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ABSTRACT 

In industrial oil furnaces, unstable flames can lead to 

potentially dangerous conditions. Elaborate control 

systems are used to monitor the parameters of the process 

to avoid those problems. Current trends in research seek 

to identify a priori anomalous behavior of the flames, 

thus improving the time response of the control system. 

Controller performance is directly affected by the 

accuracy of the system model. Unfortunately, due to the 

complexity of the process, physical models of flame 

propagation are still not faithful enough for control 

purposes. Conversely, could the complex dynamics of 

flame propagation be described in terms of an identified 

assumed model, the control strategy could be improved. 

In this work, a control technique based on an Operational 

Modal Analysis model identification of a state-space 

description of oil flame dynamics in a prototype furnace 

is designed. Results obtained suggest that the proposed 

approach might be used in an automated control system. 

 

Keywords: Flame modelling, Operational Modal 

Analysis, LQ control systems. 

 

1. INTRODUCTION 

The monitoring of oil-flame conditions in industrial 

petrochemical plants is of capital importance in terms of 

economy, environment-friendly operation, and safety. 

Currently, a wide array of sensors performs the task of 

measuring and informing the plant staff who, ultimately, 

judges the necessity of intervening to alter control 

parameters. This process has two drawbacks: firstly, 

sensors like thermocouples, flow meters, opacity meters, 

pressure sensor or even air-fuel ratio gauges are normally 

expensive and require frequent maintenance 

interventions; secondly, the judging ability of distinct 

operators is not the same, which might lead to below-

standard functioning condition, including potentially 

dangerous ones. The first drawback pointed above 

should be tackled by replacing the specialized sensors by 

a frame-grabber and a set of low-cost CCD video 

cameras properly inserted in the furnace; those cameras 

can produce a continuous flow of flame images 

exhibiting luminance patterns that are well correlated to 

the physical combustion variables. The second drawback 

can be handled with computer vision routines able to 

identify normal or abnormal combustion states through 

the analysis of the sequence of flame images grabbed by 

the cameras. However, such an aim can not be 

successfully achieved unless the decision-making be 

supported by reliable inferences on the image processed 

data. That is why the computer vision based systems for 

combustion processes monitoring usually apply a 

heterogeneous set of statistical and artificial intelligence 

techniques, especially multivariate statistics, artificial 

neural networks and fuzzy logics. 

Expert systems with these attributes are getting more and 

more importance for the oil and gas industries in the last 

years because of the potential impact to clean 

combustion. A key feature that must be monitored in 

order to maintain optimal burning conditions of oil 

flames is the vapor to fuel rate (VFR), which directly 

affects fuel nebulization and flame quality. Fleury et al. 

(2013) proposed a method based on computer vision and 

Kalman filtering to monitor nebulization quality of oil 

flames in a prototype refinery furnace. In short, the 

authors show that CCD-grabbed images of the flames at 

a priori known nebulization quality can be used to devise 

characteristic vectors that generate a set of fuzzy 

classification rules. Then, the components of a 

characteristic vector obtained from grabbed images of 

unknown a priori nebulization quality are assumed to be 

state-variables of a random-walk state-space model 

which, through a Kalman filter, effectively estimates the 

state and the nebulization quality when there is a 

statistically-proven convergence to a state that matches 

one of the classification rules. The researchers also state 

that the method could be improved once, instead of a 

random-walk model for the evolution of the state, a more 

accurate description of the system dynamics was 

employed. The difficulty that arises concerns the fact that 

phenomenological models available in the literature are 

poorly capable of encompassing both micro and macro 

scales occurring in flame propagation. As a consequence, 

a description based on either one would not cover the 

wide range of phenomena in between limiting 

conditions, thus resulting in a poor model under the 

estimation perspective. 

Another important issue for the adequate operation of 

refinery furnaces is the early detection of flame 

instability. This phenomenon may cause the extinction of 
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the flame, resulting in an undesirable dangerous 

condition. Models for combustion instability in the 

literature (Bouziani et al., 2005) based on coupled van 

der Pol equations state that unstable conditions can be 

detected under certain controlled situations; however, 

perturbations may induce false instability diagnosis near 

theoretically stable operation setups. Therefore, a 

description of the dynamics of the system based purely 

on data from observations of flames under actual 

operating conditions could possibly enhance the 

predictability of AI algorithms in general. A technique 

that suits this purpose is Operational Modal Analysis 

(OMA) in the time domain and, in a second paper (Silva 

et al., 2015), authors proposed a new approach to 

estimate flame dynamics using OMA. 

