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ABSTRACT 
This study involves the introduction of stochastic 
leadtimes between the warehouse and retail sites, in 
place of the original deterministic leadtimes in an earlier 
reported multi-echelon inventory model.  We had 
previously investigated analytically the effects of 
stochastic leadtimes on required retailer base stock 
levels when the warehouse does not carry stock (e.g., 
serves as a cross-dock point).  The current paper 
examines the effects of stochastic leadtimes in the 
traditional situation where the warehouse does carry 
stock.  The model becomes mathematically intractable, 
and simulation studies become appropriate.  A heuristic 
involving simulation experiments is devised for 
selecting a base stock policy, taking off from solutions 
to the deterministic leadtime model.  Resulting average 
system inventory is found equal or very close to the 
optimal level.  Our study suggests that the optimal 
solution to the deterministic leadtime case provides an 
appropriate starting point in searching for a solution in 
the stochastic leadtime case. 
 
Keywords:  inventory management, multi-echelon 
inventory system, stochastic leadtimes, simulation 
 
1.     INTRODUCTION 
Graves (1996) developed a multi-echelon inventory 
model assuming what he refers to as virtual allocation.  
Each of the sites—a central warehouse (CW), 
transshipment sites, and retail sites—follows a base 
stock (or “order-up-to”) policy.  In the two-echelon case 
involving only a warehouse and N retailers, Graves 
specifies search procedures for the optimal combination 
of base stock levels at the CW and the retail sites 
minimizing the average system on-hand inventory under 
each of two service level criteria: a probability of no 
stockout criterion and a fill rate criterion. 

The average system inventory under an optimal 
policy where the CW base stock level is positive (i.e., 
the CW carries stock) is expected to be lower than 
under a policy where the CW does not carry stock.  This 
is in view of “statistical economies of scale” made 
possible by carrying, at least in part, a single-system 
inventory instead of simply N individual inventories—

which Eppen and Schrage (1981) refer to as the depot 
effect. Based on a limited computational study, Graves 
makes the assessment that the depot effect in his model 
“seems fairly small except when there are many 
retailers.”  Solis (1998) expanded Graves’ 
computational study, and found the depot effect to be 
felt more the larger the number of retail sites or the 
smaller the retail site demand rate. 

Solis and Schmidt (2007) earlier introduced into 
Graves’ model stochastic leadtimes between the CW 
and the retail sites in place of the original deterministic 
leadtimes, but dealing only with the case where the CW 
does not carry stock (e.g., serves as a cross-dock or 
transshipment point).  Effects of stochastic leadtimes on 
required base stock levels at the retail sites were 
investigated analytically, taking two alternative 
treatments of stochastic leadtime distributions into 
consideration.  Results of that earlier study suggest that 
it may be better to use the deterministic leadtime model 
with an accurately estimated mean leadtime than a 
stochastic model with a poorly estimated mean 
leadtime. 

In the current study, the CW, in the traditional 
sense, does carry stock.  The mathematics becomes 
intractable, and simulation studies are undertaken. 
 
2.     GRAVES’ MODEL 
The model involves an arborescent system with M 
inventory sites, i = 1, 2, ..., M.  Each site j has a single 
internal supplier i = ρ(j), with the exception of site 1, a 
central warehouse (CW) whose inventory is replenished 
by an external supplier.  Customer demand occurs only 
at retail sites, which have no successor nodes.  All other 
sites are storage and/or consolidation facilities, called 
transshipment sites.  The unique path linking a retail 
site to the CW is the supply chain for the retail site. 

The analysis involves a single item of inventory.  
The demand at each retail site j is an independent 
Poisson process with demand rate λj.  Dj(s,t) represents 
the demand over the time interval (s,t] for site j.  The 
induced demand rate for any site other than the retail 
sites is the sum of demand rates at its immediate 
successors.  For transshipment sites as well as the CW, 
Di(s,t) is the sum of the demands over the interval (s,t] 
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at the sites supplied by site i (i.e., at the immediate 
successors of site i). 

A multi-item distribution system is contemplated, 
with regularly scheduled shipments between sites.  Each 
shipment is a consolidation of orders for various items 
in inventory, including the item under study.  A 
schedule of preset times pj(m), m = 1, 2, ..., at which 
site j places its mth replenishment order on its supplier, 
is followed.  Positive leadtimes τj for shipments to each 
site j from its supplier are preset and known.  The mth 
shipment to site j is received at time rj(m) = pj(m) + τj > 
pj(m).  With fixed leadtimes, no order crossing will 
occur.  Hence, pj(m) < pj(m+1) and rj(m) < rj(m+1).  
When inventory is in short supply, the supplier will ship 
less than the quantity ordered and make up for the 
shortfall on later shipments. 

Each site j follows a base stock (or “order-up-to”) 
policy.  Initial inventory (at time 0) at site j is Bj, which 
is the base stock level for site j.  Since customer demand 
is assumed to be fully backordered, site j places an 
order equal to Dj[pj(m-1), pj(m)] at time pj(m). 

Tj(m) represents the coverage provided by the 
supplier to site j, on the occasion of the mth order by site 
j.  A quantity equal to Dj[Tj(m-1), Tj(m)] is shipped by 
the supplier at time pj(m), which will later arrive at site j 
at time rj(m).  If Tj(m) < pj(m), then the quantity      
Dj[Tj(m), pj(m)] remains on backorder.  If Tj(m) = 
pj(m), then the supplier is able to fill the entire mth order 
placed by site j.  The external supplier is fully reliable 
and fills every order by the CW (site 1) exactly as 
scheduled, following a leadtime τ1.  In this case, T1(m) 
= p1(m). 

Graves’ model differs from other existing models 
with its assumption of virtual allocation.  Each site on 
the supply chain increases its next order quantity by one 
whenever a unit demand occurs at the retail site.  At the 
same time, each site on the supply chain 
commits/reserves one unit of its inventory, if available, 
for shipment to the downstream site on the latter’s next 
order occasion.  Priority in the allocation of 
uncommitted stock is set according to the earliest 
demand occurrence.  While implementing virtual 
allocation under current information technology is 
possible, it is not the common practice.  It is assumed in 
the model because it proves to be tractable.  It is found 
by Graves to be near-optimal in many cases. 

