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ABSTRACT 

Intermodal transportation is evolving towards a 

synchromodal system with real-time switching, in which 

most assignment decisions are postponed until the final 

planning phase. In such environment, it is important to 

assist train planners by providing decision support in the 

operational environment in which they operate. One 

important task for train planners concerns train load 

planning, which is concerned with the assignment of load 

units to the available slots on a train. In this paper, a 

sensitivity analysis of the parameters of a multi-objective 

heuristic algorithm for train load planning is presented, 

which accounts for different aspects of train capacity 

utilization. The tuned heuristic algorithm provides a 

number of load plans from which planners can choose the 

most relevant plan for the specific circumstances they are 

operating in at that moment.  

 

Keywords: train load planning, intermodal 

transportation, multi-directional local search 

 

1. INTRODUCTION 

The aim of train load planning is to find an assignment 

of load units to the available locations or slots on a train. 

The objective can be based on either capacity utilization 

or handling operations at the intermodal terminal. At the 

same time, axle payloads, wagon weights and total train 

weights are restricted and a balance should exist between 

the payloads on the adjacent axles of each wagon. A 

major contribution to the development of the train load 

planning problem has been provided by Corry and Kozan 

(2008), who developed a first realistic model. 

Furthermore, Bruns and Knust (2012) are the first to 

adopt continuous weight restrictions in a train load 

planning problem.  

Current literature often presents linear programming 

problems and solves them using commercial software. 

Heuristic solution methods are usually based on a local 

search, sometimes combined with simulated annealing. 

Commonly used neighbourhoods are a load unit swap 

and a configuration change for two wagons. These 

heuristic methods are mainly applied to problems in 

which the load units to be loaded are fixed and known, 

and only the final assignment to specific locations on the 

train must be determined. The actual load unit’s location 

on the train is uncertain because not all information about 

handling operations at the terminal is known in advance 

and a slot may still be occupied at the moment of arrival 

of a load unit assigned to that slot. In these cases, it 

becomes a problem with a rolling horizon in which the 

current load plan serves as initial solution and new events 

trigger a local search.  

Recently, the optimization of train load planning has 

been integrated with optimization of other operational 

decisions in an intermodal seaport terminal. The topic is 

first introduced by Ambrosino et al. in 2011, who 

combine it with the optimization of crane and storage 

planning. A number of linear programs have been solved 

for this type of problem. Moreover, a combination of a 

primal heuristic with a RANS matheuristic (Anghinolfi 

and Paolucci 2014) and a GRASP (Anghinolfi et al. 

2014) have been proposed.  

In this paper, we focus on various aspects of train 

capacity utilization. During train load planning, the 

planning department is responsible for managing all 

transport orders, assigning them to the right transport 

route, and in a second phase the assignment of these 

orders to the available locations on a train. Especially 

with the rising importance of synchromodality, which is 

associated with a dynamic process and real-time 

switching, and more load units available than the number 

of slots on a given train, planners are facing a complex 

decision process. They receive a lot of information and 

should decide on the most appropriate load plan using 

this information.  

Although planners in real life should take many 

objectives into account, to the best of our knowledge, 

only one paper (Ambrosino et al. 2016) applies a multi-

objective approach, comparing three exact approaches to 

solve the train load planning problem in seaport 

terminals, hereby focusing on operations in the crane and 

storage area. We propose a multi-directional local search 

heuristic focusing on a number of capacity-related 

objectives which train planners take into account during 

their planning process in Section 2. Moreover, the 

heuristic parameters are tuned (Section 3) and a 

sensitivity analysis is performed (Section 4). Finally, 

Section 5 presents the main conclusions. 
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2. HEURISTIC FRAMEWORK  

We extend the case of Heggen et al. (2016), who consider 

a real-life case study of a network operator which owns 

and manages its own trains, to a multi-objective problem 

and solve it using a multi-directional local search 

(MDLS) heuristic. The aim is to find a configuration for 

each wagon, respecting axle payload, wagon weight and 

total train weight limits, while preserving a balance 

between the payloads on adjacent wagon axles. 

Furthermore, trains stop at an intermediate terminal and 

some wagons are decoupled before arriving at the final 

destination terminal due to a more restrictive path weight 

in the last part of the itinerary. The proposed multi-

objective heuristic to solve the problem (Section 2.1) and 

its components (Section 2.2-2.5) are described, as well as 

indicators for the heuristic quality assessment (Section 

2.6). 