Overall, OMA seeks to identify parameters of an 

assumed model of the system dynamics using 

information from measurements of the system response 

to known particular inputs, namely, either step or 

impulse excitations, in real operating environment. The 

so called Ibrahim Time-Domain Method (ITDM), one of 

the tools available to perform the task, is widely 

employed in the identification of frequencies and modes 

of vibration in structures like stayed bridges (Liu et al., 

2012; Wu et al., 2012), offshore platforms (Wang et al., 

2010), and components of rotating mechanisms (Grange 

et al., 2009), just to cite some of the most recent 

publications. 

An unconventional application of the ITDM was 

presented by Moura et al. (2010). Those researchers 

employed the technique to identify the discrete state 

transition matrix in electrical impedance tomography, 

one of the instances for which analytical models do not 

suffice to describe the evolution of the state, the 

resistivity distribution in a domain of interest, with the 

required accuracy. This suggests the power of the ITDM, 

in the sense of surpassing its original scope, once the 

modal decomposition approach enables avoiding 

complex (and, sometimes, quite inaccurate) modeling, 

even of highly non-linear systems. 

Considering the previous discussion and the importance 

of combustion condition monitoring, this work proposes 

an extension of the paper by the same authors (Silva et 

al., 2015) which addresses the problem of detecting 

evidence of the beginning of flame unstable behavior and 

automatically act to avoid such condition. The state 

transition matrix from a four-degree of freedom second 

order model of this phenomenon in a prototype furnace 

was already identified and a Linear Quadratic controller 

(LQ) is designed based on this dynamic model. This is a 

quite usual control approach, as should be done, for 

example, for the control of a flexible structure, except for 

the fact that the control system has to sustain flames in a 

nonzero condition, since this would imply flame 

extinguishment. 

In the next sections, data collection and processing, a 

brief description of the ITDM, the LQ design and the first 

control results, with emphasis on the current approach 

are presented. 

 

2. METHODS 

Since modeling is a crucial requirement for a good 

control design, this section brings a discussion on the 

most important parts of author’s previous work (Silva et 

al., 2015). First aspect, experimental data were taken on 

a small-scale refinery furnace. Image data acquisition 

equipment is the same as mentioned by Fleury et al. 

(2013). The CCD camera for image grabbing is placed in 

a shielded and cooled compartment in the central cross-

section of the furnace cylindrical wall. Burner inlets of 

primary and dry air, steam and oil enable the control of 

combustion parameters. 

 

 
Figure 1: Burner Nozzle Schematics (modified from 

Fleury et al. (2013)) 

 

In order to correlate the visual appearance of the flames 

with the stability of the combustion process, three series 

of operational tests were carried out. Typical stability 

states, ranked according to a specialist, were obtained 

through proper regulation of the primary/secondary air 

rate (PSAR) at the burner nozzle, as depicted in the detail 

of Figure 1. Those series, encompassing an amount of 

280 images, will be nominated hereafter as ‘stable flames 

(PSAR=1.0)’, ‘unsteady flames (PSAR=1.86)’ and 

‘unstable flames (PSAR=4.0)’. As illustrated by Figure 2 

(a)-(b)-(c), the visual appearance of those image flames 

are clearly distinct, since the spatial distribution and 

arrangement of their pixel gray levels give rise to 

different types of texture. 

The previous assertion was taken into account to 

construct a discriminant characteristic vector 𝑣𝑖⃗⃗⃗   based on 

13 properties directly related to the texture and spatial 

distribution of the pixel gray levels of the flame image 𝐼𝑖 . 
The components of 𝑣𝑖⃗⃗⃗   correspond to the following image 

properties: 

 

(a) 
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(b) 

 

(c) 

 
Figure 2: Flame Images. (a) PSAR=1.0; (b) PSAR=1.86; 

(c) PSAR=4.0. 

 

 𝑣𝑖[1] is the average pixel gray level; 

 𝑣𝑖[2] is the image entropy: 

   j

N

=j

ji pp=v 2

1

log2  , where 𝑝𝑗 is the 

frequency occurrence of gray level 𝑗; 
 𝑣𝑖[3] is the average local maximum pixel gray 

level difference observed through a complete 

image scanning by a 3x3 window; 

 𝑣𝑖[4] is the average local maximum mean 

standard deviation observed through a complete 

image scanning by a 3x3 window; 