A random variable requiring attention in this study 
is Aj(t), which denotes the available inventory at site j 
at time t—the on-hand inventory at site j at time t that 
has not yet been committed for shipment to another site.   
Aj(t) < 0 indicates outstanding orders (or backorders) at 
site j at time t.  The beginning inventory at site j at time    
t = 0 is the base stock level Bj.  Hence, we have Aj(0) = 
Bj.  This leads Graves to the following important result: 
 
Theorem  If rj(m) ≤ t < rj(m+1), then 
 
Aj(t) = Bj - Dj[Tj(m),t].                (1) 
 

Suppose that site i is the internal supplier to site j.  
At time pj(m), site j places its mth order with site i for a 
quantity equal to Dj[pj(m-1), pj(m)].  Since Tj(m) 
represents the coverage provided by the supplier on the 
occasion of the mth order by site j, then site i ships to 
site j at time pj(m) a quantity equal to Dj[Tj(m-1), 
Tj(m)], which will arrive at site j at time rj(m).  If site i 
has sufficient stock and is able to fill the entire mth order 
placed by site j, then Tj(m) = pj(m).  Otherwise,         
Tj(m) < pj(m).  In the latter case, Tj(m) equals the time 
at which site i would run out of available inventory to 
allocate to site j (i.e., the time when a demand 
occurrence at some site k, which may or may not be site 
j, supplied by site i reduces available inventory at site i 
to zero). 

Consider the relevant shipment to the supplier i, 
for which ri(n) ≤ pj(m) < ri(n+1).  At time pj(m), site i 
has received its nth shipment, but not yet its (n+1)th 
shipment.  Define Si(n) to be the depletion or runout 
time for this relevant (nth) shipment to site i.  That is, 
based upon its receipt of the nth shipment, site i is able 
to cover (or replenish) the demand processes of its 
successor sites up through the runout time Si(n).  If Si(n) 
occurs after pj(m), then Tj(m) = pj(m).  However, if 
Si(n) occurs before pj(m), then Tj(m) = Si(n). Thus, 
 
Tj(m) = min {pj(m), Si(n)}.               (2) 
  
The base stock Bi takes the role of a buffer for demand 
at site i after the coverage time Ti(n) provided by the 
supplier to site i.  This buffer Bi is depleted at the runout 
time Si(n).  Graves refers to the difference Si(n) - Ti(n) 
as the buffer time provided by Bi, and establishes that  
 
Si(n) - Ti(n) ∼ gamma(λi,Bi).               (3) 
  

Graves then focuses on a two-echelon system 
consisting of sites 1 (the CW) and j (the retail sites), 
reducing the supply chain of interest to just two sites, 1 
and j.  A single-cycle ordering policy is in place: each 
retail site j orders a fixed number of times for every 
order placed by the CW.  Hence, if θ1 denotes the length 
of the CW order cycle and θj that of the retail site, then 
the ratio θ1/θj is a positive integer.  The ordering policy 
is assumed to be nested: every time the CW receives a 
shipment, all retail sites place an order. 

Consider an arbitrary (nth) CW order cycle.  Graves 
simplifies the analysis by setting time zero equal to 
p1(n), the time at which the nth CW order is placed with 
the external supplier.  Assuming the CW receives 
delivery of this order at the end of leadtime τ1, the retail 
site orders at time τ1 (which signals the start of the full 
CW order cycle).  Graves draws attention to the last 
retail site order—i.e., the (θ1/θj)th order—within the CW 
order cycle.  The last order within this CW order cycle 
is placed by retail site j at time pj = τ1 + θ1 - θj, and is 
received by the retail site at time pj + τj, where τj is the 
leadtime between the CW and retail site j.  The resulting 
available inventory will be used to cover demand until 
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the next order (placed at time pj + θj) arrives at the retail 
site (at time tr = pj + θj + τj, which is equal to                
τ1 + θ1 + τj).  The instant of time tr

- before this 
replenishment at tr = τ1 + θ1 + τj proves crucial to the 
analysis.  [In this case, the antecedent of the previous 
Theorem, i.e., rj(m) ≤ tr

- < rj(m+1), holds.] 
Treating this (θ1/θj)th order as the mth order for the 

retail site j within the nth CW order cycle, the indices m 
and n are henceforth dropped for notational 
convenience.  Rewriting (2), the coverage provided by 
the mth shipment to retail site j is given by                     
Tj = min{pj,S1}, where pj = the time at which the (mth) 
order was placed by retail site j, and S1 is the runout 
time for the relevant (nth) shipment to the CW.  Having 
set time zero equal to p1 for convenience, and assuming 
the external supplier to the CW to be reliable (so that  
T1 = p1), we have S1 - T1 = S1.  Hence, in this case, the 
runout time S1 is equal to the buffer time S1 - T1 
provided by the base stock B1 at the CW.  It follows 
from (3) that S1 ∼ gamma(λ1,B1).  

Graves establishes the first two moments of Tj, and 
uses these to specify the mean and variance of the 
random variable Dj[Tj,t], where t is some specified point 
in time.  Of particular interest is the distribution of 
Dj[Tj,tr], where tr = τ1 + θ1 + τj is the critical point in 
time discussed above.  Graves refers to Dj[Tj,tr] as 
uncovered demand (up to time tr): demand at retail site j 
not covered by the (θ1/θj)th shipment from the CW. 

Graves reports to have computationally found the 
negative binomial distribution, having the same first 
two moments as Dj[Tj,t], to provide a fairly accurate 
approximation to the distribution of Dj[Tj,t], while 
presenting little evidence in support of his assertion.  He 
cites two earlier multi-echelon inventory studies 
(Graves 1985; Lee and Moinzadeh 1987) in which a 
negative binomial approximation had also been found 
effective.  Solis, Schmidt, and Conerly (2007) provided 
a mathematical analysis of the effectiveness of the 
approximation in the current model, where the 
maximum absolute deviation between cumulative 
probabilities of the approximate and exact distributions 
reach about 0.01 in one of 64 test cases, but much less 
in most others. 

Based upon Graves’ specification that the negative 
binomial distribution used to approximate the 
distribution of Dj[Tj,t] has the same first two moments 
as the latter, the discrete density function (d.d.f.) of this 
approximate distribution may be characterized by 
f(x;r,p) = xxr C1−+ pr (1-p)x I{0,1,2,...}(x), with parameters  
 
r = (t - E[Tj])2 / Var[Tj]                (4) 
 
and    
 
p = (t - E[Tj])  / {(t - E[Tj])  + λjVar[Tj]}.              (5) 
 
When Var[Tj] → 0, however, the distribution of Dj[Tj,t] 
approaches a Poisson distribution with parameter          
λj(t - E[Tj]). 

 
2.1. Probability of No Stockout as Service Criterion 
Each time the retail site places an order with the CW, 
there is a risk of stockout.  This risk exists especially 
towards the end of each retail order cycle, just before 
the next shipment to the retail site is received. 

Graves notes that, for a nested, single-cycle 
ordering policy, the probability of the retail site 
stocking out is greatest for the last order—that is, the 
(θ1/θj)th order—within the CW order cycle.  Thus, to set 
the base stock levels to achieve a given probability α of 
the retail site not stocking out within the CW order 
cycle, it suffices to consider the probability of stockout 
at the (θ1/θj)th order occasion.  Based on the earlier 
discussion,    
 
Pr{ Aj(tr

-) ≥ 0 } ≥ α,                (6) 
 
where tr = τ1 + θ1 + τj, will need to be assured. 