 

2.1. Multi-Directional Local Search Heuristic 

The multi-directional local search heuristic framework of 

Tricoire (2012) is used to solve the train load planning 

problem with three objectives to be maximized: 

 

1. Length utilization; 

2. Destination preference scores for assigning load 

units to wagons unloaded at a more preferred 

unload terminal; 

3. Priority scores for more urgent load units. 

 

The method relies on the knowledge that it is sufficient 

to search in the direction of each of the objectives 

individually to find new, non-dominated solutions 

(Braekers et al. 2016). Consequently, single-objective 

operators can be implemented in the framework. Other 

advantages include the flexibility and simplicity of the 

method. A global pool of non-dominated solutions E is 

maintained and updated during the search. In an MDLS-

iteration, a solution is selected randomly from the 

solution pool E. Then, starting from this solution, a 

distinct local search for each objective is performed.  

For the train load planning problem, an initial solution is 

generated in a first constructive phase. Next, in the 

MDLS-framework, the local search operators are defined 

by altering the configuration of two wagons. For each 

objective specifically, wagons are selected in a different 

way, and a distinct acceptance criterion is used. Each 

local search ends if a maximum number of consecutive 

iterations without improvement is reached. 

 

2.2. Constructive Phase 

An initial solution is constructed by assigning load units 

to slots on each wagon, one by one, going from the front 

to the back of the train, using an intelligent candidate list 

to select load units first based on the highest priority, then 

highest weight. First, only critical load units are 

considered. Only after these are feasibly assigned, the 

remaining load units are considered. For the wagon under 

consideration, configurations which are more preferred 

with respect to the available length used are selected first. 

The available slots of the selected configuration are filled 

with load units matching the slot dimensions as long as 

the bogie, wagon and train weight limits are respected. If 

either not all slots in a configuration can be filled with 

the remaining available load units or the bogie balance 

limits are not respected, a next configuration is selected. 

Otherwise, all slots in the configuration are filled and the 

assignment procedure continues with the next wagon. 

This constructive phase results in a single initial solution, 

which is added to solution pool E. No randomness is 

involved at this point to avoid ending up with critical load 

units not being assigned.  

 

2.3. Local Search Operators 

Next, nit(MDLS) iterations of the MDLS heuristic are 

performed. One MDLS-iteration consists of three local 

searches on a single randomly selected solution s ∈ E. 

Each local search LSk guides the search primarily 

towards improving one objective k. The neighbourhood 

is defined by simultaneously altering the configuration 

for two wagons, i.e. assigning a new configuration to 

these wagons. The way in which wagons are selected 

differs depending on the main objective focus of the local 

search, as discussed in Section 2.5. All load units which 

were assigned to the two selected wagons are added to 

the pool of available, currently unassigned load units. 

Next, configurations for both wagons are selected 

randomly with a higher probability to be selected if a 

configuration uses more wagon length. The probability 

of selecting a configuration is determined by the 

contribution of the length used in that specific 

configuration compared to the total length of all possible 

configurations for one wagon type. In this way, the 

probability of rejecting a solution because it does not 

satisfy the acceptance criterion, is reduced. Finally, the 

selected configurations are fixed for both wagons only if 

all critical load units can be assigned, dimensions of the 

selected load units match the slot dimensions and all 

constraints related to train, wagon and bogie weight 

limits as well as the bogie balancing are satisfied.  

 

2.4. Evaluation of the Solutions 

While other MDLS-approaches use pure single-objective 

local search procedures, our operators are guided by a 

normalized, weighted-sum objective function which 

takes into account all three objectives. This function 

assigns a weight wk to the primary objective k, while the 

remaining objectives each receive a weight of wr = (1-

wk)/2 (with wr << wk) in order to avoid a large negative 

change in these remaining objectives. Further, a 

temporary set of non-dominated solutions T is updated 

with new solutions within one local search. If a solution 

is non-dominated by the solutions in the temporary set, it 

is added to this set, while dominated solutions are 

removed. Working with this temporary solution set 

avoids updating solution set E too often when new 

solutions are found within one local search, especially 

because one local search primarily focuses on one 

objective only. Finally, the local search ends with 

updating the global archive of non-dominated solutions 

E with the temporary set of solutions T obtained in LSk. 
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2.5. Local Search for each Objective  

For the local search in the direction of improving the 

length utilization, two wagons are selected as follows: 

the first wagon is chosen randomly from all wagons for 

which not all loading length is utilized; the second wagon 

is selected purely random from all available wagons. 