 𝑣𝑖[5] to 𝑣𝑖[13] are texture characteristics based 

on the co-occurrence matrix (Gonzalez and 

Woods, 1992) of the image 𝐼𝑖 , relative to two 

horizontally neighbor pixels whose gray levels 

are separated by either 1, 3 or 5 units. This way, 

𝑣𝑖[5], 𝑣𝑖[6], and 𝑣𝑖[7] are the correlation 

indexes of the number of occurrences of 

sequences of two pixels 𝑖 and 𝑗 whose gray 

levels are separated by 1, 3 and 5 units, 

respectively. Those indexes are calculated 

according to: 
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where 𝑝(𝑖, 𝑗) is the frequency occurrence of two 

horizontally pixels exhibiting gray levels 𝑖 and 𝑗, 𝜇𝑖 and 

𝜇𝑗 are the average number of occurrences of gray level 

pixels 𝑖 and 𝑗, and 𝜎𝑖 , 𝜎𝑗 are their corresponding mean 

standard deviation. Similarly, 𝑣𝑖[8], 𝑣𝑖[9], and 𝑣𝑖[10] are 

the contrast values of the number of occurrences of 

sequences of two pixels 𝑖 and 𝑗 whose gray levels are 

separated by 1, 3 and 5 units, respectively. Those indexes 

are calculated according to: 
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Finally, 𝑣𝑖[11], 𝑣𝑖[12], and 𝑣𝑖[13] are the homogeneity 

values of the number of occurrences of sequences of two 

pixels 𝑖 and 𝑗 whose gray levels are separated by 1, 3 and 

5 units, respectively. Those measures are calculated 

according to: 
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3. IBRAHIM TIME-DOMAIN METHOD 

The ITDM was conceived in the 1970s and has, since 

then, been developed and successfully applied. The 

methodology here presented is a concise version of a 

work by Pappa and Ibrahim (1981), which reviews a 

series or previous research since Ibrahim and Mikulcik 

(1973). 

Essentially, as originally devised, the method infers 

modal properties of a n-degree of freedom 2nd order 

assumed model from the free-response of a system to 

either impulsive or other excitation function (Ewins, 

2000). By hypothesis, the dynamics of the system is 

represented by the equation: 

 

 𝑀 𝑦̈ + 𝐶 𝑦̇ + 𝐾𝑦 = 𝑓 (4) 

 

in which 𝑀 is the mass matrix, 𝐶 is the damping matrix 

and 𝐾 is the stiffness matrix, 𝑦, 𝑦̇, 𝑦̈ respectively 

represent displacement, velocity and acceleration vector, 

while 𝑓 stands for the exogenous forcing vector. Once 

this model is mapped into a state-space framework and 

the resulting 2𝑛 first order differential equations are 

written in matrix form, a so called 2𝑛 × 2𝑛 system 

matrix conveys all information concerning inertia, 

stiffness and damping characteristics of the system under 

analysis.  

As it is known from dynamic system theory, the 

eigenvalues of the system matrix are used to compute 

natural frequencies and damping factors, whereas its 

eigenvectors provide mode shapes, for each degree-of-

freedom of the assumed model. Thus, provided that the 

system undergoes free vibration, Ibrahim's method 

estimates the above-mentioned matrix. Thus, naming 𝑥 

the state vector and 𝐴 the system matrix, for a certain 

instant ti, a set of displacements, velocities and 

acceleration measurements of the free-response of the 

system yield 𝑛 linear equations to solve for 2𝑛2 

unknowns according to Eq. (5), 

 

 𝑥̇𝑗 = 𝐴𝑥𝑗 (5) 

 

When measurements for 2𝑛 instants t1, t2, …, t2n, are 

made, then one comes up with 2𝑛2 equations, as follows: 

 

 [𝑥̇1  𝑥̇2 … 𝑥̇2𝑛] = 𝐴[𝑥1  𝑥2 … 𝑥2𝑛] (6) 

 𝑋̇ = 𝐴𝑋 → 𝐴 = 𝑋̇𝑋−1 (7) 
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Hence, considering that all the components of 𝑋 and 

𝑑𝑋/𝑑𝑡 are available, matrix 𝐴 is unambiguously 

obtained, as it can be realized from Eq. (7). Regarding 

that the characteristic equation for the free-response of 

the system in Eq. (4) is: 

 

 𝜆2𝑀 + 𝜆𝐶 + 𝐾 = 0 (8) 

