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ABSTRACT 
This paper proposes a model to describe in a concise 
and detailed way the flow of patients in a hospital 
starting from their arrival to the emergency medical 
service to the assignment of beds in the suitable 
department and finally the discharge. The model is 
based on a continuous Petri nets framework, whose 
fluid approximation allows us to define suitable 
optimization problems in order to plan the system 
capacity, e.g., determining the medical and nursing staff 
dimension and the number of beds. A case study and a 
simulation and optimization analysis show the 
efficiency of the model. 

 
Keywords: hospital department, modeling, continuous 
Petri nets, performance evaluation. 

 
1. INTRODUCTION 
Providing high quality healthcare calls for improved 
organization and management in hospital departments. 
In such systems the main problems to face may be 
classified as follows (Xiong, Zhou, Manikopoulos 
1994): i) dimensioning the system, i.e., determining the 
type and number of resources to provide (staff, rooms, 
beds, etc.); ii) understanding the workflow and 
detecting anomalies such as bottlenecks, waiting times, 
etc.; iii) improving efficiency, i.e., using resources in a 
better way, by decreasing patients length of stay, 
reacting to problems such as staff absence, etc.; 
iv) studying the system reactivity with respect to an 
increased workload. 

Simulation and performance evaluation provides a 
useful tool for capacity planning and efficiency 
improvement. The hospital system may be effectively 
described as a Discrete Event System (DES) in order to 
perform discrete event simulation (Gunal and Pidd 
2007, Kumar and Shim 2007). Moreover, Petri Nets 
(PNs) may be employed to model emergency medical 
services and hospitals (S.S. Choi, M.K. Choi, Song and 
Son 2005, Xiong, Zhou, Manikopoulos 1994). Indeed, 
PNs are analytical and graphical tools that are suitable 
for modeling asynchronous, concurrent processes in 
communication, computer and manufacturing systems. 
However, PN models suffer from the so called state 
explosion problem. One way to deal with such a 

problem is to use some kind of relaxation technique, in 
particular applicable to some discrete event models. 
Since hospitals can be considered DESs whose number 
of reachable states is very large, PN formalisms using 
fluid approximations provide an aggregate formulation 
to deal effectively with such complex systems, reducing 
the dimension of the state space (Silva and Recalde 
2004). 

This paper proposes a model to describe in a 
concise framework the flow of patients in a hospital 
starting from their arrival to the emergency medical 
service to the assignment of a bed in the suitable 
department and finally the discharge. The model is 
based on timed continuous PNs (Silva and Recalde 
2004). In particular, places with finite capacities model 
the medical and nursing staff as well as the available 
beds and surgery theatres, while transitions describe the 
flow of patients and the 
operation/examination/treatment actions. The model 
provides an effective framework to analyze and 
simulate the workflow in a generic hospital department. 
Moreover, the fluid approximation allows us to define 
suitable optimization problems in order to optimize the 
chosen performance indices. For instance, this 
formulation provides a tool to determine the optimal 
number of beds, doctors and nurses to guarantee 
efficiency and good flow of discharged patients in the 
considered hospital department. 

 
2. BASICS ON PETRI NETS 
 

2.1. Discrete Petri Nets 
A discrete PN is a bipartite graph described by the four-
tuple PN=(P, T, Pre, Post), where P is a set of places 
with cardinality m, T is a set of transitions with 
cardinality n, Pre: P×T→ m n×`  and Post: P×T→ m n×`  
are the pre- and post-incidence matrices, respectively, 
which specify the arcs connecting places and 
transitions. More precisely, for each p∈P and t∈T 
element Pre(p,t) (Post(p,t)) is equal to a natural number 
indicating the arc multiplicity if an arc going from p to t 
(from t to p) exists, and it equals 0 otherwise. Note that 
`  is the set of non-negative integers. 
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The m×n incidence matrix of the net is defined as 
follows: 

 
C=Post-Pre.      (1) 

 
Given a PN, for each place p∈P the following sets 

of transitions may be defined: •p={t∈T: Post(p,t)>0}, 
named pre-set of p; and p•={t∈T: Pre(p,t)>0}, named 
post-set of p. Analogously, for each transition t∈T the 
following sets of places may be defined: •t={p∈P: 
Pre(p,t)>0}, named pre-set of t; and 
t•={p∈P: Post(p,t)>0}, named post-set of t. 