Finally, the local search procedure is terminated if a 

maximum number of sequential iterations without 

improvement, or a solution with the maximum possible 

length utilization is reached. The search in the direction 

of improving destination preferences and priority scores 

is guided by a local search which consists of a similar 

configuration change operator. However, both 

neighbourhoods are defined by assigning a new 

configuration to two randomly selected wagons.  

 

2.6. Quality Indicators 

In order to assess the performance of the MDLS, two 

complementary quality indicators are introduced. First, 

the hypervolume indicator IH measures the hypervolume 

covered by a set of solutions relative to a reference point. 

Second, the (multiplicative) epsilon indicator Iε 
determines the factor by which each point in an 

approximation set (obtained by the heuristic algorithm) 

should be multiplied such that a reference set, which 

ideally consists of the exact Pareto-front, is weakly 

dominated by the approximation set (Knowles et al. 

2006). The closer both indicators are to one, the better 

the quality of the approximation set. In order to compare 

the approximation sets obtained by two variants of a 

heuristic design, the two quality indicators can be used 

together, as each indicator measures slightly different 

information. Furthermore, if the indicators show 

opposite preference, the sets can be considered 

incomparable.  

Both indicators are visualized in Figure 1 for a bi-

objective maximization problem. The left-hand side 

shows the hypervolumes covered by a reference set and 

an approximation set. On the right-hand side, the crosses 

indicate the weakly dominated set obtained by the 

epsilon indicator. 

 

 
Figure 1: Quality Indicators (Adapted from Parragh et al. 

(2009)) 

 

In this paper, the hypervolume indicator IH is stated as 

the hypervolume of the reference set which is covered by 

the approximation set generated by the MDLS (IHa/IHr). 

Moreover, both indicators are calculated after 

normalization of the objective values to ensure that each 

objective contributes more or less equally. The minimum 

reference point is determined based on the characteristics 

of the critical load units: the urgency score and length of 

the critical load units of an instance minus one and a 

minimum destination preference score of zero. 

 

3. PARAMETER TUNING 

irace (López-Ibáñez et al. 2016), a promising iterated 

racing procedure for tuning algorithm parameters, is used 

in order to find a parameter setting which leads to an 

excellent heuristic performance, obtaining solutions of 

good quality, such that the heuristic can be used as a 

decision support tool by practitioners. First, the tuning 

instances (Section 3.1) and considered MDLS-

parameters (Section 3.2) are presented. Next, the iterated 

racing procedure for the multi-objective train load 

planning problem is described and the parameters are 

tuned (Section 3.3).  

 

3.1. Instance Classes 

A heterogeneous set of instance classes is used as input. 

Sets of load units with weights (in tonnes) being either 

light with TRIA(17,20,23), heavy with TRIA(23,26,29) or 

uniformly distributed with UNIF(17,29) are considered. 

Furthermore, the number of critical load units is varied 

and can be 35% or 20% of the total amount of available 

load units. These six instance classes are applied to a 

wagon set of 5, 10 and 20 wagons, resulting in 18 classes. 

 

3.2. Parameters of the MDLS 

Two important parameters for the MDLS are the number 

of times a new solution is selected from the pool of non-

dominated solutions, and the number of consecutive 

iterations without improvement after which the local 

search phase in the direction of each objective ends. 

Clearly, a trade-off between the values of these 

parameters can be expected if a limited computation time 

is available. In this section, no limit on the computation 

time is considered, but the relationship between solution 

quality and computation time for different amounts of 

MDLS-iterations and LS-iterations are examined in 

Section 4.  

Within the scope of a single local search LSk, the focus 

when accepting new solutions is on the main objective k. 

The weight wk attached to the main objective of a local 

search should be tuned carefully. Moreover, within the 

normalized, weighted objective function used for 

accepting new solutions, possible criteria for accepting 

temporary solutions to continue working with within 

each local search ALS_k (i.e. accepting worse, equal or 

better solution values for main objective k) are evaluated. 

Independent of this, only non-dominated, accepted 

solutions are added to the solution pool.  