 

the solution of  Eq. (7), at any measuring spot 𝑗, may be 

written as the sum of the contribution of each individual 

mode at that spot; for a given instant 𝑡𝑗, 
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in which 𝜓𝑗𝑘 represents the free-response of the mode 

associated to the kth eigenvector at the jth spot, and 𝜆𝑘 the 

corresponding eigenvalue, solution of the characteristic 

equation, in general, both complex numbers. When 2𝑛 

points are measured at several time instants, after some 

algebraic manipulation, Pappa and Ibrahim (1981) prove 

that the sought system matrix 𝐴 is part of an eigenvalue 

problem. It follows that the eigenvalues of matrix 𝐴, 

complex numbers of the form 𝜆𝑘 = 𝛽𝑘 + 𝑖𝛾𝑘, and the 

roots of the characteristic equation, the eigenvalues of the 

spatial model of Eq. (1) (Ewins, 2000) 𝑠𝑘 = 𝜎𝑘 + 𝑖𝜔𝑑,𝑘, 

are related by 

 

 𝛽
𝑘
+ 𝑖𝛾

𝑘
= 𝑒{𝜎𝑘+𝑖𝜔𝑑,𝑘}Δ𝑡1 (10) 

 

In the above equation, Δ𝑡1 represents an arbitrary time-

shift and, in view of Eq. (9), the scalars  𝛽𝑘 and 𝛾𝑘 can be 

used to obtain the damped natural frequency, natural 

frequency and damping factor for each mode according 

to Eqs. (11)-(14) which, once associated to the 

eigenvectors, completely characterize the system 

dynamics. 
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𝜎𝑘 =

1

2Δ𝑡1
ln(𝛽
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2 + 𝛾

𝑘
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An important issue that avoids straightly employing 

either the original or the modified ITDM is the demand 

of data from the free-response of the system under 

evaluation. This problem arises in several field 

situations, for instance, the identification of large 

structures like buildings and bridges, whose free-

response is virtually impossible to obtain since, at least, 

random excitation coming from the environment (wind, 

ground vibration transmitted to the structure via 

mechanical constraints) is always present. In the case of 

the present scope, a free-response would imply 

extinguishing the flame, a potentially dangerous 

operational condition. This difficulty can be surmounted 

when the ITDM is employed in conjunction with the 

Random Decrement Technique (Cole, 1971), also known 

as RANDOMDEC, since demonstrated by Ibrahim and 

Mikulcik (1977). 

The RANDOMDEC technique uses data from random 

excitation to estimate the free-response of the system. 

Cole (1971) asserts that, for a system vibrating under 

random stationary excitation, when the average of 

numerous samples of the displacements response are 

computed, the contribution of velocities and 

accelerations on the measured signal gradually vanish; 

consequently, the free-response is obtained. The 

RANDOMDEC signature of the system, as named by 

Cole, is computed using segments of the measured 

displacement signal delimited by the same boundary 

condition (a chosen amplitude, for instance). First, 𝑁 

equal time-length 𝜏 segments of the measured signal 

𝑦(𝑡), starting at instants 𝑡𝑗 (j=1, 2...N) provided that 

𝑦(𝑡𝑗)  =  𝛼 (the boundary condition) are sampled. 

Subsequently, the signature is obtained according to Eq. 

(15), the sought free-response of the system. 
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In this work, the RANDOMDEC signature is computed 

from averages of segments with initial value (boundary 

condition) ranging from 60 to 80% of the maximum 

amplitude. A four degree-of-freedom second order 

system model with viscous damping was admitted for the 

application of the ITDM. Owing to the availability of 

only one measuring station (the housing for the camera 

in the furnace wall), the procedure outlined by Pappa and 

Ibrahim (1981) was employed to fill the response matrix 

and the time-shifted response matrix, in the following 

way: lines at the upper half of the response matrix 

received data collected at lagging intervals of 1/24 and 

1/8 seconds; data on the upper four lines, further delayed 

in 7/24 seconds, completed the lower four lines. The 

lagged response matrix, on the other hand, was obtained 

through a time-shift of 5/6 seconds of the elements of the 

response matrix. Finally, 12 time-instants were used by 

the ITDM. 

 

4. MODELING RESULTS AND DISCUSSION 

Grabbed images from the unstable flame condition 

(PSAR=4.0) were processed according to the description 

of Section 2, providing a set of vectors 

100...,,1,13...,,1),(  kitv ki , corresponding to a 

temporal sequence from available data of short-period 

trials for each of the 13 image characteristics. This 

reduced number of results poses another difficulty to the 

utilization of the RANDOMDEC technique: according to 
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Cole (1971), the procedure is as accurate as the number 

of averages in Eq. (12) increases. One manner to deal 

with this problem is by vectorizing 𝑣𝑖 so as to obtain a 

longer sequence and improve algorithm performance, an 

artifice whose justification is based on the rationale that 

follows. 