The state of a PN is given by its current marking, 
which is a mapping m: P→ m` , assigning to each place 
of the net a nonnegative number of tokens. A PN 
system 0,PN〈 〉m  is a net PN with an initial marking 
m0. 

A transition t∈T is enabled at a marking m if and 
only if (iff) for each p∈•t, it holds: 

 
m(p)≥Pre(p,t)     (2) 
 
and we write m[t 〉  to denote that t∈T is enabled at 
marking m. When fired, t produces a new marking m’, 
denoted by m[t 〉 m’ that is computed by the PN state 
equation: 
 
m’=m+C 

G
t ,      (3) 

 
where 

G
t  is the firing vector. 

Let σ  be a sequence of transitions (or firing 
sequence). The notation m[σ 〉 m’ indicates that the 
sequence of enabled transitions σ  may fire at m 
yielding m’. We also denote σ : T→ n`  the firing 
vector associated with a sequence σ , i.e., σ (t)=v if 
transition t is contained v times in σ . 

A marking m is said reachable from 0,PN〈 〉m  iff 
there exists a firing sequence σ  such that m0[σ 〉 m. 
The set of all markings reachable from m0 defines the 
reachability set of 0,PN〈 〉m  and is denoted by 
R(PN, m0)={m|σ : m0[σ 〉 m}. 

 
2.2. Continuous Petri Nets 
This section recalls some basic definitions on the 
Continuous PN (ContPN) formalism used in this paper. 
For additional details the interested reader is referred to 
(Silva and Recalde 2004). 

ContPNs are a straightforward relaxation of 
discrete PNs. Unlike discrete PNs, the amount in which 
a transition can be fired in ContPNs is not restricted to a 
natural number. The structure of a ContPN is identical 
to that of a discrete PN. However, the initial marking 
m0 is a vector of non negative real numbers. A 
transition t is enabled at m iff p t•∀ ∈ , m(p)>0. The 
enabling degree of t is: 

 

enab(t,m)= ( )min
( , )p t
p
p t•∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

m
Pre

= 

=max{ }0 | ( , )k k t+∈ ⋅ ⋅ ≤Pre m\ ,   (4) 

 
with { }0 0+ += ∪\ \  and t can fire in a certain amount 
α∈\ , with 0 ≤ α ≤ enab(t,m) leading to a new marking 

= ( ),tα ⋅ ⋅m' m + C , where the incidence matrix C is 
also called the token flow matrix. If m is reachable from 
m0 by the firing of a sequence σ, the fundamental 
equation 0= + ⋅m m C σ  can be written, where 

0
n+∈\σ  is the firing count vector associated with σ . 

 
2.3. Timed Continuous Petri Nets 
In this subsection, timing constraints are added to 
ContPNs. Time can be associated with places, 
transitions or arcs. In this paper we assume that time is 
associated with transitions and the following definitions 
specify and characterize timed ContPNs. 
 
Definition 1: A timed ContPN ,PN λ  is the untimed 

ContPN PN together with a vector λ
n+∈\ , where 

[ ]i it λ=λ  is the firing rate of transition ti. 
 
Definition 2: A timed ContPN system is a tuple 

0, ,PNΣ = λ m , where ,PN λ  is a timed ContPN 
and m0 is the initial marking of the net. 
 

The fundamental equation describing the timed 
ContPN system evolution explicitly depends on time τ  
and is as follows: 0( ) ( )τ τ= + ⋅m m C σ . Taking the 
derivative of this equation with respect to time, we 
obtain ( ) ( )τ τ= ⋅m C� �σ . Using the notation ( ) ( )τ τ= �f σ  
to represent the flow of transitions with respect to time, 
the state equation becomes: 

 
( ) ( )τ τ= ⋅m C� f .     (5) 

 
Depending on the flow definition, different 

semantics have been defined in the literature for 
continuous timed transitions, the two most important 
ones being the so-called infinite server (or variable 
speed) and finite server (or constant speed) semantics 
(Recalde and Silva 2001). The two semantics 
correspond to two different approximations of the 
discrete net system that the ContPN relaxes. For a broad 
class of nets it is formally proven by Mahulea, Recalde 
and Silva (2006) that the infinite server semantics 
always provides a better approximation than the finite 
server one. Hence, in this paper we consider the infinite 
server semantics. 