This leads to a computational procedure that 
searches over possible settings of the base stock level 
B1 at the CW.  For each B1, the minimum base stock 
level Bj at the retail sites that would yield (6) is to be 
determined.  Following (1), the requirement (6) 
translates into 
 
Pr{ Dj[Tj,tr] ≤ Bj } ≥ α.                (7) 
 

The negative binomial distribution, negbin(r,p), 
with parameters r and p as specified by (4) and (5), is 
used as approximation to the distribution of Dj[Tj,tr].  
The probability Pr{Dj[Tj,tr] ≤ Bj} is approximated by 

∑
=

−+

jB

x
xxr C

0
1  pr (1-p)x, starting with Bj = 1, and 

incrementing Bj by 1 until (7) is satisfied.  [Graves did 
not specify at what level of B1 > 0 the entire search 
could be allowed to terminate.  Solis (1997) established 
such a stopping condition.]   

The base stock level B1 which yields the lowest 
average system inventory is finally selected.  (In the 
case of ties, the smallest value of B1 is preferred—there 
being no difference assumed in Graves’ model between 
holding costs at the CW and at the retail sites.) 

Graves provides the following approximation to 
expected system on-hand inventory: 
 

average inventory = B1 +∑
N

1
Bj  -  0.5λ1θ1 - λ1τ1.    (8) 

 
He clarifies that (8) should actually be corrected for 
counting retail backorders at negative inventory—by 
adding back the time-weighted backorders at the retail 
sites.  However, he points out that, for reasonable 
service levels, the expected backorder component is 
very small and insensitive to the inventory policy.  
Accordingly, this expected backorder component is 
ignored in using (8) to calculate average system on-
hand inventory. 
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2.2. Fill Rate as Service Criterion 
In the case of a fill rate criterion, Graves notes that: 
 

• For a single-cycle ordering policy, the number 
of backorders over the CW order cycle is equal 
to the sum of the backorders at the end of each 
of the θ1/θj retail order cycles, just before 
receipt of the next shipment to the retail site.  
(Graves once again points out that this is not 
completely accurate as it double counts any 
backorders that may persist for more than one 
retail cycle.) 

• For a nested, single-cycle ordering policy, the 
expected backorders will be greatest for the 
last retail order—that is, the (θ1/θj)th order—
within the CW order cycle. 

• Expected backorders over a CW order cycle 
may be approximated by expected backorders 
pertaining to the (θ1/θj)th retail order within the 
CW order cycle, since for “realistic” fill rates   
(> 0.95) effectively all of the backorders occur 
at this last retail order within the CW order 
cycle. 

 
We recall that the last order within the CW order 

cycle is placed by the retail site at time pj = τ1 + θ1 - θj.  
This last retail order within the CW order cycle (which 
arrives at the retail site at time pj + τj = τ1 + θ1 - θj + τj) 
may not last until the next order arrives at the retail site 
(at time tr = τ1 + θ1 + τj).  Backorders would occur if the 
base stock Bj at the retail site is inadequate. 

As already noted, for “realistic” fill rates, we 
approximate the expected backorders over the CW 
order cycle by evaluating expected backorders at                       
tr = τ1 + θ1 + τj.   

E[{Aj(tr)}-], where the symbol y- stands for    
max{0,-y}, represents expected backorders at time           
tr = τ1 + θ1 + τj (just before the next order arrives).  A 
computational procedure similar to that for the 
probability of no stockout service criterion arises. For 
each B1, we search for the minimum base stock level Bj 
at the retail sites that would yield  
 

E[{Aj(tr)}-] = {
x

Bj

=
∑

0
[(Bj - x) f(x)] }   

        - { Bj - λj (tr - E[Tj]) }  ≤  (1 - β) λjθ1,             (9) 
 
where λjθ1 represents mean demand at the retail site 
over the CW order cycle.  The CW base stock level B1 
which yields the lowest average system inventory is 
chosen.   
 
2.3. Graves’ Computational Study 
In his computational study, Graves used test scenarios 
all based on a single system demand rate λ1 = 36.  
Identical retail sites are assumed, with the number N of 
retail sites being 2, 3, 6, or 18.  Hence, the retail site 

demand rates λj are 18, 12, 6, or 2, respectively.  The 
length of the retail site order cycle is fixed at θj = 1.  
Four different parameter combinations < θ1, τ1, τj >, 
involving the length of the CW order cycle (θ1), the 
leadtime (τ1) from the external supplier to the CW, and 
the leadtime (τj) from the CW to the retail site, are 
tested.  This resulted in 16 test scenarios, summarized 
in Table 1. 

 
Table 1: Summary of Graves’ Test Scenarios 

Scenario 

Length 
of CW 
Order 
Cycle 

 θ1 

External 
Supplier 
Leadtime 

τ1 

CW to 
Retailer 

Leadtime 
τj 

No. of 
Retailer 

Sites  
N 

Retail Site 
Demand 

Rate  
λj 

1 2 1 1 18 2 
2    6 6 
3    3 12 
4    2 18 
5 2 1 5 18 2 
6    6 6 
7    3 12 
8       2 18 
9 5 4 1 18 2 

10    6 6 
11    3 12 
12    2 18 
13 5 4 5 18 2 
14    6 6 
15    3 12 
16       2 18 

 
For the probability of no stockout service criterion, 

four different levels of α were used: 0.80, 0.90, 0.95, 
and 0.975.  Similarly, four different fill rate levels β 
were tested: 0.95, 0.98, 0.99, and 0.999.  Thus, for each 
service criterion, a total of 64 test cases were utilized by 
Graves. 
 
3.     STOCHASTIC LEADTIMES 
Graves (1996) suggested a number of possible 
extensions of his model, including stochastic leadtimes 
τj from the CW to the retail sites.  The current study 
investigates effects of stochastic leadtimes τj from the 
CW to the retail sites when the CW carries stock        
(B1 > 0). 

The situation where τj is no longer preset and 
known is a departure from the original deterministic 
leadtime τj in Graves’ model, as in many others in the 
literature on multi-echelon inventory systems—and, 
particularly more so, from the zero leadtime assumed in 
some other models (McGavin, Schwarz, and Ward 
1993; Nahmias and Smith 1994).  A zero leadtime may 
be plausible where regularly scheduled deliveries from 
the CW are made overnight while the retail sites are 
closed.  Graves (1996) likewise assumes regularly 
scheduled shipments.  He offers the motivation that, in a 
multi-item distribution system where each item 
occupies only a portion of a truckload, a fixed 
replenishment schedule allows consolidation of item 
shipments and, accordingly, transportation economies.  
This scenario may appear to allow a fixed, common 
positive leadtime for shipments between the CW and 
the retail site—where one truck services one retail site 
within the latter’s order cycle. 
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While the order occasion pj(m) remains fixed, the 
time rj(m) at which the order is received by site j may 
vary.  Hence, the leadtime τj = rj - pj may be treated as a 
random variable that varies according to a number of 
possible factors, for example, truck, road, and weather 
conditions, or even loading times for the consolidated, 
multi-item shipments.  The realized time of receipt rj 
and, as a result, the leadtime τj do not depend on the 
demand process or the quantity ordered of the specific 
item under consideration.  For Graves’ original results 
to continue to apply in the stochastic leadtime case, the 
condition that orders do not cross—that is,               
rj(m-1) ≤ rj(m) for any m—will need to hold. 