In the first place, the stationarity hypothesis was admitted 

as a requirement to the RANDOMDEC scheme, which 

implies that grabbed data (images) represents a stochastic 

process. The instantaneous components of each of the 

characteristic vectors 𝑣𝑖 are obtained from the same data 

sample through strictly deterministic algorithms; 

furthermore, this sample contains information 

concerning the whole process at that instant. Therefore, 

it is fair to admit that the process is also wide-sense 

ergodic. As a consequence, the proposed vectorization 

will preserve the two first moments of the entire process. 

Offset cancellation and normalization of each sequence 

of parameters were performed before the vectorization 

process, whose outcome for the PSAR=4,0 is featured in 

Figure 3. The 'relative amplitude' instead of physical 

units at the ordinates label is thereof justified. The 

RANDOMDEC/ITDM was, then, employed to compute 

the modal parameters of the model, which can be seen in 

the second and third columns of Table 1.  

 

 

Figure 3: Vectorized Time-History of Characteristic 

Parameters for the 'Unstable' Flames (𝑃𝑆𝐴𝑅 = 4.0) 

 

In order to corroborate the above results, a spectral 

analysis of the temporal sequence of Figure 3 was 

performed and provided the power spectrum depicted in 

Figure 4, on which is possible to realize the spreading of 

the signal power throughout the whole range of 

identifiable frequencies, namely, from 0 to 12 Hz, 

including peaks at the four frequencies obtained by the 

ITDM/RANDOMDEC technique. The occurrence of 

several spurious frequencies among those identified can 

be explained by leakage arising from the convolution 

with a rectangular window before the spectral analysis. 

Nevertheless, the four frequencies of interest do present 

higher relative amplitudes. For the sake of comparison, 

the third and fourth columns of Table 1 show, 

respectively, natural frequencies computed by Fast 

Fourier Transform (FFT) and their relative discrepancy 

to the ones obtained with by the proposed approach. 

Overall, the errors may be considered negligible except 

for the second natural mode. 

 

Table 1: Damped Natural Frequencies/ Damping Factors 

for Each Identified mode and Discrepancy Among 

Frequencies Computed from ITDM/ RANDOMDEC and 

Spectral Analysis. 

Natural 

mode 

ITDM-Rd 

damped natural 

frequency 𝑓(𝐻𝑧)/ 

damping factor 𝜁 

FFT damped 

natural 

frequency 

𝑓(𝐻𝑧) 

𝑓𝐹𝐹𝑇 − 𝑓𝑅𝑑 𝑀𝐼⁄

𝑓𝑅𝑑 𝑀𝐼⁄

× 100 

1 1.88/0.072 1.88 0.0 

2 2.41/0.740 2.88 19.5 

3 3.60/0.791 3.40 -5.5 

4 5.03/0.005 5.07 -0.8 

 

The next step concerns the validation of the proposed 

approach; to this end, it suffices to verify whether data 

from stable (𝑃𝑆𝐴𝑅 = 1.0) and partially stable (𝑃𝑆𝐴𝑅 =
1.9) flame conditions, once processed according to 

ITDM/RANDOMDEC technique with parameters tuned 

for the unstable condition, can be distinguished from the 

latter. A further ratification is possible by reversing the 

process, i.e, using the ITDM/RANDOMDEC to identify 

stable flames and check the parameters thus found 

against partially stable and unstable flames. The results 

of both analyses are described below. 

Spectra of signals reconstructed from the identified 

models, normalized by each relative amplitude, are 

depicted in Figure 4(a) and Figure 4(b), whose reference 

spectra are respectively the curves for 𝑃𝑆𝐴𝑅 = 4 and 

𝑃𝑆𝐴𝑅 = 1.0. According to common sense reasoning, 

one should expect closer resemblance between curves of 

PSARs 1.9 and 4.0 in Figure 4(a) whereas, in Figure 4(b), 

curves of PSARs 1.9 and 1.0 would presumably look 

more alike. This qualitative analysis, however, does not 

provide solid ground for a definitive validation of the 

method since, in the first case, a clear match occurs once, 

at the 3.41 Hz frequency; on the other hand, in the second 

case, frequency matches occur close to abscissae 1.3 and 

5.7 Hz. 
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(b) 

 

Figure 4: Comparative Relative Power Spectra for 

Identified Models of (a): Unstable (𝑃𝑆𝐴𝑅 = 4.0); and 

(b): Stable (𝑃𝑆𝐴𝑅 = 1.0) Reference Flames. 