Under the infinite server semantics, the flow fi 
through a timed transition ti is the product of its speed 
λ[ti] and its instantaneous enabling degree, as follows: 
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[ ] enab( , ) min
( , )j i

j
i i i i i

p t j i

m
f t t

p t
λ λ

•∈

⎧ ⎫⎪ ⎪= = ⋅ = ⋅ ⎨ ⎬
⎪ ⎪⎩ ⎭

m
Pre

f  (6) 

 
where ( )j jm p= m  is the marking of place pj. 
 
2.4. Optimization of Timed Continuous Petri Nets 
The use of timed ContPNs to model a DES allows us to 
consider off-line problems in which, given the system 
configuration, the objective is to optimally parameterize 
it. Among the problems belonging to this class are those 
devoted to the minimization of a cost function that may 
be formulated in linear terms with respect to the initial 
marking elements, i.e., as a weighting of the initial 
marking b ⋅ m0, where b represents a gain vector (e.g., if 
m0(p1) is to be minimized, b(p1)=1, while the rest of the 
weights of the gain vector should be zero). This kind of 
optimization problems, under some conditions 
depending by the structure of the ContPN described in 
(Silva and Recalde 2004), admits a particularly elegant 
and efficient solution by solving a linear programming 
problem. Indeed, it is either possible to determine the 
exact value of the optimal initial marking or in the 
worse case to obtain an upper bound of m0. 
 
3. THE CONTINUOUS PETRI NET MODEL OF 

THE HOSPITAL DEPARTMENT 
 

3.1. The System Description 
Figure 1 shows the scheme of the basic hospital 
workflow model. Patients arrive at the emergency 
department at random time instants. In general, the 
emergency department serves various patient categories, 
each characterized by a different degree of urgency. 
Typically, patients are classified according to four 
degrees of urgency: life threatening, urgent, serious, non 
urgent. 

Incoming patients are immediately registered and 
subsequently redirected to a suitable department on the 
basis of a performed diagnosis. However, life 
threatening cases are permitted to by-pass the 
registration and are generally treated in the surgical 
department. These patients are operated by the doctors 
and, if the operation is successful, they are subsequently 
considered as urgent cases and have to wait for the 
assignment of a bed place. 

Usually, other patients wait in a waiting area until 
the staff is available for registration. After registration, 
registered patients have to wait in the patient waiting 
area until the treatment area and associated staff are 
available. Several non urgent patients do not need to be 
hospitalized, while other patients are assigned to a 
suitable department where they wait for a bed to be 
assigned. After the bed assignment, patients wait in 
another queue to receive the examination and 
prescription by the doctors. 

 

Patients arrive at the 
emergency department

Non critical patients are
registered and waitPatients in life threatening

situation

Surgical department

Success Hospital ward No hospital

serious

Hospital output

discharge

non urgenturgent

No success

Patients arrive at the 
emergency department

Non critical patients are
registered and waitPatients in life threatening

situation

Surgical department

Success Hospital ward No hospital

serious

Hospital output

discharge

non urgenturgent

No success

 
Figure 1. The basic hospital workflow. 
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Figure 2. The ContPN model of the patient flow in a 
typical hospital department. 
 
3.2. The System Model by Timed ContPN 
We model the hospital department system in the timed 
ContPN framework (Silva and Recalde 2004), where 
places with finite capacities model the staffs of doctors 
and nurses as well as the available beds. In addition, 
transitions describe the flow of patients and the actions 
of doctors and nurses. 

The ContPN represented in Figure 2 models the 
process steps of the patient flow. Marking m1 represents 
the number of patients that enter the hospital 
department. Place p20 is added to make the flow through 
the timed transition t1 constant and equal to 1λ  that 
represents the speed with which patients enter the 
department. Some patients (in our case a percentage of 
the total that is assigned equal to 30%) are in a life 
threatening situation (marking m2), others (marking m3) 
have to wait for the registration that is represented by 
the timed transition t3. The life threatening patients wait 
for the operating room to be ready (transition t2) and 
successively for the availability of doctors (transition 
t4). Markings m7 and m8 represent respectively the 
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number of ready to operate and absent surgeons, 
whereas m6 represents the number of available beds in 
the operating room. When the operation is finished 
(transition t5) some patients can be dead (in our case a 
percentage of 20% of the total) while other patients, no 
longer in a life threatening situation, are now considered 
as urgent. 

