
A REACTIVE SCHEDULING FOR INTESIVE CARE UNITS 
 
 

(a) Erhan Kozan 
 
 

(a) School of Mathematical Sciences, Queensland University of Technology, Australia 
 

(a) e.kozan@qut.edu.au 
 
 
ABSTRACT 
This paper leads to significant improvement in intensive 
care units (ICU) operating efficiency and productivity by 
optimising scarce resources.  Scheduling of patients in the 
ICU is complicated by the two general types; elective 
surgery and emergency arrivals.   The job shop approach 
to reactive scheduling system for ICU promises 
considerable benefits over existing approaches, and 
allows problems of large size and complexity to be solved 
with great accuracy.  A general parallel machine job shop 
model is proposed that fits uncertain arrivals with 
priorities and the allowance of rejection events at 
Intensive Care Units.  An integer programming model is 
proposed to handle uncertain arrivals with priorities and 
while allowing rejections.  
 
Keywords: Scheduling, Health Services, Integer 
Programming 
 
1. INTRODUCTION 
There are a number of studies that have focussed on the 
ICU.  Operations research issues investigated include 
scheduling of patients and resources, allocation of limited 
resources and physical design of the facility.  These will 
be discussed as well as general scheduling and resource 
allocation methods that have been applied to hospitals. 
 Kim and Horowitz (1999, 2000 and 2002) describe 
models which are the closest to our proposed model.  
However they do not encompass the whole of the 
operating theatre (OT) and ICU.  In these studies the ICU 
is modelled completely, and patients who require the ICU 
after a surgical intervention are included.  Their focus is 
also on balancing deterministic and stochastic arrivals.  
To accomplish this they have used a quota system to 
specify the number of beds available to deterministic 
arrivals each day.  They experimented with one or two 
weeks scheduling windows.  Simulation was used to 
compare the different scenarios.  For the particular 
hospital studied it was found that a scheme allocating  
two beds on Monday and Friday, and one bed on 
Tuesday, Wednesday and Thursday with bookings taken 
for beds over a two week period was optimal.  The 
proposed model will be looking at scheduling patients on 
a day by day basis, whereas this model determines the 
best resource allocation for the ICU.   

Similar to research undertaken by  Kim and 
Horowitz (2002) and Ridge et al. (1998) develops a 
simulation model of the ICU focussing on minimising the 
number of deterministic arrivals that are rescheduled.  
Notable inclusions in the model are that rescheduled 
surgeries re-enter the model, and a queuing theory model 
is used to verify the output.  Some sensitivity analysis was 
performed to ascertain the effects that important variables 
had on the system.  These variables were the number of 
beds in the ICU, length of reschedule times and the 
number of beds reserved for emergency admissions.  The 
results were intended to be used as part of a decision 
analysis tool to decide allocation of beds.  While the main 
focus was on the number of emergency patient transfers it 
was concluded a more effective patient admission 
scheduling system could benefit the hospital being 
analysed.  Due to the stochastic nature of arrivals to the 
critical care facility it is a requirement to reduce their 
effect on the objective of the schedule. 

Sahinidis (2004) reviews the theory and methods 
developed to cope with the complexity of optimisation 
problems under uncertainty.  The main approaches to 
handle uncertainty are stochastic programming, robust 
stochastic programming, fuzzy programming and 
stochastic dynamic programming.    

Stochastic programming uses a two-stage solution 
system, where the decision variables are partitioned into 
two sets.  The first stage variables are those that can be 
decided before any uncertainty is realised.  Once the 
random events impact the system improvements can be 
made by selecting second stage or recourse variables at 
some cost.  The objective is to minimize the sum of the 
first stage costs and the expected second stage costs.  For 
problems with continuous parameter distributions 
convexity properties of the recourse function have been 
used by Infanger (1994); and Shapiro and Homem-de-
Mello (1998) to develop sampling based decompositions 
and approximation schemes.   

Sand and Engell (2004) use a two-stage stochastic 
integer programming model on a moving horizon to 
schedule a flexible chemical batch process.  They found 
that most previous work used very defensive strategies to 
generate robust off-line scheduling which require little 
emphasis on adjustment in real-time. They look at 
recourse actions as further opportunity for optimisation. 
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The system is affected by four types of uncertain 
processing times; deviation in product quality; machine 
breakdowns; product demand changes.  A tree of possible 
future schedule horizons was computed to find the best 
first horizon schedule. 

Engels and Karger (2003) look at the objective of 
minimizing the sum of the weighted completions times of 
jobs scheduled plus the sum of jobs rejected.  Both these 
papers use a dummy machine to place all those jobs that 
are not scheduled.  This machine is not constrained in the 
same way as the normal machines to allow any job to be 
placed on it.  

