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ABSTRACT 

The paper focuses on pedestrian social groups. A social 

group is formed by individuals that have social ties and 

intentionally walk together, such as friends or family 

members. 

The percentage of people in social groups within a 

crowd is large. Pedestrian crowds have been studied, 

modeled and simulated for different purposes.  

The simulation of crowds is employed to support 

pedestrian environment designs. It allows to elaborate 

“what if” scenarios and to evaluate the environment 

design with reference to specific criteria. 

Virtual worlds, to become more lively and appealing, 

are populated by large number of characters. Typically, 

these characters should be able to navigate through the 

virtual environment in a human-like manner. 

The study of pedestrian social groups plays a very 

important role also in the case these groups include 

mobile robots as individuals and as a robot team. 

The papers presents empirical evidences of social group 

walking behavior. Then, briefly presents the most 

relevant pedestrian microscopic models, focusing on the 

ones that take into account social groups. A critical 

review of the current approaches and future 

developments end the paper. 

Keywords: social groups, pedestrians, modeling, 

simulation, traffic, crowds 

1. INTRODUCTION

The study of human crowd dynamics has recently found 

great interest in many research fields such as: the 

planning and design of the pedestrian environment; 

crowd safety during mass events; computer graphics 

and robot navigation. 

Good pedestrian facilities promote people to walk, 

whilst poor ones discourage the use of area or structure 

where they are.This creates the necessity of measuring 

the performance of pedestrian facilities in order to 

determine quality of operations, existing deficiencies, 

needs for improvements, and for purposes of priority 

settings. Traditionally, the quality of operations of 

transportation facilities is assessed on the basis of the 

level of service (LOS) concept. These levels currently 

classify the level of comfort based on space available 

for movement and speed (and delay, in case of 

crosswalks). The comfort is assumed to be linked to the 

possibility to maintain a free space, during the motion, 

that every pedestrian requires around itself, and to 

maintain the desired speed. Therefore, assuming 

anhomogeneous pedestrian crowd, the LOS levelis 

assessed in terms of average characteristics of 

pedestrian flow, like average density and average speed. 

Guidance is provided for different area types and times 

of day (Sisiopiku et al. 2015).  

In transportation studies attention has been paid also to 

walking spatial patternsand their impact on the overall 

traffic efficiency.Walking spatial patterns that influence 

crowd dynamics are related to “physics” of crowd 

motion such as: 

• the organization around bottlenecks: the resulting

zipper effect causes the capacity of the bottleneck

to increase in a stepwise fashion with the width of

the bottleneck (Hoogendoorn and Daamen 2005,

Kretz et al. 2006),

• the segregation of opposite flows in pedestrian

counterstreams: compared to a situation without

counterflow the performance - in terms of passing

or total times, speed, and flux - of a group of

walkers is never reduced as much as one would

expect from the amount of counterflow. This

phenomenon can be summed up by saying that the

sum of fluxes in a counterflow situation was always

found to be larger than the flux in any of the no

counterflow situations (Kretzet al. 2006, 

Moussaı¨et al. 2009, Helbing and Molnar 1995) or

• the turbulent movement in extremely dense crowds:

the fundamental diagram has been reproduced for

these situations and demonstrates that the average

local flow is not reduced to zero at highly dense

situations (Yu and Johansson 2007) .

All these studies investigated a crowd as a collection of 

isolated individuals, each having their own desired 

speed and direction of motion and social interactions 

among pedestrians have been largely neglected. 

Moussaid et al. (2010) focused on social interaction 

among pedestrians in crowd and investigated the spatial 

organization of walking pedestrian groups, in terms of 

average angle and distance between pedestrians, to find 

out whether there are any specific patterns of spatial 

group organization and how such patterns change with 
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increasing density. Crowd dynamics is not only 

determined by physical constraints induced by other 

pedestrians and the environment, but also significantly 

by communicative, social interactions among 

individuals. 

One of the most relevant and at the same time most 

challenging problems are panic stampedes, which are a 

serious concern during mass events. Despite huge 

numbers of security forces and crowd control measures, 

hundreds of lives are lost in crowd disasters each year. 