As regards the patients that are not in a life 
threatening situation, after registration they are divided 
into three degrees of urgency: urgent (marking m9), 
serious (marking m10), non urgent (marking m11). The 
average number of urgent, serious and non urgent 
patients is given by the weights of the arcs exiting from 
transition t3 (in our case corresponding to percentages of 
30%, 50% and 20%). The urgent and serious patients 
have to be hospitalized, hence they have to wait for a 
bed place (transition t8 or t9) and have to be assigned to 
a doctor to be examined (transition t11 or t12). A doctor 
can be assigned either to urgent patients (in our case to 
4 patients at most, since the weight of the arc exiting 
from place p18 is assumed 1/4=0.25) or to serious 
patients (5 patients at most). When patients recover, 
they exit from the department (transition t15 or t16). 

In addition, non urgent patients do not need to be 
hospitalized, but they only have to wait for the 
assignment of a doctor (transition t10). In the considered 
department, a doctor can be assigned to 10 non urgent 
patients at most. Transition t17 represents the exit of non 
urgent patients from the department. 

Finally, markings m17 and m18 represent the 
number of available beds and doctors in the department, 
respectively, whereas marking m19 represents the 
number of absent doctors. 

 
3.3. The Simulation and Optimization of the System 
This section presents a system capacity design problem 
that aims to optimize suitable performance indices on 
the basis of the defined ContPN model of the hospital. 
A simulation analysis applies and verifies the obtained 
policy. 

The objective of the considered design problem is 
establishing the suitable number of doctors, surgeons, 
beds and surgery theatres in order to obtain good values 
of some selected performance indices. In our model this 
means to determine the initial markings of the capacity 
places p18, p7, p17 and p6, respectively. 

The chosen performance indices are the following: 
the number of operations per time unit (t.u.), the number 
of discharged urgent patients per t.u., the number of 
discharged serious patients per t.u. and the number of 
discharged non urgent patients per t.u. Hence, we 
impose a lower bound of the cycle time of the 
corresponding transitions, i.e., t5, t15, t16 and t17, 
respectively. 

We show that the considered design problem can 
be solved by defining the following programming 
problem (Silva and Recalde 2002): 

 
min b ⋅ 0µ       (7) 

s.t. 

0

0

[ ]    ,  
( , )
[ ]    ,  
( , )

, 0

S

U

i i

pt t t T p t
p t
pt t t T p t
p t

t Γ

= + ⋅⎧
⎪
⎪ [ ] ≤ [ ]⋅ ∀ ∈ ∀ ∈
⎪
⎪
⎪ [ ] ≤ [ ]⋅ ∀ ∈ =⎨
⎪
⎪ ⋅ = 0
⎪

, ≥⎪
⎪ [ ] ≥1/⎩

C

Pre

Pre
C

i

i

µ µ
µφ

µφ

φ
µ φ

φ

σ

λ

λ

σ

 (8) 

 
where b is the cost vector of the objective function, 
while µ , 0µ  and t[ ]φ  are respectively the 
approximations of marking m, of the initial marking m0 
and of flow t[ ]f . TU is the set of transitions with one 
input place, while TS is the set of remaining transitions, 
in which synchronizations are present. Moreover, iΓ  
represents the cycle time of transition ti. 

In particular, the constraints (8) follow from the 
definition of the enabling conditions and of the state 
equations (Silva and Recalde 2002). 

Moreover, we add the following constraints on the 
initial markings: i) 0 1[ ]pµ  is equal to P, i.e., the 
population of patients using the medical service (we 
assume P=5000); ii) 0 20[ ]pµ =1 to impose at each time 
instant that flow 1[ ]tf  is constant and equal to λ1; 
iii) the remaining initial markings are set equal to zero. 
Formally, the following constraints are added to (8): 

 
0

0 1

0 20

[ ] 0 for i=2,...,5,8,...,16,19
[ ] P
[ ] 1

ip
p
p

=⎧
⎪ =⎨
⎪ =⎩

µ
µ
µ

  (9) 

 
Furthermore, the last constraints of (8) impose 

lower bounds of the transitions that represent the 
selected performance indices of the model. Hence, the 
flows of transitions t5, t15, t16 and t17 are forced in (8) as 
follows: 

 
5

15

16

17

[ ] 0.90
[ ] 1.35
[ ] 1.05
[ ] 0.40.

t
t
t
t

≥⎧
⎪ ≥⎪
⎨ ≥⎪
⎪ ≥⎩

φ
φ
φ
φ

                (10) 