The treatment here of τj is based on θj = 1 (i.e., a 
retail site order cycle length equal to one time unit), as 
used in all 16 test scenarios in Graves’ computational 
study, but may be extended to any possible value of θj.  
We wish to ensure that the distribution of leadtimes τj 
satisfies the requirement that there is “no order 
crossing”—specifically, that rj(m) < rj(m+1) for any m.  
This requires the range of leadtimes (maximum 
leadtime less minimum leadtime) to be at most θj.  In 
our treatment, therefore, we require this range of 
leadtimes to be at most 1.  Such a requirement is less 
restrictive (with respect to the variability of leadtimes) 
when the mean leadtime is small relative to θj, and 
becomes more restrictive otherwise. 

In his computational study, Graves used the fixed 
leadtimes τj = 1 and τj = 5.  Corresponding to Graves’ 
deterministic leadtime τj = 1, we may, for instance, 
consider leadtimes that vary within the interval between 
0.5 and 1.5, or between 0.25 and 1.25, or between 0.9 
and 1.9, among other such possibilities for which the 
range is 1 (equal to θj) and τj = 1 is included between 
the minimum and maximum leadtimes.  [The range may 
as well be 0.5 or 0.9, or some other value < θj.  A range 
of 1 is, in the case where θj = 1, the largest that would 
be allowed under the no order crossing requirement.]   

The lower and upper limits of this interval of 
leadtimes would depend upon what may actually 
provide a good approximation to the practice/experience 
with respect to, among other factors, the consolidation 
of shipments, the dispatching of delivery vehicles from 
the CW, and the return of the vehicles to the CW.  Since 
the shipments are made from the CW to the retail sites, 
an assumption that such shipments are made under a 
fair degree of control would appear to be a reasonable 
one to make, in view of the operational requirements of 
period-to-period consolidated, multi-item shipments—
even as the actual leadtimes are subject to some amount 
of variation due to factors such as loading/ unloading 
times, weather and road conditions, and unexpected 
vehicular problems.  Hence, we may reasonably expect 
that leadtime intervals will not be dispersed too widely 
and, as a result, that orders will not cross.    

In our analysis, we shall use a leadtime interval of 
(0.5,1.5) arbitrarily, in place of the deterministic 
leadtime τj = 1.  The analysis will essentially proceed in 
the same manner regardless of the final interval that 

actually applies.  Similarly, the interval (4.5,5.5) is used 
in place of the deterministic leadtime τj = 5.  Likewise, 
regardless of the original deterministic leadtime (be it   
τj = 1 or τj = 5), the analysis will proceed in the same 
manner.  Within this interval of (0.5,1.5) or (4.5,5.5), 
we shall look into various stochastic leadtime 
distributions and their effects on required base stock 
levels. 

Corresponding to Graves’ fixed leadtime τj = 1, we 
consider stochastic leadtimes such that τj - 0.5 ∼ 
beta(a,b), where the p.d.f. of τj is specified by 
 
g(τj) =  [1/B(a,b)] (τj - 0.5)a-1 (1.5 - τj)b-1 I(0.5,1.5)(τj),  (10) 
 
with the so-called beta function B(a,b) = Γ(a)×Γ(b)/ 
Γ(a+b).  A random variable with a beta(a,b) distribution 
varies between 0 and 1, and has a mean of a/(a+b).  This 
distribution is skewed to the right or left depending 
upon whether a/(a+b) < 0.5 or a/(a+b) > 0.5.  The mean 
of τj, when τj - 0.5 ∼ beta(a,b), is equal to a/(a+b) + 0.5 
and can be anywhere on the interval (0.5,1.5).  In this 
case, the distribution of leadtimes τj would be skewed to 
the right or left when the mean of τj is less than 1 or 
greater than 1, respectively.  [When a = b = 1, the 
distribution of τj reduces to a uniform distribution over 
the interval (0.5,1.5).] 
 
3.1. The Case Where the CW Actually Carries Stock 
When the CW is allowed to carry some of the system 
inventory, the average system inventory associated with 
the optimal combination < B1, Bj > is smaller than the 
required average system inventory when B1 = 0.  Eppen 
and Schrage (1981) refer to this benefit of the CW 
carrying stock as the depot effect. 

Solis and Schmidt (2007) earlier investigated 
analytically the effects of stochastic leadtime 
distributions as specified above for the case where the 
CW does not carry stock (B1 = 0). When the CW does 
carry some of the system inventory (B1 > 0), the model 
does not readily lend itself to the same kind of 
mathematical analysis.   

Accordingly, we conducted simulation studies in 
order to evaluate the effects of stochastic leadtimes τj on 
the optimal combination < B1, Bj > that minimizes 
average system inventory.  Baseline simulation models 
were developed in SIMAN V using the Arena modeling 
system (see Pegden, Shannon, and Sadowski 1995; 
Kelton, Sadowski, and Sturrock 2007), for both 
deterministic and stochastic leadtimes.  Preliminary 
runs indicated that service levels under given < B1, Bj > 
combinations may be significantly affected when 
deterministic leadtimes between the CW and the retail 
sites (as in Graves’ model) are replaced with leadtimes 
following uniform and various beta distributions. 

The simulation experiments were envisioned to 
study how optimal levels of B1 and Bj, determined for 
the fixed leadtime case, would need to be adjusted to 
compensate for stochastic leadtimes—such that the 
specified service level is met under either the 
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probability of no stockout criterion or the fill rate 
criterion. 

For each of the test scenarios, experimental and 
model frames were developed for both the deterministic 
leadtime and stochastic leadtime cases.  Most of the 
experiments conducted consisted of 100 replications, 
with each replication involving 100 CW order cycles.  
Hence, a typical experiment covered 10,000 CW order 
cycles. 

The Seeds element in SIMAN (Pegden, Shannon 
and Sadowski 1995) was used to specify separate 
random number streams for the various sources of 
randomness—the independent Poisson demand 
processes at the retail sites, and the stochastic leadtimes 
τj.  Thus, experiments with the same test case become 
comparable, with random demand occurrences and 
random leadtimes repeating themselves with every run 
of the experiment, as values of the parameters B1 and Bj 
are changed.  

Confidence intervals for system service levels 
(average probability of no stockout and system fill 
rate)—as reported by Arena’s statistical analysis 
module, which rounds reported figures off to the nearest 
0.1—vary in width, and are generally tighter with 
higher service levels and more retail sites. 
 