 

A quantitative measure of the adherence between an 

estimated mode and a reference mode which is normally 

used in OMA is the Modal Assurance Criterion - MAC 

(Ewins, 2000). The MAC essentially computes 

cumulative least-squares differences of all the 

combinations of pairs of data from distinct sets into a 

single scalar, despite that mode shapes and frequencies 

may be complex-valued. In the present case, the MAC 

has been modified to provide separate summations of the 

squared differences among frequencies and amplitudes 

of the reference and the other spectra in both cases under 

consideration. 

Upon naming 𝑁𝑟: number of reference signals; 𝑁𝑡: 

number of test signals; 𝑁𝑟𝑝: number of peaks of the 

reference signals; 𝑁𝑡𝑝: number of peaks of the test 

signals; 𝑡: superscript related to test; 𝑟: superscript 

related to reference; 𝐹 computation index related to 

frequency; and 𝐴: computation index related to 

amplitude, the criterion can be mathematically stated 

according to: 

 

(𝑀𝐴𝐶𝐹)𝑁𝑟 = ∑ ∑ ∑ (𝐹𝑗,𝑘
𝑡 − 𝐹𝑗,𝑘

𝑟 )
𝑖

2𝑁𝑡𝑝
𝑘=1

𝑁𝑟𝑝
𝑗=1

𝑁𝑡
𝑖=1 , 

𝑁𝑟 = 1,2 
(16) 

(𝑀𝐴𝐶𝐴)𝑁𝑟 = ∑ ∑ ∑ (𝐴𝑗,𝑘
𝑡 − 𝐴𝑗,𝑘

𝑟 )
𝑖

2𝑁𝑡𝑝
𝑘=1

𝑁𝑟𝑝
𝑗=1

𝑁𝑡
𝑖=1 , 

𝑁𝑟 = 1,2 
(17) 

𝑀𝐴𝐶 = 1 −
𝑀𝐴𝐶𝐹 × 𝑀𝐴𝐶𝐴

max(𝑀𝐴𝐶𝐹, 𝑀𝐴𝐶𝐴)
 (18) 

 

Eq. (16) and Eq. (17) represent a quantitative measure of 

the scattering of frequencies and relative amplitudes 

around respective their references, whereas Eq. (18) 

expresses, in a single scalar, the combined effect of both 

dispersions. Thus, stable or partially stable flames, when 

tested using parameters computed from unstable flames, 

are expected to exhibit increasing values of MAC 

(partially stable > stable); conversely, unstable or 

partially stable flames should present decreasing values 

of MAC if probed against stable flames identified model. 

The results of the above validation are presented in Table 

2, from which it is possible to confirm the truthfulness of 

those hypotheses. 

 

Table 2: MAC Values for Cross-Validation of the 

Qualitative Analysis. 

MAC 
test PSAR 

1.0 1.9 4.0 

reference PSAR 4.0 0.0 0.67 1 

1.0 1.0 0.75 0.0 

 

The validation step ends the whole proposed process for 

detecting evidence of the beginning of flame instability. 

Recalling what was mentioned in the introductory 

section, it is now possible to collect, from Eq. (10), the 

proper components of the discrete-time state transition 

matrix 𝐴, thus characterizing the dynamics of the system 

in the time domain, as it was initially proposed. 

Moreover, time-history of characteristic vector can be 

reconstructed from the identified system model and, as a 

consequence, one is able to infer how long flames with 

those features would take to be extinguished. The time-

evolution of both measured and reconstructed 

characteristic vectors is shown in Figure 5, from which it 

can be asserted that unstable flames would last less than 

20 seconds before total extinction. 

It is important to point out that, in comparison to the 

previous work of Fleury et al. (2013), in which the white 

Gaussian noise represented the dynamics of flame 

propagation (in a state-space random walk model), the 

current research has been able to identify a second-order 

four degree-of-freedom model that describes the time 

evolution of the combustion process. Furthermore, data 

compression resulting from the application of modal 

identification, a feature that was not present in the 

previous work, tends to enhance the discrimination 

ability of the system, since redundancy is diminished. 

 

Figure 5: Comparative time-evolution of measured and 

reconstructed characteristic vectors for flames with 

PSAR = 4.0. 

 

5. A CONTROL APPROACH 

The identified four modes from ITDM/RANDOMDEC 

give rise to an experimental model. Here, frequencies and 

damping factors used in the experimental model are those 

described in Table 3. 
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Table 3: Identified Modes (Silva et al., 2015). 