There are numerous factors and systems that 
influence patient flow (eg: number and rate of patient 
arrivals, number of beds, length of stay, staffing 
arrangements, etc.).  Patient arrivals fall under two 
groups, elective and emergency.  In the case of hospital 
the number of patients from the elective and emergency 
groups is approximately the same.  Elective patients are 
known few weeks in advance.  On top of this we have 
batches of these patients arriving at regular times on 
weekdays.  Emergency patients on the other hand give 
little or no warning of their need to use the ICU.  This 
uncertainty adds complexity to the scheduling of patients. 

The aims of this scheduling model are to: normalise 
utilisation of the ICU at an increased level; reduce 
rejection and reschedule rates of patients; and allow real-
time adjustment for stochastic arrivals. 

Another aspect of the model that adds complexity 
and sets it apart from many conventional scheduling 
problems is that some patients may be denied service by 
the ICU because of insufficient resources. 
 
2. THE MODEL 

The model describes the deterministic scheduling of 
one time window within the system.  In the case of the 
ICU there will be an infinite number of these time 
windows as the unit never stops processing patients.  
While the schedule created may be satisfactory for some 
period of time there will always be unexpected events to 
manage.  To manage these unexpected events we need to 
create a reactive system made up of many deterministic 
scheduling steps to keep the ICU running optimally. 

Patients are divided into fixed and flexible patients.  
Fixed patients are those patients currently being treated in 
the ICU or patients that are in the previous schedule and 
soon to arrive or fixed for other reasons.  Admission time 
of fixed patients can not be changed.   Flexible patients 
are all other patients, either currently in the previous 
schedule or newly arriving and their admission time may 
change.   

An integer programming for generating a schedule is 
developed.  The objective is to maximise the utilisation of 
the ICU and minimising the number of patients rejected.  
The size of the model is determined by the number of 
patients, beds and time intervals.    

2.1 Notations 
i : patients, }...1{ Ii∈    
j : beds, }...1{ Jj ∈    
t : time, {0,1, 2,..., }t T∈   
f : number of flexible patients in the schedule 

jA : first available time of bed j  
o
ia : original admission time, fi >  

ia : real admission  time of patient i    

ic : priority index of patient i  

id : discharge time of patient i  ( ipad iii ∀+= ) 

⎩
⎨
⎧

=
0
1

jD
if bed j  is available on weekends, 

j∀  

if patient i  is an elective patient 

⎩
⎨
⎧

=
0
1

ie  
otherwise 

E : maximum number of elective surgery patients 
        schedule at any particular time 
K : total idle time of the system 

ip : length of stay of patient i  

ir : arrival time of patient i  

js : setup time of bed j  

if patient i  is admitted to bed j  at time 
t ,   , ,i j t∀  ; fi ≤  

1

0
ijtx

⎧
⎪= ⎨
⎪
⎩

 
 , ,  ; ;  o

ii j t t a i f∀ ≠ >  

iw : waiting time of patient i  
M
iw : maximum waiting time of patient i  

2.2 Objective Functions 
The objective is to minimise the number of rejected 
patients by fulfilling the objective to maximise the 
utilisation of the unit.  By including the waiting time in 
the objective function (1) and scaling by their priority 
category we aim to minimise rejection of the higher 
priority patients.  Objective function balances the waiting 
time against the length of stay of the patient, in effect 
rejecting the patient if the scaled waiting time becomes 
too large when compared to the length of stay.  The 
following objective function is derived from the waiting 
time, priority and idle time functions.  
 

Minimise ( )∑∑∑
= = =

+
I

i

J

j

T

t
iiiijt wpcx

1 1 0
              (1) 
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2.3 Constraints 
Maximum one patient is scheduled in bed j  at time t .  
The inclusion of js  allows for bed dependent setup 
times.  When programming these constraints for a given t  
only include jobs that satisfy 0it p− ≥ .   
 

 
1

1 max( ,0)

1 ,
j

j i

I t

ijs
i s t p

x j t
−

= = −

≤ ∀∑ ∑                   (2) 

 
Equation 3 and 4 ensure that each patient is 

scheduled once.  If a patient is not scheduled Equation 3 is 
equal to 0, which means the patient is rejected.   

 

   
1 0

0 1,...,
J T

ijt
j t

x for i f
= =
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Equation 4 ensures that each patient is scheduled 

once. For patients that are fixed in the schedule constraint 
4 is used 
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=
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This constraint combined with setting all the other 

ijtx values for these patients to 0 restricts any flexibility to 
just bed choice at their admission time.  The admission 
time is calculated as follows. This will be 0 when the 
patient is not scheduled. 