Finally, it is tested if the local search in the direction of 

improving destination preferences performs better when 

changing the configuration of two wagons with different 

destinations. An overview of the heuristic parameters 

under consideration, as well as its considered range of 

values are presented in Table 1. 
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Table 1: Tuning Parameters 

Parameter Description Range 

nit(MDLS) # times a random 

solution is selected 

(10, 1000) 

nit(LS_Length) # consecutive non-

improving iterations for 

LSLength 

(100, 2000) 

nit(LS_Urgency) # consecutive non-

improving iterations for 

LSurgency 

(100, 2000) 

nit(LS_DP) # consecutive non-

improving iterations for 

LSDP 

(100, 2000) 

wk Weight attached to the 

main objective k in LSk 

(0.8, 1) 

ALS_Length Accepting solutions 

with main objective ≥ 

CurrentBest + ALS_Length 

(-45,-20,0,20) 

ALS_Urgency Accepting solutions 

with main objective ≥ 

CurrentBest+ ALS_Urgency 

(-2, 2) 

ALS_DP Accepting solutions 

with main objective ≥ 

CurrentBest + ALS_DP 

(-2, 2) 

DPwgndestin Select two wagons with 

different destinations in 

LSDP 

(0, 1) 

 

The acceptance criterion in the local search for the length 

utilization considers only the specified ordinal values, 

while for the other parameters values between the 

specified minimum and maximum bounds can be 

selected by the racing procedure. The weight attached to 

the principal objective is a real number with a precision 

of two decimals, all other parameter values are integers. 

The ranges of all parameters are defined after preliminary 

testing and based on knowledge about the problem 

characteristics.  

 

3.3. Iterated Racing Procedure 

The iterated racing procedure (Figure 2) is able to 

automatically configure algorithms, providing a set of 

parameter values which performs well for a particular 

problem (López-Ibáñez et al. 2016).  

 

 
Figure 2: Iterated Racing Procedure (López-Ibáñez et al. 

2016)  

 

The racing procedure starts with Tfirst instances on which 

a number of uniformly sampled candidate parameter 

configurations are tested. After these Tfirst tested 

instances, the candidate configurations which perform 

worse than at least one other configuration – calculated 

by a statistical Friedman test – are discarded (line 1-2). 

The best configurations (i.e. the configurations with the 

best objective values) are selected as an elite set, and new 

configurations are added for the following race based on 

well-performing parent elite configurations found so far 

(line 5-8). In the next iterations or races, each time Teach 

instances are evaluated before discarding any 

configuration. Furthermore, the standard deviation is 

reduced for each parameter as the number of iterations 

increases in order to search closer around better 

performing values. The procedure is terminated if a 

predefined computational budget B is reached. This 

budget corresponds to a maximum number of 

experiments, where one experiment consists of one 

parameter configuration tested on a single instance.  

As multiple objectives must be considered, the cost 

function is represented by the quality indicator value, 

which should be maximized. López-Ibáñez et al. (2016) 

tested irace for their problem with multiple objectives 

using the hypervolume and the epsilon indicator and 

could not find significant differences. Therefore, only the 

hypervolume indicator is used as measure of the solution 

quality at this stage. The calculation of this quality 

indicator requires a reference set, which can be the exact 

Pareto-front. If not all Pareto-optimal solutions are 

known, the reference set consists of all non-dominated 

solutions found by a number of MDLS-runs, combined 

with the non-dominated solutions found so far in the 

exact procedure. Therefore, all candidate parameter 

configurations in a single iteration are tested on one 

instance before evaluating the cost function, i.e. 

calculating the quality indicator. Normalization bounds 

and the reference point can be calculated in advance, 

independent of the approximation sets found by the 

heuristic.  

Table 2 shows the adapted irace parameters used. All 

other parameters are at their default values.  

 

Table 2: irace Parameters 

Irace parameter Value 

Tuning budget B 5000 

Cost measure C Hypervolume 

Tfirst 36 

Teach 18 

Random samples Off 

 

The total set of tuning instances consists of two blocks of 

18 instances, with a representative set of characteristics. 

The total amount of 36 instances, containing two 

instances from each instance class, is first tested before 

discarding any candidate configuration. In this way, two 

instances of every class are evaluated before a first 

elimination occurs, to cope with a possible outlier 

instance. Next, after every block of 18 instances, the 

configurations under consideration are again evaluated. 

Sampling of instances does not occur randomly, but in 

the order of the instance classes within one block in order 
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to avoid elite configurations being biased towards only a 

subset of the instance classes.  

The best configurations presented by irace are 

summarised in Table 3. These configurations are ordered 

according to their mean performance, but do not show a 

statistically significant difference with respect to the 

solution quality. The average hypervolume indicator 

value of the best configuration across all considered 

instances amounts to 0.9996.  