The goal of many researches in this field is the 

identification of variables that are helpful for an 

advance warning of critical crowd conditions: these 

variables allow one to understand where and when 

crowd accidents tend to occur (Helbinget al. 2007). The 

identification of critical crowd conditions are important 

for the organization of safer mass events. 

Field studies (Isobe et al. 2004, Kretz et al. 2006) have 

shown that in crowds, social group members do not 

communicate. Pedestrians follow other pedestrians 

without establishing a formal and steady social 

relationship (Fang J. et al. 2015). 

Recent field work has shown that evacuees perform 

complex maneuvers and behave deliberately rather than 

in a non-cooperatively competitive manner or mindless 

panic. Some of these studies show that social and 

social-psychological factors significantly influence 

pedestrians’ movement (Aguirre et al. 2011).  

Algorithms that, based on surveillance trajectory data 

and informed by social psychological models of 

collective behavior, automatically discover small groups 

of individuals traveling together in a crowd have been 

proposed (Ge et al. 2012, Sochman et al. 2011). These 

algorithms could be used by police during public mass 

events to discover pathways or monitor for abnormal 

events and therefore to plan their intervention: rather 

than seeing an irrational homogeneous crowd, police 

should be looking at small groups, only a few of which 

might merit coercion.  

In computer graphicsthe target is to create virtual 

worlds. Virtual worlds are ubiquitous in video games, 

training applications and animation films. Such worlds, 

to become more lively and appealing, are populated by 

large number of characters. Typically, these characters 

should be able to navigate through the virtual 

environment in a human-like manner. (Rojas et 

al.2016,Karamouzas and Overmars 2012) 

Although state-of-the-art computer graphics enables a 

virtual reconstruction of the built environment with 

impressive geometric and photometric detail, it should 

enable the automated animation of the environment’s 

human occupants (Badler et al. 1993). Human 

animation should be visual plausible rather than correct. 

The addition of groups can improve the plausibility of 

crowd scenarios (Peters et al. 2008).  

Robot navigation should be smooth and safe in dynamic 

environments. If the obstacle is an intelligent agent, 

such as a human or another robot, this problem is 

complicated by the difficulty in predicting the agent’s 

reaction to the robot’s own movements. Dynamic 

obstacle avoidance is contingent on two separate 

capabilities. First, the robot must be able to predict the 

future trajectory of a dynamic obstacle passing through 

the robot’s environment. Secondly, the robot must 

define a control strategy that is both optimized for the 

predicted trajectory and safe in any other outcome. 

Many approaches, inspired by human navigation in 

crowded pedestrian environments, draw from the 

sociology literature on pedestrian interaction (Knepper 

and Rus 2012). In navigating through personal spaces, 

humans make frequent, minor corrections to their 

trajectory in response to the predicted motions of other 

people. In so doing, we follow a social convention, or 

pedestrian bargain, designed to distribute responsibility 

for altering one’s trajectory in recognition of another’s 

intentions. Wolfinger (Wolfinger 1995) describes the 

pedestrian bargain as comprising two rules: “(1) people 

must behave like competent pedestrians, and (2) people 

must trust copresent others to behave like competent 

pedestrians”. Algorithms for robot local navigation try 

to implement the same heuristics for mutual avoidance 

adopted by humans. In doing so, the resulting 

trajectories are human-friendly, because they can 

intuitively be predicted and interpreted by humans and 

the algorithms result suitable for the use on robots 

sharing navigation spaces with humans. 

The paper focuses on pedestrian social groups. 

According to Hughes and Lee (2006), the term “group” 

is used here in its sociological sense: it is “a collection 

of individuals who have relations to one another that 

make them interdependent to some significant degree”. 

A group is formed by individuals that have social ties 

and intentionally walk together, such as friends or 

family members.A social group is characterised by the 

duration of the interaction and the communicative 

setting.Social groupsrepresent an important component 

of urban crowds in low and medium density 

conditionswhilst  in overcrowded environments the 

communication assumption between group members is 

not available anymore (Zhang et al. 2011). 

We define temporary voluntary groups a group formed 

by several proximate pedestrians that voluntary walk 

temporary close to each otherin specific situations. 

There is not any social relationship between the group 

members. It has been observed that people are likely to 

follow others in front of them; they will walk on the 

same side of the path as other people in front of them 

and they will take avoidance action on the same side. 