3.2. Heuristic for Finding a Policy < B1, Bj > that 
Minimizes Average System Inventory  
We have devised a heuristic for finding a policy               
< B1, Bj > which yields an average system on-hand 
inventory that appears to closely approximate the 
smallest possible level of inventory such that the 
specified service level is satisfied. 

From (8), an approximation to expected system 
inventory when there are N identical retail sites is given 
by average system inventory = B1 + NBj - 0.5λ1θ1 - 
λ1τ1, which varies only with B1 and Bj.  Hence, to find 
the minimum average system inventory, we may simply 
search for the minimum level of echelon base stock = 
B1 + NBj. 

Let us first introduce additional notation:               
e{< B1, Bj >} = echelon base stock at < B1, Bj > =           
B1 + NBj; s{< B1, Bj >} = mean service level observed 
from a simulation experiment involving policy              
< B1, Bj >; and < B1

d, Bj
d > = optimal policy for the 

deterministic leadtime case, found using Graves’ search 
procedure. 

Let < B1
h, Bj

h > represent the current policy as the 
heuristic searches for an approximation to the optimal 
policy < B1

s, Bj
s > for the given stochastic leadtime 

case—i.e., a policy that minimizes echelon base stock 
(and, hence, average system inventory).  We further let    
δ = Bj

s(0) - Bj
d(0)—where Bj

d(0) and Bj
s(0) denote the 

computed optimal retailer base stock levels, if the CW 
does not carry stock, for the deterministic and stochastic 
leadtime cases, respectively.   The values of Bj

s(0) were 
earlier determined by Solis and Schmidt (2007) for the 
same test cases we consider in the current study. 

We specify our heuristic as follows: 
 

Heuristic 
Step 1. Initialize: < B1

h, Bj
h > ← < B1

d, Bj
d + δ >.  If     

s{< B1
h, Bj

h >} > α or β, then go to step 3.  
Step 2.  Adjust, via simulation experiments, Bj

h upward 
until < B1

h, Bj
h > first satisfies s{< B1

h, Bj
h >} 

> α or β. 
Step 3.  Adjust B1

h downward, via simulation 
experiments (using, if necessary, some 
bisection method), until such point that any 
further reduction in B1

h will result in            
s{< B1

h, Bj
h >} < α or β.  Select the policy      

< B1
h, Bj

h > corresponding to the smallest B1
h 

considered such that s{< B1
h, Bj

h >} > α or β. 
 
We express the condition that the specified service 

level be satisfied in terms of  s{< B1
h, Bj

h >} > α or β—
instead of using the more familiar ≥ inequality—in light 
of the simulation experiment.  This is in recognition of  
Pr[ s{< B1

h, Bj
h >} = α (or β) ] = 0. 

A motivation for step 1 (the initialization of              
< B1

h, Bj
h >) is our intuition—which we are unable to 

establish mathematically—with respect to δ.  On the 
one hand, if shifting from deterministic to stochastic 
leadtimes τj leads to an increase (δ > 0) in the required 
level of Bj for the case where the CW does not carry 
any stock (B1 = 0), our expectation is that the required 
increase in Bj (for given B1 > 0)—when the CW does 
carry some of the system inventory—must be at least 
equal to δ for the given service level to be satisfied.  
This would seem to make sense because, when B1 > 0, 
the retail site appears to be at greater risk of 
experiencing stockouts/backorders.  On the other hand, 
if the stochastic leadtimes result in a decrease (δ < 0) in 
the required Bj for the case where B1 = 0, we would 
expect the magnitude of the corresponding decrease in 
Bj (for given B1 > 0) to be at most equal to |δ|.       

We provide here a simple case study to illustrate 
application of the heuristic. 
 
Case Study 
Consider one warehouse supplying three retail stores 
selling, among others, a certain large screen TV model.  
Demand at each retail store is independent of demand at 
every other retail store, averaging 12 units per week and 
observed to essentially follow a Poisson distribution.  
The warehouse places replenishment orders with the 
electronics manufacturer every two weeks, with a 
guaranteed delivery leadtime of one week.  Each retail 
site places a replenishment order once a week.  The 
average delivery leadtime from the warehouse to each 
retail site averages one week from the time the order 
was placed, but has been found to vary between 0.5 and 
1.5 weeks, more or less according to a beta(6,2) 
distribution.  The desired probability of stockout is not 
more than 5%.    

 
The above illustrative case leads to the following 

computational example:  
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Example 1 
Given N = 3, λj = 12, θ1 = 2, θj = 1, τ1 = 1, and E[τj]= 1, 
we have scenario 3 (refer to Table 1).  Graves (1996) 
reported < B1

d, Bj
d > = <56, 39> as the optimal base 

stock policy, with echelon base stock = 56 + (3 × 39) = 
173.  However, if the warehouse does not carry stock, 
Bj

d(0) = 60 and echelon base stock = 3 × 60 = 180.  
With α = 0.95 and τj - 0.5 ~ beta(6,2), Solis and 
Schmidt (2007) have reported Bj

s(0) = 63, leading to an 
echelon base stock of  3 × 63 = 189.  Thus, δ =       
Bj

s(0) - Bj
d(0) = 63 - 60 = 3. 

Step 1. Initialize: < B1
h, Bj

h > ← < B1
d, Bj

d + δ > =      
<56, 42>, with echelon base stock = 173 + 3δ = 
182.  s{<56, 42>} =  92.8% < α. 

Step 2. Bj
h ← Bj

h + 1 = 43.  s{<56, 43>} =            
94.8% < α.   Bj

h ← Bj
h + 1 = 44.  s{<56, 44>} =  

96.2% > α.  Echelon base stock at <56, 44> is  
182 + 6 = 188. 

Step 3. In adjusting B1
h = 56 downward, we find that 

s{<54,44 >} = 95.2% > α, while s{<53, 44>} = 
94.7% < α.  < B1

h, Bj
h > ← <54, 44>, with 

echelon base stock = 188 - 2 = 186. 
 
The average observed probability of no stockout at 

the selected policy <54, 44>—based on our typical 
simulation experiment consisting of 100 replications—
does not lead to a statistically significant conclusion 
that the true mean probability is, indeed, no less than 
95%.  [We created a separate file (using the Files 
element in SIMAN) in a worksheet file structure, and 
used Excel to compute statistics (and report them 
beyond Arena’s one digit after the decimal point).]  At 
the policy <54, 44>, we computed a mean of 
95.183(%), with a standard deviation of 1.791.  The t 
statistic for a right hand-tailed hypothesis test, given a 
sample size of 100, is only 1.024 (which is less than the 
critical value of 1.6604 at a 5% level of significance).  
When we expanded our experiment to 400 replications, 
we observed a mean of 95.186 and a standard deviation 
of 1.645.  The computed t statistic of 2.259 exceeds the 
critical value. 