 

Table 3: Best Configurations 

Parameter C1 C2 C3 C4 

nit(MDLS) 987 949 759 775 

nit(LS_Length) 801 377 434 271 

nit(LS_Urgency) 1826 1498 1745 1384 

nit(LS_DP) 1716 1541 1388 1631 

wk 0.91 0.92 0.90 0.90 

ALS_Length 0 0 0 0 

ALS_Urgency 0 0 0 0 

ALS_DP 0 0 0 0 

DPwgndestin 0 0 0 0 

 

Differences exists with respect to the number of 

iterations nit(MDLS) and nit(LS_k), while the acceptance 

thresholds are identical for all best configurations C1 to 

C4. The obtained parameter value for ALS_DP indicates that 

solutions are accepted only if they are better than the 

current best solution within a single local search. The 

acceptance threshold within the other two local searches 

is defined differently and therefore, the obtained 

parameter values indicate that solutions are accepted if 

they are at least as good as the current best solution. One 

important limitation of irace is that the automatic 

algorithm configuration does not take into account 

computation times when selecting parameter 

configurations. Therefore, these results should be further 

tested and a sensitivity analysis will be performed on the 

parameters to analyse differences in computation times 

and solution quality for different parameter settings.  

 

4. SENSITIVITY ANALYSIS 

The best parameter configuration C1 resulting from the 

irace tuning procedure is analysed to examine the 

influence of changes in these parameter values on 

solution quality and computation times. For this purpose, 

two new test instances per class are used, which are not 

considered in the tuning phase. Varying parameter values 

are tested on these instances with respect to differences 

in solution quality, expressed as a proportional deviation 

from the hypervolume of the reference set (HVR), as well 

as differences in computation time. First, interactions 

between nit(MDLS) and nit(LS_k) are considered (Section 4.1). 

Next, it is examined whether a temporary solution pool 

T, maintained within a single local search, influences 

computation times (Section 4.2). Finally, variations in 

parameter values wk, ALS_k and the possibility of selecting 

two wagons with different destinations (DPwgndestin) in 

LSDP are tested (Section 4.3). The main findings are 

summarised in Section 4.4. 

 

4.1. Interaction between nit(MDLS) and nit(LS_k) 

It can be expected that a higher number of iterations, both 

nit(MDLS) and nit(LS_k), corresponds to a higher solution 

quality, but at the cost of larger computation times. 

Therefore, a point may be determined as from which 

additional gains in solution quality become small relative 

to the increase in computation time. Values up to 1000 

MDLS-iterations nit(MDLS) are considered with steps of 200 

iterations. As the largest gains may be obtained during 

the first MDLS-iterations, 10, 50 and 100 iterations are 

added. To examine its interaction with the number of 

consecutive iterations without improvement nit(LS_k) after 

which each local search is ended, for each local search 

LSk separately multiples of 250 consecutive non-

improving iterations are considered with a maximum of 

2000 iterations.  

Figure 3 shows the average proportional deviation from 

the hypervolume of the reference set when either varying 

the number of LS-iterations for destination preferences 

(DP), length utilization (Length) or urgency scores 

(Urgency). The remaining parameters are set at the 

values of the best-performing configuration. Variations 

in the number of non-improving LS-iterations after 

which the local search with respect to the length 

utilization ends do not significantly influence solution 

quality. This corresponds to the relatively small 

parameter values for nit(LS_Length) in the best irace 

configurations. For the destination preference scores and 

urgency scores, larger differences can be observed for 

low numbers of MDLS-iterations. Clearly, major 

improvements with respect to the solution quality are 

reached during the first MDLS-iterations. These results 

are consistent with the best configurations found by 

irace, as nit(LS_DP) and nit(LS_Urgency) are always larger than 

1250.  

 

 
Figure 3: Solution Quality Based on nit(MDLS) and nit(LS_k) 
 

Additionally, Figure 4 displays the average solution 

quality depending on the number of MDLS-iterations 

over all experiments, grouped per instance size. These 

results show that a clear difference exists with respect to 

the average solution quality: the heuristic performance is 

highest for instances with 10 and 20 wagons, while the 

mean performance is lower for 5 wagons. However, the 

mean deviation is still lower than 5%.   
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Figure 4: Average Solution Quality per Instance Size 

 

Generally, for low numbers of MDLS-iterations, 

differences in solution quality are larger between a high 

and low number of non-improving local search 

iterations. As from 400 MDLS-iterations, the 

improvement in solution quality becomes relatively 

small, independent of the number of non-improving local 

search iterations.  