This behavior leads to temporary voluntary groups 

 

The paper breaks down as follows: the following 

section reports empirical evidences of social group 

walking behavior. Section 3 briefly presents the most 

relevant pedestrian microscopic models, focusing on the 

ones that take into account social groups. Section 4 ends 

the paper and includes a critical review of the current 

approaches and future developments. 
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2. EMPIRICAL KNOWLEDGE ON WALKING 

BEHAVIOUR OF PEDESTRIAN SOCIAL 

GROUPS 
 

2.1. The frequency of social groups  

Empirical studies show that in the real-world, large 

proportions of pedestrians are in social groups (Aveni 

1977). The percentage of people in groups within a 

crowd ranges from 40% to 70%: the percentage changes 

according to different times and environment situations 

(Coleman and James 1961, Singh et al. 2009). 

Generally, more groups can be observed in leisure areas 

in public holidays (Moussaïd et al., 2010). According 

with Singhet al. (2009), in travelling environment (train 

station), the percentages of people in groups are about 

55%; in shopping environments, the percentage is about 

65%; on university campus where people study or work, 

the figure is about 47%. These data are reported in 

figure 1. 

 

 

 

Figure 1: The sizes and proportions of subgroups within 

a crowd (Singh et al. 2009)  

 

The reported % are not so far from other empirical 

evidences: in the data collected by Moussaı¨d et al 

(2010), up to 70% of observed pedestrians in a 

commercial street walked in group; in the data collected 

by Cepolina et al. in the “infinite” corridor in a building 

of Massachusetts Institute of Technology (Cepolina et 

al. 2016), about 42% walked in social groups. 

 

Table 1:Dimensions of the observed social groups 

(Cepolina et al. 2016) 

N. groups. Groups of 2 ped. Groups of 3 ped. Groups of 4 ped. 

59 

(132 ped) 

83%  

(49 groups - 98ped)

10 % 

(6 groups - 18 ped) 

7 %   

(4 groups - 16 ped)

 

As it concerns the group dimensions, the data collected 

in this study are reported in table 1: the 83% of the total 

number of pedestrians that walk in groups, belongs to a 

2 member group. The 10% of the total number of 

pedestrians that walk in groups, belongs to a 3 

membergroup and the 7% of the total number of 

pedestrians that walk in groups, belongs to a 4 member 

group. Almost 45% of the groups were composed by 

both the genders. Among the mono gender groups, we 

observed an equal number of female and male groups. 

The existence of ubiquitous social groups indicates that 

not only the individual-level, but also the group-level 

behaviour needs to be included in the modelling 

program in order to carry out realistic pedestrian 

simulations in low and medium density conditions. 

 

2.2. Effects of group size on walking speed 

As observed by Moussaı¨d et al (2010), pedestrian 

walking speeds decrease linearly with growing group 

size, as shown in figure 2. 

 

 
Figure 2: Effects of group size on walking speed 

(Moussaı¨d et al (2010)) 

 

Similar findings were discussed in the research of 

Schultz, et al. (2010), who recorded and analyzed the 

walking behavior of passengers in Dresden International 

Airport.  

 

 
Figure 3: Group size interdependencies regarding to 

speed (Schultz, et al., 2010). 

 

Figure 3 compares the differences in speed between 

groups with one and three members: groups with three 

members are clearly slower than groups that have 

onlyone member. 

 

2.3. Effects of density on groups’ walking speed 

The speed of pedestrians results clearly dependent on 

the density level. At low density, people walk faster 

than at higher density. This is in agreement with 

previous empirical and theoretical studies of pedestrian 

traffic (Seyfried et al. 2005).  

Cepolina et al (2016) tried to find an empirical 

relationship between group speed and density from the 

data collected at the corridor at the Massachusetts 

Institute of Technology. For each density value, the 

average speed of the individuals that crossed the 

reference area in the given density conditions has been 

assessed and the resulting data are reported in figure 4 
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and figure 5. In figure 4, the points that refer to 

pedestrian walking alone have been marked with a 

diamond symbol whilst the points that refer to 

pedestrians walking in social groups have been marked 

with a star symbol.  

 

Figure 4: Pedestrian speed against density 

al., 2016). 