Natural 

mode 

Damped natural 

frequency 𝑓 

(Hz) 

Damping 

factor 𝜁 

Natural 

frequency 

𝜔𝑛 (rad/s) 

1 1.88 0.072 11.84 

2 2.41 0.740 22.51 

3 3.60 0.791 36.97 

4 5.03 0.005 31.60 

 

Thus, each mode can be represented as a second order 

system. Together, all four modes derive into an eighth 

degree dynamic system of the form: 

 

 
𝐱̇ = 𝐀𝐱 + 𝐁𝐮

𝐲 = 𝐂𝐱
, (19) 

 

where 𝐱 = [𝑥1 … 𝑥8]𝑇, 𝐮 = [𝑢1 … 𝑢4]𝑇, 𝐲 =
[𝑦1 … 𝑦8]𝑇  and: 

𝐀 = 𝐝𝐢𝐚𝐠[𝐀𝐢], 𝐀𝐢 = [
0 1

−𝜔𝑛𝑖 −2𝜁𝑖𝜔𝑛𝑖
], 𝑖 = 1,… ,4 

𝐁 = 𝐝𝐢𝐚𝐠[𝐁𝐢], 𝐁𝐢 = [
0
1
], 𝑖 = 1,… ,4 

For the sake of simplicity, let us consider that the output 

vector 𝐲 and the state vector 𝐱 have the same dimension. 

Of course, for other cases, one could design an observer 

to obtain the whole state. Thus, 𝐂 = 𝐈𝟖𝐱𝟖. 

System (19) characterized above describes the dynamics 

of the flame, in respect of the modes derived from the 

images from the CCD camera. Each subsystem is a 

classic underdamped second order system, whose 

responses fade to zero in the absence of a permanent 

input signal. Recurring to the system of the flame, the 

absence of oscillation means that the flame had 

extinguished. Therefore, one way to maintain the flame 

is to excite it with an appropriate input so that all four 

modes never stabilize asymptotically to a position. The 

strategy is to maintain the system into an oscillatory 

movement, therefore assuring the flame characteristics 

for the time needed. This behavior can be obtained if an 

appropriate reference is defined and a simple LQR 

control is synthetized to follow this reference. 

 

5.1. Reference definition 

Reference will be defined in accordance to the desired 

behavior for system (19). A slight modification on 

system (19) would be enough to give it an oscillatory 

characteristic. Let us mirror the system (19) but modify 

matrix 𝐀 setting all damping factors 𝜁𝑖 = 0. That would 

make the subsystems to behave like undamped second 

order systems. Thus, consider the following reference 

system: 

 

 𝐱̇𝐫 = 𝐀𝐫𝐱𝐫 + 𝐁𝐫𝐮𝐫 (20) 

 

where 𝐱𝐫 = [𝑥𝑟1 … 𝑥𝑟8]𝑇, 𝐮𝐫 = [𝑢𝑟1 … 𝑢𝑟4]𝑇 ,  
𝐁𝐫 = 𝐁 and: 

𝐀𝒓 = 𝐝𝐢𝐚𝐠[𝐀𝐫𝐢], 𝐀𝐫𝐢 = [
0 1

−𝜔𝑛𝑖 0
], for 𝑖 = 1,… ,4 

In order to define completely the reference path, it is 

necessary to set up an initial condition for the reference 

system, 𝐱𝟎 = [0.5 0 0.5 0 0.5 0 0.5 0]𝑇 

and define the input, for all time 𝑡 ≥ 0, 𝐮𝐫 =
[0 0 0 0]𝑇. These conditions could be interpreted, 

in an analogous mass-spring mechanical system, as an 

arbitrarily chosen initial position at 0.5 𝑚, with initial 

velocity of the mass equal to zero, for each subsystem of 

(20). Moreover, the position of equilibrium of these 

mass-spring subsystems is also arbitrarily set to 1.0 𝑚. 

As expected, the reference system responses are 

composed of a set of oscillatory movements shown in 

Figure 6 and Figure 7. 

 

 
Figure 6: Reference 𝐱𝐫(𝐭) Response to Initial Conditions 

for “Position” Variables 

 

 
Figure 7: Reference 𝐱𝐫(𝐭) Response to Initial Conditions 

for “Velocities” Variables 

 

5.2. LQ Controller 

Let us define the vector 𝐞 the error of the system: 

 

 𝐞 = 𝐱 − 𝐱𝐫 (21) 

 

Then, 

 

𝐞̇ = 𝐱̇ − 𝐱̇𝐫 = 𝐀𝐱 + 𝐁𝐮 − 𝐀𝐫𝐱𝐫 − 𝐁𝐫𝐮𝐫 

𝐞̇ = 𝐀(𝐞 + 𝐱𝐫) + 𝐁𝐮 − 𝐀𝐫𝐱𝐫 − 𝐁𝐫𝐮𝐫 

 𝐞̇ = 𝐀𝐞 + (𝐀 − 𝐀𝐫)𝐱𝐫 + 𝐁𝐮 − 𝐁𝐫𝐮𝐫 (22) 
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Now, let us define the augmented state variable vector 