Figure 5 shows average computation times in seconds for 

all instances of each possible combination of MDLS- and 

LS-iterations. The number of MDLS-iterations mainly 

influences computation time, as it involves additional 

iterations for all three local searches at the same time. 

The difference in the slope of the destination preference 

graph compared to the length and urgency graphs 

indicates that each LSLength and LSurgency reached the 

number of consecutive iterations without improvement 

earlier, ending the local search. For LSDP, this implies 

that improvements are found at a later stage of the 

respective local search, initializing the search again with 

a new best solution without ending the local search.  

 

 
Figure 5: Average Computation Times Based on nit(MDLS) 

and nit(LS_k) 

 

Computation time primarily rises with the number of 

MDLS-iterations, while solution quality remains 

relatively stable beyond 400 MDLS-iterations, 

regardless of the number of LS-iterations. For the best 

configurations C1-C4 the number of iterations for LSLength 

varies between 250 and 1000, and for LSUrgency and LSDP 

between 1250 and 2000. For these intervals of LS-

iterations, the solution quality is high and stable as from 

200 MDLS-iterations with a short computation time 

compared to 400 MDLS-iterations. Based on these 

observations, for the remainder of this paper we use 

nit(MDLS) = 200, while nit(LS_k) remains at the best values 

found by irace. This configuration leads to high-quality 

solutions in relatively short computation times.  

 

4.2. Effect of a Temporary Solution Pool T 

Next, the effect of a temporary non-dominated solution 

pool T, used within the scope of a single local search, on 

computation times is evaluated by means of a paired-

samples t-test. The temporary solution pool does not 

influence the solution quality. However, it may impact 

total computation times. For each instance category, 

average computation times as well as the p-values are 

displayed in Table 4.  

 

Table 4: Effect of T on Computation Time (s) 

 Temporary pool  

Instance class No Yes p-value 

(5, 35%, light) 53.53 53.34 0.159 

(5, 35%, heavy) 322.67 320.59 *0.001 

(5, 35%, unif) 67.92 67.66 0.081 

(5, 20%, light) 72.66 72.62 0.911 

(5, 20%, heavy) 218.72 218.84 0.070 

(5, 20%, unif) 82.20 81.83 0.539 

(10, 35%, light) 107.11 108.26 0.252 

(10, 35%, heavy) 277.49 279.43 0.267 

(10, 35%, unif) 174.63 169.89 0.239 

(10, 20%, light) 35.05 35.21 0.726 

(10, 20%, heavy) 19.83 20.14 0.055 

(10, 20%, unif) 31.27 30.46 *0.035 

(20, 35%, light) 129.78 130.38 0.784 

(20, 35%, heavy) 136.85 135.47 0.714 

(20, 35%, unif) 94.54 99.73 0.266 

(20, 20%, light) 36.81 35.69 0.326 

(20, 20%, heavy) 42.00 41.93 0.938 

(20, 20%, unif) 31.66 31.76 0.828 

 

Contrary to the expectations, we can conclude that, on 

the 5%-significance level, no statistically significant 

difference in computation time can be obtained by 

maintaining a temporary solution pool within a single 

local search, except for two instance classes (indicated 

with an asterisk). This may be explained by the fact that 

the number of non-dominated solutions in the global 

solution pool is relatively small. Moreover, during the 

first iterations, the temporary solution pool may provide 

advantages, as more new, non-dominated solutions are 

found and the obtained non-dominated solutions may be 

further away from the Pareto-front. However, as the 

number of iterations increases, it becomes harder to find 

new non-dominated solutions as these solutions are 

already close to the Pareto-front and the temporary 

solution pool remains relatively small. This implies that 

a smaller number of evaluations between the temporary 

pool T and the global pool E should be performed. 

Furthermore, computation times are relatively large for 

the smallest instances. This may partly be due to the fact 

that the heuristic performs additional iterations, even 
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when the optimal Pareto-front already may have been 

reached. For larger instances, increased computation 

times are observed if a high number of critical load units 

is available.  

Although no significant difference is observed for most 

instance classes, significantly lower computation times 

are observed for two instance classes if a temporary 

solution pool is included. Therefore, the temporary 

solution pool is maintained as a component of the 

MDLS-heuristic.  