 

Figure 4 shows a large pedestrian speed variation

each density value, for pedestrians walking alone

smaller for group members. According with previous 

studies, the speed of pedestrians walking in social

tends to be lower than speed of pedestrians walking 

alone at same level of density.  

 

Figure 5: Average speed Vs. density for individual 

pedestrian and pedestrians in social groups

al. 2016) 

 

Further, as shown in figure 5, the speed of pedestrians 

walking alone decreases faster than the one of 

pedestrians walking in groups as density increases. This 

fact makes explicit that some people walking in social 

groups are aware of the speed adjustments they have to 

cope with in order to keep walking in a group in 

medium density conditions. 

 

5. In figure 4, the points that refer to 

pedestrian walking alone have been marked with a 

hilst the points that refer to 

have been marked 

 
peed against density (Cepolina et 

Figure 4 shows a large pedestrian speed variation, for 

pedestrians walking alone; it is 

According with previous 

peed of pedestrians walking in social group 

tends to be lower than speed of pedestrians walking 

 
peed Vs. density for individual 

pedestrian and pedestrians in social groups (Cepolina et 

Further, as shown in figure 5, the speed of pedestrians 

walking alone decreases faster than the one of 

as density increases. This 

that some people walking in social 

groups are aware of the speed adjustments they have to 

cope with in order to keep walking in a group in 

2.4. Spatial organization of walking pedestrian 

groups  

Moussaïd, et al. (2010) investigated the spatial 

organization of walking pedestrian groups in two 

different population densities by 

angle and distance between group members. It has been 

suggested that at low density, people in the same group 

walk in a horizontal formation which enables them to 

communicate with other group members easily. While 

at moderate crowd density, this structure is hard to 

maintain without interfering with pedestrians outside 

the group. Therefore, the linear group struct

bend in the middle and form a ‘V’

Moussaïd, et al. (2010)  pointed out that this bending is 

forward in walking direction instead of backward, thus 

facilitates the social communication between group 

members (Figure 6 b). Though ben

more flexible structure against the opposite pedestrian 

flow, it impedes the interaction within the group. 

Finally, at high density, the physical constraints would 

prevail over the social interaction, group members will 

walk behind each other and

formation (Figure 6 c). 

 

Figure 6: Group formations 

 

It is known that the distribution of spoken contributions 

among group members is not equal during a 

conversation: a few members speak most of the time, 

while the others listen 

andMishler1952,Horvath 1965). Therefore, it is likely 

that pedestrians who talk mo

middle of the group and the listeners would walk on the 

sides. In the same way, large groups would probably 

split up into subgroups around those who talk most.

 

2.5. Avoidance behavior of pedestrians that walk in 

groups 

Singh, et al. (2009) filmed crowds in various locations 

around the University of Nottingham main campus and 

then analyzed the footage. The selected locations were 

chosen as they were long straight stretches of pathway, 

where it was possible to view people for a sufficient 

length of time to see their 

action had to be taken. Figure 

avoidance action taken when facing incoming 

pedestrians: 44% of the time, a person or subgroup will 

move to the right to avoid colliding with others

34% of the time they will move to the left. The other 

22% of the time, a subgroup will actually split to avoid 

colliding with people they are walking towards. The 

ratio of people moving to the left is higher than that of 

moving to the right:a possible

phenomenon is that the experiment was conducted in 

of walking pedestrian social 

, et al. (2010) investigated the spatial 

of walking pedestrian groups in two 

different population densities by analyzing the average 

angle and distance between group members. It has been 

suggested that at low density, people in the same group 

walk in a horizontal formation which enables them to 

communicate with other group members easily. While 

at moderate crowd density, this structure is hard to 

maintain without interfering with pedestrians outside 

the group. Therefore, the linear group structure will 

bend in the middle and form a ‘V’-shaped formation. 

(2010)  pointed out that this bending is 

forward in walking direction instead of backward, thus 

facilitates the social communication between group 

. Though bending backward is a 

more flexible structure against the opposite pedestrian 

flow, it impedes the interaction within the group. 