 

1 0
    

J T

i ijt
j t

a x t for i
= =

= ∀∑∑                              (5) 

 
Waiting time is the difference between the arrival 

time of patient i  and their admission time.  This value 
needs to be 0 when the patient is not scheduled.  It is also 
required to limit the maximum waiting time of a patient to 
a fraction of their length of stay. 

 

( ) M
i

J

j

T

t
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= =1 0
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Equation 7 ensures that no patient occupies bed j  

before it becomes available.  This constraint is irrelevant 
for the first time window that is scheduled, but is 
necessary for subsequent time windows when patients 
overlap. 
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                                   (7) 

 
Equation 8 ensures that there are no more than the 

specified amount of elective surgery patients scheduled at 
one time. 
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i
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Reducing the number of beds in use over the 

weekends is handled by setting the value of jA  for the 
beds that should not be used to either midnight of Sunday 
if that occurs in the scheduling window or to 1+T  if it 
does not.  This makes sure that the scheduling algorithm 
will not schedule any patients on these specific beds.  
     
3.  IMPLEMENTATION 
The model above describes the deterministic scheduling 
of one time window within the system.  In the case of the 
ICU there will be an infinite number of these time 
windows as the unit never stops processing patients.  
While the schedule created may be satisfactory for some 
period of time there will always be unexpected events to 
manage.  To manage these unexpected events we need to 
create a reactive system made up of many deterministic 
scheduling steps to keep the ICU running optimally. 

This model was solved with the aid of the CPLEX 
libraries.  Using the input file the software generates a list 
of patients that will arrive in the time window specified.  
Patient arrival times and length of stay values are 
generated and initially don’t coincide with the time slots.  

 The software rounds the arrival times back and the 
length of stay values out to the closest time. When a list of 
patients is generated, it is used for differing number of 
beds to provide a sensitivity analysis to determine how 
much impact this factor has on the schedule.  This can  be 
measured in number of patients rejected, utilisation of the 
unit. 

At time 0 there are no patients in the system so a 
warm-up period is used to bring the system to a steady 
state and from that point descriptive statistics can be taken 
from the schedule that is developed.  A schedule is 
created with elective patients over the scheduling horizon.  
Subsequent schedules are generated when emergency 
patients arrive; the warm up period is over; and no 
emergency patients have arrived for the number of 
intervals specified by schedule length. 

Patients are split into groups at the point of the 
expected arrival of the new patient.  Basically we have 
those patients that have their admission time and/or bed 
fixed and those that are flexible.  The patients that are 
currently being treated in the ICU have their bed and 
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admission time fixed.  Patients that have not arrived yet 
may have their admission time fixed by the scheduler if 
their admission time has been changed a certain number 
of times, or if they are set to arrive within a certain 
amount of time.  Flexible patients may have their 
admission time and bed changed or they are rejected from 
the system.   

An initial schedule of fixed and flexible Patients is shown 
in Figure 1.  This information is then used to determine 
bed availability times for subsequent schedules.  Once the 
new schedule is found this information is fed into the next 
one and so on.  The approach for this re-scheduling step is 
to generate a new schedule that is as close to the previous 
one as possible.  Fixing patients to reduce the impact of 
future schedule changes on them is one part of this.

 
 

 
Figure 1: An initial schedule of fixed and flexible Patients 

 
 
4.  CONCLUSIONS 
It was our aim to keep the model as general as possible to 
increase its applicability to other ICU’s.  The focus of the 
model is scheduling of humans or jobs that incur a penalty 
for job start time changes, while allowing for job 
rejections in a dynamic environment.  This model could 
be modified to fit other units within the hospital, as well 
as external practices that handle patients in a similar 
manner. 

The next step for this model is to determine the 
effects of the parameters in the objective function.   We 
can investigate the balance between waiting time and 
length of stay time has on patient rejections to provide 
more information to the implementers of the system.  The 
use of the scaling factor on the waiting time value may 
prove crucial in finding schedules that are good for the 
system they are applied to. 

More investigation should to be done with the 
schedule window length in relation to patient input 
parameters and their effect on the objectives of the 
system.  The results above show that there may be a link, 

and therefore a different schedule length may need to be 
applied to different hospitals using the system.   

The focus of the model is scheduling of humans or 
jobs that incur a penalty for job start time changes, while 
allowing for job rejections in a dynamic environment.  
This model could be modified to fit other units within the 
hospital, as well as external practices that handle patients 
in a similar manner. 
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