 

4.3. Sensitivity of wk, ALS_k and DPwgndestin 

For all other parameters under consideration, Table 5 

(Appendix A) shows an overview of the average solution 

quality obtained for each instance size as well as the 

overall average solution quality for each parameter 

value. For most of the parameters, the sensitivity analysis 

shows results identical to the irace parameter 

configurations. However, for ALS_Length the parameter 

value resulting in the overall average best result 

(indicated with an asterisk) does not correspond to the 

parameter values selected by irace (indicated in bold). 

This small deviation may be explained by the decision to 

work with 200 MDLS-iterations instead of a parameter 

value out of one of the best configurations as well as by 

the fact that different instances are used. In the remainder 

of this section, individual results for each parameter are 

discussed in detail.  

With respect to the weight attached to the main objective 

of a single local search, wk, values between 0.6 and 1 are 

tested with an interval of 0.05. The parameter value of 

0.91 obtained in the best configuration C1 is also added. 

The solution quality and computation times (in seconds) 

for each parameter value and each instance size (5, 10 

and 20 wagons) are displayed in Figure 6 and Figure 7.  

 

 
Figure 6: Sensitivity of wk on the Solution Quality 

 

Based on the results of the test instances used for these 

sensitivity analysis, for small instances with 5 wagons, 

the weight could be set to either 0.90 or 0.95. However, 

one outlier instance severely influences the average 

performance. For the larger and realistic instances with 

10 and 20 wagons, differences in solution quality are 

smaller. Generally, a weight of 0.91 provides the highest 

average solution quality, while the lowest solution 

quality (with a high deviation from HV_R) is acceptable 

for all instances.  

 

 
Figure 7: Computation Time (s) Based on wk 

 

Although computation times are consistent, average and 

maximum computation times show only small 

fluctuations, indicating that changes in this parameter do 

not substantially influence computation times.  

Similarly, the influence of the criterion for accepting 

solutions in each local search LSk for each objective k is 

evaluated. Figure 8 shows that the best parameter values 

for ALS_Length are not consistent with the irace results for 

the considered test instances. This can be observed by the 

difference in solution quality between a small instance 

size of 5 wagons and larger instance sizes. As the 

performance for instances with 10 and 20 wagons is 

independent of the range of parameter values, accepting 

solutions with a length of 20 or 45 feet less than the 

current best solution provides a higher overall solution 

quality.  

 

 
Figure 8: Sensitivity of ALS_Length on the Solution Quality 

 

Only small differences exist regarding average 

computation times, as demonstrated in Figure 9. The 

main difference exists for the smallest instance category, 

where maximum computation times rise, which may be 

due to the fact that the neighborhood is rather small when 

only accepting improving solutions. Considering 

computation times and solution quality simultaneously, 

allowing the acceptance of worse solutions might be 

favourable for these small instances.  
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Figure 9: Computation Time (s) Based on ALS_Length  

 

With respect to ALS_Urgency, Figure 10 also shows a clear 

difference in solution quality for small instances in 

comparison with the instances of 10 and 20 wagons. 

However, at ALS_Urgency = 0, for the latter instance 

categories minimum and maximum solution quality are 

extremely close, and the overall average solution quality 

is the highest. This is compatible with the irace results. 

 

 
Figure 10: Sensitivity of ALS_Urgency on the Solution 

Quality 

 

Figure 11 displays computation times for each of the 

parameter values of ALS_Urgency. Although maximum 

computation times show a decreasing trend for instances 

with 10 and 20 wagons as the parameter value increases, 

average computation times show only a very weak 

decrease within each of the three instance sizes.  

 

 
Figure 11: Computation time (s) Based on ALS_Urgency 

 

Figure 12 shows for possible values of ALS_DP a pattern 

similar to ALS_Urgency with respect to the solution quality. 

Although instances with 5 wagons perform worse if 

ALS_Urgency = 0, the overall performance is highest.  

 

 
Figure 12: Sensitivity of ALS_DP on the Solution Quality 

 

As shown by Figure 13, only instances with 10 and 20 

wagons show clear differences in computation time for 

different parameter values, especially for the maximum 

computation times.  

 

 
Figure 13: Computation Time (s) Based on ALS_DP 

 

Finally, a parameter DPwgndestin is added and evaluated in 

order to test whether in the local search focusing on 

destination preference scores, selecting two wagons with 

different destinations (DPwgndestin = 1) leads to a higher 

solution quality in comparison with two random wagons 

(DPwgndestin = 0). As shown in Figure 14, no substantial 

difference exists with respect to the solution quality. 