Finally, at high density, the physical constraints would 

prevail over the social interaction, group members will 

other and form a ‘river-like’ 

 
Figure 6: Group formations ( Moussaid et al. 2010) 

that the distribution of spoken contributions 

among group members is not equal during a 

conversation: a few members speak most of the time, 

while the others listen (Stephan 

Horvath 1965). Therefore, it is likely 

that pedestrians who talk more would end up in the 

middle of the group and the listeners would walk on the 

sides. In the same way, large groups would probably 

split up into subgroups around those who talk most. 

of pedestrians that walk in 

filmed crowds in various locations 

he University of Nottingham main campus and 

the footage. The selected locations were 

chosen as they were long straight stretches of pathway, 

where it was possible to view people for a sufficient 

ength of time to see their behavior after avoidance 

action had to be taken. Figure 7 shows the percentage of 

avoidance action taken when facing incoming 

44% of the time, a person or subgroup will 

move to the right to avoid colliding with others and 

34% of the time they will move to the left. The other 

22% of the time, a subgroup will actually split to avoid 

colliding with people they are walking towards. The 

ratio of people moving to the left is higher than that of 

a possible explanation of this 

phenomenon is that the experiment was conducted in 
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UK, where left-hand traffic rule is applied

2014). 

 

Figure 7: The avoidance action taken by people walking 

straight towards another (Singh et al., 2009).

 

The first observation by Singh, et al. (2009) is that a 

social group of people will usually avoid splitting if 

possible. This may mean that they will crowd closer 

together: rather than split up, the people in each 

group move closer toward their companions and allow 

group members to enter their personal space. This 

therefore displays a preference of social 

remain together. 

Another finding is that an individual person is more 

likely to walk around a social group of people than walk 

through the middle of them. To avoid colliding with and 

splitting the group of two, an individual person not only 

moves aside but also steps onto a raised wall, 

highlighting the behavior described above.

When a social group does split, it is becau

obstacle of something to avoid, usually another person 

or group. In the situation where there is more than one 

obstacle to avoid a social group will not regroup 

between them. Instead the group will remain apart and 

regroup only after all obstacles have been avoided.

Rastogi (Rastogi et al. 2011) observed that on 

sidewalks, pedestrians in large social groups (ha

or more people) often split into smaller sub

order to avoid incoming pedestrian flow. This splitting 

behavior decreases the group sizes, but increases th

speed of pedestrian sub-groups. This phenomenon is 

absent on wide sidewalks and precincts because there is 

no restriction in space and large groups are not 

necessary to split into small sub-groups. 

 

3. MICROSCOPIC MODELLIN

PEDESTRAIN SOCIAL GR

DIFFERENT APPROACHES 

 

According to Vizzari et al. (2013) we propose a schema 

classifying the different current approaches

way pedestrians are represented and managed. From 

this prospective, pedestrian models could be roughly 

classified into three main categories that respectively 

consider pedestrians as particles subject to forces,

autonomous agents acting and interacting in the 

environmentor particular states of cells in which the 

environment is subdivided in Cellular Automata (CA) 

approaches 

hand traffic rule is applied (Cheng, 

 
The avoidance action taken by people walking 

et al., 2009). 

n by Singh, et al. (2009) is that a 

group of people will usually avoid splitting if 

possible. This may mean that they will crowd closer 

rather than split up, the people in each social 

group move closer toward their companions and allow 

members to enter their personal space. This 

social groups to 

Another finding is that an individual person is more 

group of people than walk 

To avoid colliding with and 

splitting the group of two, an individual person not only 

moves aside but also steps onto a raised wall, 

highlighting the behavior described above. 

group does split, it is because there is an 

to avoid, usually another person 

or group. In the situation where there is more than one 

group will not regroup 

between them. Instead the group will remain apart and 

regroup only after all obstacles have been avoided. 

observed that on 

groups (having 5 

or more people) often split into smaller sub-groups in 

order to avoid incoming pedestrian flow. This splitting 

decreases the group sizes, but increases the 

groups. This phenomenon is 

absent on wide sidewalks and precincts because there is 

no restriction in space and large groups are not 

groups.  

MICROSCOPIC MODELLING OF 

PEDESTRAIN SOCIAL GROUPS: 

we propose a schema 

classifying the different current approaches based on the 

way pedestrians are represented and managed. From 

this prospective, pedestrian models could be roughly 

main categories that respectively 

as particles subject to forces, 

autonomous agents acting and interacting in the 

or particular states of cells in which the 

environment is subdivided in Cellular Automata (CA) 

 

3.1. Particle based approach

Social force models are probably the most known 

method in the group of continuous models. Lewin and 

Cartwright (1952) suggested that the changes of human 

behaviorcan be guided by social forces or social fields. 