𝐱̅ = [𝐞 𝐱𝐫]𝑇 and the input vector 𝐮̅ = [𝐮 𝐮𝐫]𝑇 that 

will have to satisfy the following dynamic system: 

 

 
𝐱̇̅ = 𝐀̅𝐱̅ + 𝐁̅𝐮̅

𝐲 = 𝐂̅𝐱̅
, (23) 

 

where, 

𝐀̅ = [
𝐀 𝐀 − 𝐀𝐫

𝟎𝟖𝒙𝟖 𝐀𝐫
], 𝐁̅ = [

𝐁 −𝐁𝐫

𝟎𝟖𝐱𝟒 𝐁𝐫
] and 𝐂̅ =

[𝐂 𝐂𝐫] 
If the error 𝐞(𝐭) goes to zero, it means that the system 

(19) is following the reference (20). To close the control 

loop and achieve zero error, a linear input 𝐮̅(𝐭) is defined 

for the system (23): 

 

 
𝐮̅ = −𝐊𝐱̅ ⟺ [

𝐮

𝐮𝐫
] = [

−𝐤𝒆 −𝐤𝐫

−𝐤𝐞
𝐫 −𝐤𝐫

𝐫] [
𝐞

𝐱𝐫
]

= [
−𝐤𝐞 − 𝐤𝐫𝐱𝐫

−𝐤𝐞
𝐫𝐞−𝐤𝐫

𝐫𝐱𝐫
] 

(24) 

 

Gain matrix 𝐊 is determined through the LQR controller 

method. This method minimizes the performance index 

𝐽: 
 

 𝐽 = ∫ 𝐱̅(𝐭)𝑇(𝐐 + 𝐊𝑇𝐑𝐊)𝐱̅(𝑡) 𝑑𝑡
∞

0
, (25) 

 

where 𝐐 is a positive semidefinite matrix and 𝐑 is a 

positive definite matrix and are chosen as  follows: 

 

𝐐 = [
𝐐′ 𝟎𝟖𝐱𝟖

𝟎𝟖𝐱𝟖 𝟎𝟖𝐱𝟖
], 

 𝐐′ = 𝐈𝟖𝐱𝟖 ∙ [1  30  1  104  1  2𝑥104  1  10]𝑇 
𝐑 = 𝐈𝟖𝐱𝟖 

(26) 

 

One can find the gain matrix 𝐊, through the solution 

algebraic of the Ricatti equation that results from (25). 

  

5.3. Simulation results 

Simulation was performed considering that a flame is 

ongoing and the control is suddenly turned on to maintain 

it. The vector of initial conditions was arbitrarily chosen 

from positive realizations of Gaussian distributions with 

mean 1 and 0 respectively for “position” and “velocity”, 

and variance 1 for all state variables. 

As it is observed from Figure 8 to Figure 11, the control 

action was able to make the system dynamics follow the 

desired reference within few seconds. 

 

 

 
Figure 8: Mode 1 Response to Reference Tracking 

Control 

 

 

 
Figure 9: Mode 2 Response to Reference Tracking 

Control 
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Figure 10: Mode 3 Response to Reference Tracking 

Control 

 

 
Figure 11: Mode 4 Response to Reference Tracking 

Control 

 

6. CONCLUSIONS 

This work has proposed a new approach to identify and 

control the dynamics of oil-flames in a prototype furnace. 

A time-domain method (ITDM) was employed in 

conjunction with the random decrement technique to 

identify an assumed four degree-of-freedom second 

order model of unstable flames from computer-vision 

processed grabbed images of CCD cameras. A Linear-

Quadratic Controller was then designed based on the 

modal model identified for a priori known flame 

conditions, corroborated by qualitative and quantitative 

comparison with the outcomes of traditional spectral 

analysis of their reconstructed temporal signals. 

The work must be considered a first incursion towards a 

complete control system able to assure clean combustion 

in oil furnaces.  Achievement of a control system with 

attributes like this will require more sophisticated control 

techniques and, most important, an algorithm to correlate 

flame images to control actions.  The choice for a cheap 

control technique (LQ) here is justified by the fact that 

the adaptive-predictive methods to be investigated are 

based on linear-quadratic approaches. The promising 

results achieved here using LQ design indicate a feasible 

way. Nevertheless, the topic control of oil furnaces is a 

fascinating one and authors intend to bring other subjects 

to discussion in future publications. 
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