Table 2 presents figures relevant to our illustration, 
which will allow us to evaluate how well the heuristic 
performs, in this case, relative to the “true” minimum 
level of echelon base stock.  Since echelon base stock at 
the selected policy <54, 44> is 186 units, we now focus 
our attention on the next lower level of echelon base 
stock (185 units).  Table 2 enumerates all possible 
(integer valued) policies < B1, Bj > such that              
e{< B1, Bj >} = B1 + 3Bj = 185 or 186, and such that   
Bj ≥ Bj

min = 36.  Bj
min is a lower bound on Bj, 

determined by way of a minor heuristic developed by 
Solis (1997).  Below Bj

min, the specified service level α 
will definitely not be satisfied.  The average observed 
probability of no stockout s{< B1, Bj >}, based on our 
typical experiment (consisting of 100 replications 
involving 100 CW order cycles per replication), is 
shown for each of the listed policies.  Moreover, for 
some policies of interest, 95% confidence intervals for 

the mean probability of no stockout are shown below 
the values of s{< B1, Bj >}.  [Arena outputs only two-
sided confidence intervals.  Figures with one digit after 
the decimal point are as reported using Arena.  Those 
showing two decimal places, in the case of certain 
policies of interest, are as computed using Excel.] 
 
Table 2: Average Observed Probabilities of No 
Stockout (%) – Example 1 

Echelon Base Stock = 185 Echelon Base Stock = 186 

B1 Bj 

Average Observed 
Prob of No Stockout 

(%) B1 Bj 

Average Observed 
Prob of No 

Stockout (%) 
      0 62 92.9 
2 61 92.4 3 61 93 
5 60 92.4 6 60 93.1 
8 59 92.5 9 59 93.3 
11 58 92.7 12 58 93.4 
14 57 92.9 15 57 93.5 
17 56 93 18 56 93.7 
20 55 93.2 21 55 93.9 
23 54 93.3 24 54 94 
26 53 93.5 27 53 94.1 
29 52 93.6 30 52 94.3 
32 51 93.8 33 51 94.3 
35 50 93.8 36 50 94.5 
38 49 94 39 49 94.69 
41 48 94.1 42 48 94.69 
   (93.8, 94.5)      

44 47 94.2 45 47 94.82 
   (93.9, 94.6)      

47 46 94.4 48 46 94.99 
   (94.0, 94.8)      

50 45 94.48 51 45 95.05 
   (94.10, 94.86)      

53 44 94.66 54 44 95.18 
   (94.28, 95.03)    (94.83, 95.53) 

56 43 94.76 57 43 95.31 
   (94.40, 95.12)      

59 42 94.77 60 42 95.29 
   (94.42, 95.13)      

62 41 94.79 63 41 95.3 
   (94.41, 95.17)      

65 40 94.57 66 40 95.04 
   (94.16, 94.98)      

68 39 94.2 69 39 94.62 
   (93.8, 94.6)      

71 38 93.5 72 38 93.9 
   (93.1, 93.9)      

74 37 92.3 75 37 92.5 
77 36 90.4 78 36 90.6 

 
In Example 1, we note that the upper limit of the 

95% confidence interval exceeds the specified 95(%) 
service level at a number of policies < B1, Bj > for 
which e{< B1, Bj >} = 185—specifically, at the policies 
<53, 44>, <56, 43>, <59, 42>, and <62, 41>.  Using 
Excel, we compute for <53, 44> a 94.657 average 
probability of no stockout, with a standard deviation of 
1.911.  The resulting t statistic for a left hand-tailed test 
of hypothesis on the mean is -1.797, which is less than 
the critical value at a 5% level of significance.  Tests are 
inconclusive for the other three policies.  By again 
expanding our experiment with each of these three 
policies, we find, at a 5% level of significance, that 
mean service levels are below α = 0.95.  [For instance, 
for the policy <62, 41>, an expanded experiment of 200 
replications showed a mean of 94.763 and a standard 
deviation of 1.876, yielding a t statistic of -1.784 (which 
is below the critical value for a left hand-tailed test of 
hypothesis at a 5% level of significance).]  Hence, we 
are able to infer, at a 5% level of significance, that no 
policy < B1, Bj > involving 185 units of echelon base 
stock satisfies α = 0.95. 
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Having found, at a 5% level of significance, that 
the selected policy <54, 44>—with 186 units of echelon 
base stock—satisfies α = 0.95, and that no policy 
involving 185 units of echelon base stock is able to 
satisfy the given service level, we now make important 
theoretical observations that apply to the general 
situation. 
 
Lemma 1  For any given Bj, the probability of no 
stockout associated with the policy < B1, Bj > increases 
monotonically with B1. 
Proof:  In section 2, we had noted that                            
S1 ~ gamma(λ1,B1).  It follows that E[S1] = B1/λ1, and 
E[S1] increases with B1.  Since Tj = min{pj, S1}, then 
E[Tj]  also increases with B1.  Accordingly, the 
expected width of the time interval (Tj,tr], given τj, 
decreases with B1.  Therefore, for any given level of 
retailer base stock Bj, Pr{ (Dj[Tj,tr] | τj) ≤ Bj } increases 
with B1, as does the probability of no stockout,          
Pr{ Dj[Tj,tr] ≤ Bj }.  q.e.d. 
 
Lemma 2  Take any level E of echelon base stock. 
Consider the sets PE and PE-1 of all (integer-valued) 
policies < B1, Bj > at the echelon base stock levels E 
and E-1, respectively.  Then the maximum probability of 
no stockout possible for all policies in PE-1 will be less 
than the maximum probability of no stockout possible 
for all policies in PE. 
Proof:   Let sE-1 be the maximum probability of no 
stockout for all policies in PE-1 and sE be the maximum 
probability of no stockout for all policies in PE.  Assume 
that sE-1 ≥ sE.  Let the probability sE-1 be at some specific 
policy < B1, Bj > in PE-1.  Then the policy < B1+1, Bj > 
is one of the policies in the set PE, since e{< B1, Bj >} =     
B1 + NBj = E-1 and e{< B1+1, Bj >} = (B1+1) + NBj = 
E.  If s+ denotes the probability of no stockout at                    
< B1+1, Bj >, then s+ ≤ sE—and, therefore, s+ ≤ sE-1 
according to the assumption we made.  This runs 
contrary to Lemma 1, which tells us that s+ (the 
probability of no stockout at < B1+1, Bj >) must be 
greater than sE-1 (the probability of no stockout at          
< B1, Bj >).  We conclude that sE-1 < sE.  q.e.d. 
 

Returning to Example 1, it follows from Lemma 2 
that the maximum service level possible for any echelon 
base stock level less than 185 will be less than that for     
E = 185, at which no “candidate” policy satisfies α = 
0.95.  Hence, we conclude that the minimum level of 
echelon base stock that satisfies α = 0.95 is 186 units. 
 