 
As previously specified, the aim of the design 

problem is choosing the minimum number of available 
doctors, surgeons, beds and surgery theatres in order to 
satisfy the chosen constraints, in particular equations 
(10). Consequently, the objective function (7) has to 
minimize the initial markings 0 6[ ]pµ , 0 7[ ]pµ , 

0 17[ ]pµ  and 0 18[ ]pµ  that are weighted by a suitable 
cost vector b. In particular, we assume that the cost of 
an operating theatre is higher than that of a surgeon, 
which is in turn higher than that of a doctor, or of a bed 
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setting b6=20, b7=10, b17=1, b18=5. Hence, the objective 
function (7) is specified as follows: 

 
( )0 6 0 7 0 17 0 18min 20 [ ] 10 [ ] [ ] 5 [ ]p p p p+ + +µ µ µ µ .    (11) 

 
Table 1 reports the firing rates of the transitions. 

The solution of the programming problem (11)-(8)-(9)-
(10) provides the following initial markings: 

 
0 6

0 7

0 17

0 18

[ ] 2.4750
[ ] 2.2500
[ ] 43.1667
[ ] 9.7230

p
p
p
p

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

µ
µ
µ
µ

               (12) 

 
Obviously, since the initial markings m6, m7, m17 

and m18 have to be defined by integer quantities, we set: 
 

0 6

0 7

0 17

0 18

[ ] 3
[ ] 3
[ ] 44
[ ] 10

p
p
p
p

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

m
m
m
m

                (13) 

 
Table 1: Transition firing rates. 

Transition Firing rate λ [time units/day] 
t1 3 
t2 4 
t3 3 
t4 2 
t5 0.5 
t6 1 
t7 10 
t8 3 
t9 2 
t10 0.8 
t11 1 
t12 0.9 
t13 1 
t14 10 
t15 0.05 
t16 0.08 
t17 4 
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Figure 3: Evolution of flow 5[ ]tf  of finished 
operations (transition t5). 
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Figure 4: Evolution of flow 15[ ]tf  of urgent discharged 
patients (transition t15). 
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Figure 5: Evolution of flow 16[ ]tf  of serious 
discharged patients (transition t16). 
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Figure 6: Evolution of flow 17[ ]tf  of non urgent 
discharged patients (transition t17). 
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Figure 7: Marking 2[ ]pm , number of patients in life-
threatening situation waiting for treatment. 
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Figure 8: Marking 9[ ]pm , number of urgent patients 
waiting for treatment. 
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Figure 9: Marking 10[ ]pm , number of serious patients 
waiting for treatment. 
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Figure 10: Marking 11[ ]pm , number of non urgent 
patients waiting for treatment. 
 

Successively, the system dynamics is analyzed via 
numerical simulation in the MATLAB environment 
(The Mathworks 2006), a well-known and efficient 
software that allows us to model systems with a large 
number of places and transitions. Moreover, such a 
matrix-based software appears particularly appropriate 
for simulating the dynamics of ContPNs based on the 
matrix formulation of the marking update. Furthermore, 
the MATLAB software is able to integrate modeling 
and simulation of dynamical systems with the execution 
of control and optimization algorithms.  

A one month simulation (with run time 720 t.u. if 
we associate one hour to one t.u.) of the ContPN model 
leads to determine the flows [ ]itf  with i=5,15,16,17. 
We show that each flow reaches a value close to the 

corresponding imposed bound (10) (see Figures 3 to 6). 
Note that 17[ ]tf  oscillates at steady state, but its 
average value equals 0.4, in accordance with (10). 
Hence, the simulation shows that the initial markings 
provided by the solution of the programming problem 
are appropriate to reach the objective values of the 
performance indices. Figures 7 to 10 show the average 
number of patients (respectively in life threatening 
situation, urgent, serious and non-urgent) still to be 
treated. Note that in each category there is on average 
always less than one waiting patient, showing the 
success of the system capacity design procedure. 
 
4. CONCLUSION 
We propose a continuous Petri net model for analyzing 
and simulating a generic hospital department workflow, 
starting from the arrival of patients to their discharge. 
The fluid approximation allows us to define suitable 
optimization problems in order to determine the optimal 
value of key hospital parameters. In particular, we 
consider the planning of the optimal number of 
operating theatres, beds, doctors and nurses to guarantee 
efficiency and minimize waiting times. 
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