 

),( 11 tU jx jUu =

1α  with respecting the control constraints. The RC 
is invariant set of the system 111 ubAxx +=&  with 

constrained control signal jj UUu −∈ 31 , i.e. after 

approaching the RC, the system remains on the RC. 
In the second control phase is . There is the 

transient in the surface given by ,  towards the RC 
(characterized by )  described in this phase. The goal 
is to approach the RC, where .  The dynamics of 
this transient is given by 

03 =x

1x 2x

1x
02 =x

2α  only in the proportional 
band of the second subsystem  

 

2132 )(0 vx qU j −∈ − , i.e. 

)(0 32 jj UUq −∈ −   (12) 

 
that gives the 1st part of the surface. The second part of 
the surface is given as the result of backward integration 
of (1) on the interval 20 tt∈  starting from the 
points where the  is saturated using . Using 
generalized denotation of  the RC one gets 

2q jUu −= 3
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In the starting control phase the 3rd subsystem  is 

in the proportional band for 
3x

 

32133213 )()( vvx qqUqqU jj −−−−∈ − , i.e. 

213213 qqUqqUq jj −−−−∈ −  (14) 

 
Similarly to the previous subsystems the result of 
backward integration on the interval  30 tt∈  
starting from the points where  is saturated using 3q

jUu = , gives the 3rd subsystem. Using generalized 

denotation , the general point of the surface 
can be represented as  and any 
point of the state space can be expressed using modes 
decomposition as 

),( 222 tqx
),(),( 222111 tqtq xx +
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Note that the whole state space can be described by 

, , , using 
parameters  that describe the length of the 
vectors in the proportional bands of the subsystems and 

 describing these vectors outside theirs 
proportional bands (the control signal of the subsystem 
is saturated). The coordinates  ,  and  create 
the model for pole assignment control of saturated 
system. The model is sophisticated because it consists 
of several segments of surfaces that are depicted below. 
The sequential choice of the coordinates of the 
subsystems guarantees, that the control signal is 
saturated only if the third subsystem is saturated also. 

),( 1111 tqxx = ),( 2222 tqxx = ),( 3333 tqxx =
3,2,1, =iqi

3,2,1, =iti

1x 2x 3x

 The control algorithm is the same as the linear one, 
but it depends on achieving the parameters 

 which are more difficult to obtain. The 
only way how to get them is to use symbolic 
calculations to derive the equation of a corresponding 
segment of surface and then to numerically evaluate the 
distance from the segment. The control is 

3,2,1,, =itq ii
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where   are control signals of particular subsystems. 
The RS is given by the points where , but we 
divide it according to the parameters . Let us 
denote following: 

iu
03 =u
jtt ,, 21

0
jRS  - the part of RS, where  0,0 21 == tt

1
jRS  - the part of RS, where  0,0 21 => tt

2
jRS  - the part of RS, where  0,0 21 >= tt

12
jRS  - the part of RS, where  0,0 21 >> tt

Following figures shows the RC and the RS for 1=j , 
5.01 −=α , 12 −=α , 23 −=α , 11−∈u . 

 

 

 
11vU

( ) 212 vUU −

( ) 321 vUU −

RCLinear part of

Non-linear part of RC 

Figure 2: Eigenvectors  and  3,2,1, =iiv 1RC
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Figure 3: ,  0
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Figure 4:   1RS
 
The proportional band (PB) of the system (1) is 

given by points where 
2122113 qqUqqUq −−−−∈ . Let us denote 

212max3211min3 , qqUqqqUq −−=−−= . Fig . 5 and 
Fig. 6 show the parts of PB corresponding to particular 
segments of RS. 
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Figure 5: PB corresponding to the segments 

,  0
jRS 1

jRS
 

 
Figure 6: PB corresponding to the segments 

,  12
jRS 2

jRS
 

 
Figure 7: RS and PB in the phase space 

 
4. NON-LINEAR CONTROL ALGORITHM  
The control algorithm is based on achieving parameters 

. However, parameter  is not needed, 
because there is enough to know whether  is in 
proportional band or saturation, so let us assign 

3,2,1,, =itq ii 3t

3x
03 =t . 

To find these parameters there is necessary to solve 
(15), however the results obtained by symbolic 
solutions can be used now. The formula for evaluation 
of   differs for each segment and it depends on 

, so the control algorithm can be divided into 
following steps: 

3x

21, xx

 
1. START  
2.  0

jRS
a.  are unknown 321 ,, qqq
b.  0,0 21 == tt
c. solve (15) 
d. (10), (12) are not fulfilled  

GOTO 3 

e.  GOTO 6 ∑
=

=
3

1
3 ),(

i
iquqsat

3.  1
jRS
a.  are unknown 132 ,, tqq
b. 0, 21 == tUq j  
c. solve (15) 
d. , (12) are not fulfilled  

GOTO 4 
01 >t

e.  GOTO 6 ∑
=

=
3

1
3 ),(

i
iquqsat

4.  2
jRS
a.  are unknown 231 ,, tqq
b. 0, 1132 =−= − tqUq j  
c. solve (15) 
d. , (10) are not fulfilled 

GOTO 5 
02 >t

e.  GOTO 6 ∑
=

=
3

1
3 ),(

i
iquqsat

5.  12
jRS
a.  are unknown 213 ,, ttq
b. jjj UUqUq −== −321 ,  
c. solve (15) 
d.  are not fulfilled 

GOTO ERROR 
0,0 21 >> tt

e.  GOTO 6 ∑
=

=
3

1
3 ),(

i
iquqsat

6. If the distance of the representative point from 
the desired state is greater than ε   
GOTO START 

7. END 
 

5. VERIFYING THE CONTROL ALGORITHM 
BY SIMULATION  

The first simulation shows the three control phases 
presented in this paper.  

Parameters of the simulation with initial state 
outside the PB are: 
Chosen closed loop poles 6,3,5.1 321 −=−=−= ααα  

Initial state  T0.833] 6.097,- [14.145,=x

 
Figure 8: Trajectory in the phase space 
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Figure 9: Control signal and output 

 
Fig. 9 shows that the control signal approaches the 

constraint three times. 
In the next simulation there is shown the trajectory 

starting at the x-axis. The symbolic solution of the 
algorithm for  is used in this case. Before, we had 
the symbolic solution only for the particular closed loop 
poles and for the particular constraints. The chosen 
closed loop poles in the simulation are 

2
jRS

6,3,5.1 321 −=−=−= ααα  and the initial state is 

. T0] 0, [30,=x
 

 
Figure 10: Trajectory in the phase space 

 

  
Figure 11: Control signal and output 

 
6. CONCLUSION  
The simulations have shown, that designed control 
consists of three phases well known from time optimal 
control, however the transients between these phases are 
“smooth” and they have dynamics given by the closed 
loop poles that gives the advantage to this algorithm in 
the field of nonlinear control. It can be used to control 

systems with parasitic transport delays etc. The 
interesting approach to the design of controller has 
shown that under the specified conditions (in this case 
given by input saturation limits) the symbolic 
computation are able to produce sophisticated solutions 
that can be finally evaluated by numerical calculations. 
Due to the symbolic solutions made in the MAPLE 
computer algebra system, the controller design process 
can be easily applied to different 3rd order systems. 
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