Interpretation of Heuristic Solution for the Case Study 
To achieve a 95% probability of not stocking out, the 
optimal base stock policy with deterministic leadtime      
τj = 1 is < B1

d, Bj
d > = <56, 39>, with echelon base 

stock = 173 units.  Using this deterministic leadtime 
optimal policy as the starting point, the search heuristic 
under stochastic leadtimes yielded the policy                 
< B1

h, Bj
h > =   <54, 44>, with echelon base stock of   

54 + (3 × 44) = 186 units.  This base stock policy 

satisfies the specified 95% probability of not stocking 
out and yields the optimal echelon base stock in the 
given case when the warehouse is made to carry stock.  
It compares favorably with the optimal retailer base 
stock level of 63 units, leading to an echelon base stock 
of 3 × 63 = 189 units, if the warehouse does not carry 
stock (Solis and Schmidt 2007).  
 

The next example involves the fill rate criterion.  
 
Example 2 
Consider scenario 7 (N = 3), with τj - 4.5 ~ beta(2,6) 
and β = 0.99.  We know that < B1

d, Bj
d > = <59, 91>, 

with echelon base stock = 332; Bj
d(0) = 112; Bj

s(0) = 
110; and δ = Bj

s(0) - Bj
d(0) = 110 - 112 = -2. 

Step 1. Initialize: < B1
h, Bj

h > ← < B1
d, Bj

d + δ > =      
<59, 89>, with echelon base stock = 332 + 3δ = 
326.  s{<59, 89>} =  99.05% > β.  In this case, 
we proceed to step 3.                            

Step 3. In trying to adjust B1
h = 59 downward, we find 

that s{<58, 89>} = 98.98% < β.  We keep the 
current policy < B1

h, Bj
h > = <59, 89>, with 

echelon base stock = 326. 
 
In step 1, at the policy <59, 89>, our typical 

experiment yielded an average observed fill rate of 
99.050(%), with a standard deviation of 0.523.  The 
computed t statistic was only 0.95, which falls below 
the critical value for the right hand-tailed test of 
hypothesis at a 5% level of significance.  However, in 
expanding the experiment to 400 replications, we 
computed a mean fill rate of 99.049 and a standard 
deviation of 0.535.  The resulting t value was 1.818, and 
we infer that the mean fill rate satisfies β = 0.99 at a 5% 
level of significance. 

A heuristic lower bound on Bj, as developed by 
Solis (1997), yielded a value of Bj

min,h = 83.  Table 3 
shows the average observed fill rates at policies of 
interest. 

At the echelon base stock level of 325 (one unit 
below the level at the selected policy <59, 89>), we 
consider, for instance, the policy <46, 93>.  Our typical 
experiment yielded an average observed fill rate of 
99.035(%), with a standard deviation of 0.488.  The 
resulting t statistic of 0.71 is below the critical value at a 
5% level of significance for a right hand-tailed test of 
hypothesis about the mean fill rate.  However, when we 
expanded the experiment to 500 replications, we found 
a mean of 99.044 and a standard deviation of 0.507, 
yielding a t value of 1.953, which exceeds the critical 
value at a 5% level of significance.  We have thus found 
one policy—among a number of policies, in fact— 
satisfying β = 0.99, and at which the echelon base stock 
level of 325 is one unit lower than the level of 326 at 
the policy <59, 89> selected by the heuristic. 

At the next lower echelon base stock level of 324, 
there are eight policies in all (<33, 97>, <36, 96>,       
<39, 95>, <42, 94>, <45, 93>, <48, 92>, <51, 91>, and 
<57, 89>) for which left hand-tailed tests of hypothesis 
concerning the mean fill rate are not conclusive based 
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on our typical experiments.  However, by increasing the 
number of replications, we are able to infer at a 5% 
level of significance that all policies with echelon base 
stock = 324 result in mean fill rates that are lower than 
β = 0.99.  [For example, at the policy <51, 91>, our 
typical experiment yielded a mean of 98.954(%), with a 
standard deviation of 0.529, resulting in a t statistic of 
only -0.862.  With 400 replications, the observed mean 
was 98.947, with a standard deviation of 0.551.  The 
computed t value in the latter case was -1.918, which is 
to the left of the critical value for the left hand-tailed 
test of hypothesis at a 5% level of significance.] 
 
Table 3: Average Observed Fill Rates (%) – Example 2 

Echelon Base Stock = 324 Echelon Base Stock = 325 Echelon Base Stock = 326 

B1 Bj 

Average Observed 
System Fill Rate 

(%) B1 Bj 

Average Observed 
System Fill Rate 

(%) B1 Bj 

Average Observed 
System Fill Rate 

(%) 
0 108 98.76 1 108 98.86 2 108   
3 107 98.79 4 107 98.87 5 107   
6 106 98.8 7 106 98.89 8 106   
9 105 98.81 10 105 98.9 11 105   

12 104 98.82 13 104 98.905 14 104   
       (98.80, 99.01)      

15 103 98.84 16 103 98.928 17 103   
       (98.83, 99.03)      

18 102 98.87 19 102 98.947 20 102   
       (98.85, 99.04)      

21 101 98.88 22 101 98.959 23 101   
       (98.86, 99.05)      

24 100 98.89 25 100 98.975 26 100   
       (98.88, 99.07)      

27 99 98.9 28 99 98.98 29 99   
       (98.89, 99.07)      

30 98 98.908 31 98 98.991 32 98   
   (98.81, 99.01)    (98.90, 99.09)      

33 97 98.919 34 97 99.004 35 97   
   (98.82, 99.02)    (98.91, 99.10)      

36 96 98.928 37 96 99.013 38 96   
   (98.83, 99.03)    (98.92, 99.11)      

39 95 98.942 40 95 99.024 41 95   
   (98.84, 99.04)    (98.93, 99.12)      

42 94 98.953 43 94 99.031 44 94   
   (98.85, 99.05)    (98.94, 99.13)      

45 93 98.954 46 93 99.035 47 93   
   (98.85, 99.05)    (98.94, 99.13)      

48 92 98.949 49 92 99.026 50 92   
   (98.85, 99.05)    (98.93, 99.12)      

51 91 98.954 52 91 99.026 53 91   
   (98.85, 99.06)    (98.93, 99.13)      

54 90 98.933 55 90 99.01 56 90   
   (98.83, 99.04)    (98.91, 99.11)      

57 89 98.913 58 89 98.985 59 89 99.05 
   (98.80, 99.02)    (98.88, 99.09)    (98.95, 99.15) 

60 88 98.87 61 88 98.94 62 88   
       (98.83, 99.05)      

63 87 98.81 64 87 98.88 65 87   
66 86 98.71 67 86 98.77 68 86   
69 85 98.57 70 85 98.63 71 85   
72 84 98.38 73 84 98.43 74 84   
75 83 98.1 76 83 98.14 77 83   

 
It is difficult to mathematically make theoretical 

observations for the fill rate criterion as we had done for 
the probability of no stockout criterion in Lemmas 1 
and 2.  This difficulty arises because expected 
backorders do not work out as “neatly” as the 
probability of not stocking out.  Nevertheless, 
“empirical evidence” from our simulation experiments 
suggests that, for given Bj, the (observed) fill rate 
associated with policy < B1, Bj > is likewise monotone 
increasing as B1.  We state this observation as well as a 
statement analogous to Lemma 2 as conjectures. 
 