Moreover, the boxplots in Figure 15 indicate that 

maximum computation times mostly increase if in the 

local search is based on swapping two wagons with 

different destinations. Therefore, selecting two wagons 

with different destinations does not add value to the 

heuristic.  

 

 
Figure 14: Sensitivity of DPwgndestin on the Solution 

Quality 
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Figure 15: Computation Time (s) Based on DPwgndestin 

 

4.4. Practical Implications 

Generally, the parameter configuration C1 found by irace 

provides high-quality results, even with a smaller 

number of MDLS-iterations. However, one possible 

outlier instance in the instance category of 5 wagons 

might have influenced the results of the sensitivity 

analysis. Moreover, for that specific category a different 

configuration may be more suitable (e.g. in LSLength, 

allowing to continue with solutions which are worse than 

the current best solution found so far), but the tuned 

parameter configuration presented by irace generally 

provides a reliable performance.  

For practical applications it is important that good 

solutions are obtained in short computation times. 

Therefore, based on the discussed results, train load plans 

resulting from the MDLS using no more than 200 

MDLS-iterations in order to reduce computation times 

will be valuable for practitioners. If a smaller number of 

MDLS-iterations would be considered, the influence of a 

temporary solution pool on computation times could be 

tested again.  

 

5. CONCLUSIONS 

In this paper, we were able to find a configuration which 

generally performs efficiently for a heterogeneous set of 

instance classes. With this parameter configuration, the 

multi-directional local search heuristic is able to find 

solutions of high quality within a reasonable amount of 

computation time. One limitation of this research is that 

only the hypervolume is used as a performance indicator. 

The obtained results may be validated with the results of 

the epsilon indicator. Further, the considered instances 

are heterogeneous with respect to their characteristics 

and maybe different parameter configurations would be 

selected if each category would be considered separately. 

Further research may focus on finding specific 

configurations for each category of instances, depending 

on the intended use of the heuristic. Moreover, while the 

interaction between the number of MDLS-iterations and 

the number of LS-iterations is investigated, no 

interaction effects are studied with respect to the 

parameters for wk, , ALS_k, DPwgndestin. 

The planning processes in intermodal transport are 

subject to many dynamics which influence the 

assignment decision. In this dynamic environment, the 

presented heuristic with the defined parameter setting 

can be used to provide decision support for planners in 

real-life planning contexts, while the final decision on the 

most appropriate load plan remains with the human 

planner.  
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APPENDIX A 

 

Table 5: Average Percentage Deviation from HVR 

Parameter Value Wagons Overall 

    5 10 20  
wk 0.60 4.3306 0.6157 1.0049 1.9837 

 0.65 4.3306 0.2217 0.9655 1.8393 

 0.70 4.2386 0.2011 0.7245 1.7214 

 0.75 4.2476 0.2095 0.5645 1.6739 

 0.80 4.2386 0.2615 0.4667 1.6556 

 0.85 4.2386 0.3367 0.4415 1.6723 

 0.90 4.2386 0.1963 0.3564 1.5971 

 0.91 0.6272 0.2155 0.3957 *0.4128 

 0.95 0.6272 0.2771 2.0622 0.9888 

  1 4.2386 0.2001 0.3852 1.6080 

ALS_Length -45 0.6272 0.2374 0.5776 *0.4807 

 -20 0.6272 0.2269 0.6710 0.5084 

 0 4.2386 0.2073 0.4302 1.6254 

  20 4.3306 0.4452 0.8677 1.8812 

ALS_Urg -2 0.7481 2.3843 2.7250 1.9525 

 -1 0.7481 2.8099 2.8284 2.1288 

 0 4.2386 0.2215 0.3379 *1.5993 

 1 8.5737 6.5884 3.4988 6.2203 

  2 9.3047 8.3223 3.5622 7.0631 

ALS_DP -2 1.8935 2.2498 4.4634 2.8689 

 -1 1.8935 2.3854 3.7206 2.6665 

 0 4.2386 0.2105 0.3344 *1.5945 

 1 9.1638 3.9724 5.1280 6.0881 

  2 11.4811 3.3848 5.6054 6.8238 

DPwgndestin 0 4.2386 0.1991 0.4045 *1.6141 

  1 4.2386 0.3100 0.6993 1.7493 
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