Based on this concept, Helbing and Molnár (

proposed the basic equation of the social force model to 

describe pedestrian motion:  

 

F��∝�F��∝
� �∑ F��∝		 � ∑ F��∝

 �

They assumed that a pedestrian’s total motivation 

F��∝ can belinearly influenced by three main factors: 

(1) F��∝
�  – the desire of pedestrian 

destination or goal;  

(2) ∑ F��∝		  – the total influence from other pedestrians 

such as the repulsive effect of others;

(3) ∑ F��∝

  – the total repulsive force generated

a border or an obstacle B. 

In addition to the above four main effects, the social 

force model can be applied to demonstrate complex 

pedestrian behavior by adding a fluctuation term. This 

fluctuation term enables modelers

variations of pedestrian behavior

from the basic formula. 

Using the social force model, several observed 

collective phenomena in pedestrian crowds have been 

successfully reproduced. This includes the lane forming 

behavior in crowds and the osc

at a narrow exit (Helbing and 

the mechanisms in escape panic situations (Helbing

al. 2000). 

In Moussaid et al.(2010) a new interaction term has 

been introduced in eq. 1: 

(4) ∑ F��∝��  – the attraction of other p

describes the response to other group members. 

Moussaid et al. (2010) postulate 

patterns of group organization result from the desire of 

their respective members to communicate with each 

other. Therefore, individuals continuously adjust their 

position to facilitate verbal exchange, while trying to 

avoid collisions with in-group members and out

pedestrians. 

The new interaction term has been assessed taking into 

account three facts: 1) group members turn their 

direction to see their partners: the authors assume that 

the pedestrian adjusts its position to reduce the head 

rotation. 2) the pedestrian keeps a certain distance to the 

group’s center of mass: according to observations, the 

average to the center of mass increases with group size. 

3) there is a repulsion effect so that group members do 

not overlap each other. 

 

Helbing, et al. (2005) conclude that the simplicity

linearity and small number of parameters are the main 

advantages of the social

However, some researchers suggested that it is not easy 

to model heterogeneity and complex 

social force model (Manenti 

Particle based approach 

Social force models are probably the most known 

method in the group of continuous models. Lewin and 

suggested that the changes of human 

can be guided by social forces or social fields. 

, Helbing and Molnár (1995) 

proposed the basic equation of the social force model to 

 

� ∑ F��∝��                        (1) 

They assumed that a pedestrian’s total motivation 

influenced by three main factors:  

the desire of pedestrian α to reach a certain 

the total influence from other pedestrians β 

such as the repulsive effect of others; 

the total repulsive force generated to avoid 

In addition to the above four main effects, the social 

force model can be applied to demonstrate complex 

by adding a fluctuation term. This 

modelers to consider random 

behavior and make extension 

Using the social force model, several observed 

collective phenomena in pedestrian crowds have been 

successfully reproduced. This includes the lane forming 

in crowds and the oscillatory walking pattern 

Helbing and Molnár1995) as well as 

the mechanisms in escape panic situations (Helbing et 

a new interaction term has 

the attraction of other persons or objects i: it 

describes the response to other group members.  

postulate that the observed 

patterns of group organization result from the desire of 

their respective members to communicate with each 

als continuously adjust their 

position to facilitate verbal exchange, while trying to 

group members and out-group 

The new interaction term has been assessed taking into 

account three facts: 1) group members turn their gazing 

direction to see their partners: the authors assume that 

the pedestrian adjusts its position to reduce the head 

rotation. 2) the pedestrian keeps a certain distance to the 

group’s center of mass: according to observations, the 

of mass increases with group size. 

3) there is a repulsion effect so that group members do 

Helbing, et al. (2005) conclude that the simplicity, 

and small number of parameters are the main 

advantages of the social-force-based simulation. 

However, some researchers suggested that it is not easy 

to model heterogeneity and complex behaviors using 

 et al. 2012). 
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3.2. Agent-based methods  

The most common way to model the locomotion of 

human crowds is with agent-based methods, in which 

each agent plans individually its own actions. In agent 

based models, agents follow some pre-determined rules 

of behavior, which allow them to execute various 

behaviors appropriately in the modeled system.  