Conjecture 1  For any given Bj, the fill rate associated 
with the policy < B1, Bj > increases monotonically with 
B1. 
 
Conjecture 2  Take any level E of echelon base stock. 
Consider the sets PE and PE-1 of all (integer-valued) 
policies < B1, Bj > at the echelon base stock levels E 
and E-1, respectively.  The maximum fill rate possible 
for all policies in PE-1 will be less than the maximum fill 
rate possible for all policies in PE. 
 

Returning to Example 2, since no policy having 
echelon base stock = 324 (or less) satisfies β = 0.99, we 
conclude by virtue of Conjecture 2 that no policy with 
echelon base stock less than 325 will satisfy the 
specified fill rate.  Hence, the optimal echelon base 
stock level in this case is 325 units, and the policy    
<59, 89> selected by the heuristic yields an inventory 
level that is one unit more than optimal. 

The above two examples we have provided 
illustrate how well our heuristic appears to perform with 
respect to selecting a policy < B1, Bj > which yields an 
echelon base stock level (and, thus, an average system 
on-hand inventory level) that is close to the smallest 
possible level at which the specified α or β is satisfied.  
In these, as well as other test cases we have thus far 
investigated—albeit limited, in view of the computing 
effort involved, to only a portion of Graves’ 64 test 
cases under either service criterion—we have found the 
selected policy to result in inventory levels that are 
generally either equal to or one unit more than optimal.  
Considering average inventory levels of roughly 
between 100 and 400 in our limited test cases, our 
heuristic seems to perform fairly well. 

The choice of the optimal policy < B1
d, Bj

d > in the 
deterministic leadtime case as the starting point for the 
heuristic appears to be an appropriate one.  We are 
unable to provide a guarantee, however, that the 
heuristic would err by no more than one unit away from 
the optimal level of average system inventory.  We have 
found that the average observed service levels (based on 
comparable simulation experiments) at policies having 
the same echelon base stock are not always unimodal. 
One, two or more relative maxima may exist within a 
given echelon base stock level E.  We had earlier noted 
(by way of Lemma 1 or Conjecture 1) that, for given Bj, 
observed service levels increase as B1 (and, hence, as 
the echelon base stock level E = B1 + NBj) increases; 
however, we were unable to observe any uniformity or 
pattern in the behavior of such increases across varying 
B1 values (for a given Bj) or across different Bj values. 

Lemma 2 or Conjecture 2 states that the maximum 
service level (probability of no stockout or fill rate, as 
the case may be) possible for echelon base stock level E 
will be larger than the maximum for E-1.  We have 
observed, however, that the maxima at different echelon 
base stock levels may be located at various levels of Bj.  
The service level observed for some selected policy      
< B1, Bj >, having echelon base stock level E, may 
satisfy the specified service level α or β fairly closely 
(in particular, in view of the steps in our heuristic).  Yet, 
the maximum service level at the next lower echelon 
base stock level E-1 (which could well be at some 
policy < B1’, Bj’ > ≠ < B1-1, Bj >)—or that at the even 
lower echelon base stock level E-2, for that matter—
may still be able to satisfy α or β.  
 
4.    CONCLUSION 
In this study, we extended Graves’ one-warehouse, N-
retailer model by introducing, as Graves suggested, 
stochastic leadtimes τj between the CW and the retail 
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sites in place of the original deterministic leadtimes.  
We investigated the effects of stochastic leadtimes—on 
the optimal base stock policy < B1, Bj > for the 
deterministic leadtime case, in which the CW actually 
carries stock—by way of simulation studies.  We have 
devised a heuristic for selecting, in the stochastic 
leadtime case, a policy < B1, Bj > that seeks to minimize 
average system inventory.  The heuristic appears, based 
on test cases we have investigated, to select a policy at 
which the average system inventory is equal or very 
close to the optimal average inventory level.   
 
REFERENCES 
Eppen, G. and Schrage, L., 1981.  Centralized ordering 

policies in a multi-warehouse system with lead 
times and random demand, In: L.B. Schwarz, ed. 
Multi-level production/inventory control systems: 
theory and practice, TIMS Studies in the 
Management Sciences, 16, Amsterdam: North 
Holland, 51-67. 

Graves, S.C., 1985.  A multi-echelon inventory model 
for a repairable item with one-for-one 
replenishment, Management Science, 31 (10), 
1247-1256. 

Graves, S.C., 1996.  A multiechelon inventory model 
with fixed replenishment intervals. Management 
Science, 42 (1), 1-18.  

Kelton, W.D., Sadowski, R.P., and Sturrock, D.T., 
2007.  Simulation with Arena, 4th ed., New York, 
NY: McGraw-Hill. 

Lee, H.L. and Moinzadeh, K., 1987.  Two-parameter 
approximations for multi-echelon repairable 
inventory models with batch ordering policy. IIE 
Transactions, 19, 140-149. 

McGavin, E.J., Schwarz, L.B., and Ward, J.E., 1993.  
Two-interval inventory-allocation policies in a 
one-warehouse, N-identical-retailer distribution 
system. Management Science, 39 (9), 1092-1107.  

Nahmias, S. and Smith, S.A., 1994.  Optimizing 
inventory levels in a two-echelon retailer system 
with partial lost sales. Management Science, 40 
(5), 582-596. 

Pegden, C.D., Shannon, R.E., and Sadowski, R.P., 
1995.  Introduction to simulation using SIMAN, 
2nd ed., New York, NY: McGraw-Hill.  

Solis, A.O., 1997.  Evaluation of the negative binomial 
approximation and stochastic leadtimes in a multi-
echelon inventory model. Thesis (PhD). The 
University of Alabama. 

Solis, A.O., 1998.  On the depot effect in a multi-
echelon inventory model with fixed replenishment 
intervals. Proceedings of the Twenty-Seventh 
Annual Meeting of the Western Decision Sciences 
Institute, pp. 537-540, April 7-11, Reno (Nevada, 
USA). 

Solis, A.O., and Schmidt, C.P., 2007.  Stochastic 
leadtimes in a one-warehouse, N-retailer inventory 
system with the warehouse not carrying stock. 
European Journal of Operational Research, 181 
(2), 1004-1013. 

Solis, A.O., Schmidt, C.P., and Conerly, M.D., 2007.  
On the effectiveness of the negative binomial 
approximation in a multi-echelon inventory model: 
a mathematical analysis. Proceedings of the 
International Conference of Numerical Analysis 
and Applied Mathematics, American Institute of 
Physics Conference Proceedings 936, pp. 531-534, 
September 16-20, Corfu (Greece).  

22