In such approaches, global path planning and local 

collision avoidance are typically decoupled. 

The agent perception model specifies the area which 

each pedestrian can perceive.Each agent has a set of 

behaviors, such as random movement, obstacle 

avoidance and maintaining group. Each of these 

behaviors is a steering behavior exited by some sensory 

inputs. Each agent individually perceives the situation 

according to its own characteristics, adapts its behavior 

according to the situation and chooses the nature of its 

interactions with the others. 

 

Based on Reynolds’s Open Steer environment 

(Reynolds1 999), Qiu and Hu (2010) proposed an 

agent-based simulation system for modeling crowd 

behavior with group structures, in which agents can 

move randomly, avoid obstacles and maintain group 

structures. The group movement is governed by the rule 

that each group is assumed to have a group leader and 

the leader would influence the decisions of other group 

members. However, in real-world situations, pedestrian 

groups are often composed of friends and families, 

where it is not necessary to have a group leader. 

Agent based models are generally more computationally 

expensive than cellular automata and social force 

models, thus, modeling large systems is still a challenge 

for agent-based models 

 

The agent basedapproach allows to include 

heterogeneity in pedestrian motion that improve 

simulation realism (Lemercier and Auberlet 2015). 

Heterogeneity could be performed by: turning the 

agents’ external parameters values (such as speed, size, 

perception area) or implementing the ability for an 

agent to behave in different ways according his 

perception cognitive behavior.  

Zhang et al. (2011) introduce heterogeneity in their 

simulation model by defining a level of communication 

for each agent that allows the flexible formation of 

small groups. Level of communication specifies the 

tendency of a member to talk with group members, and 

therefore maintain a closer spatial relationship. 

Intuitively, the group members with higher 

communicationability tend to keep closer for chatting. 

The member with highest communication would stay in 

the middle of the formation, with the others on both 

sides. Qiu and Hu (2010) proposed a model that allows 

to represent the heterogeneity nature of different groups 

and influences among group members. Two aspects 

have been introduced: intra-group structure and inter-

group relationship. Intra-group structure refers to the 

network relationship among the members inside a 

group: different intra-group structures give rise to 

different shapes of a group. Inter-group relationship 

refers to the relationships among different groups: this 

is used to model the fact that groups also influence each 

other. However the model does not concern how the 

group structure is formed and how it will be 

dynamically changed. 

 

A bilevel approach has been proposed by Karamouzas 

and Overmars (2012). Their model considerspairs and 

triples of characters and uses a two-step algorithm to 

ensure that the groups will stay as coherent as possible 

while avoiding collisions with other groups, individuals 

and static obstacles.  

At every cycle of the simulation the desired velocity of 

each group is provided by some higher level path 

planning approach. Then, in the first step of the 

algorithm, an avoidance maneuver for each group of 

agents is determined. The authors formulate this as a 

discrete optimization problem of finding an optimal 

new formation and velocity for the entire group. In the 

second step of their approach, the computed solution 

velocity and formation are used to determine the desired 

velocity of each group member. This velocity is then 

given as an input to a local collision avoidance model 

which returns the new velocity for the group agent. 

 

3.3. Cellula automata  

A relatively novel model called Cellular Automata (CA) 

uses intuitive rules that make the model easy to 

understand without complex mathematical equations 

and thus demand less computation than social force 

models and agent based models. In cellular automata 

models, space is represented by a uniform grid of cells. 

At each discrete time step, the values of variables in 

each cell are updated according to a set of local rules 

and the values of variables in the cells at its 

neighborhood. 

Cellular automata has been extensively used in 

modelling the crowd. In regular cellular automata 

models, each pedestrian occupies a single cell with the 

size of a pedestrian body. Since the space is divided into 

relatively large cells, the movements of pedestrians look 

like the movements of pieces on a chess board. 

Furthermore, all pedestrians have the same body size 

and speed. Pedestrian transition to neighboring cells is 

based on simple rules. Cellular automata transition rule 

could be simple mathematical equations which 

determine the next transition cell for each pedestrian. 

The next cell is normally one of the adjacent cells. 

In Siamak et al. (2014), a method called “fine grid 

cellular automata”is proposed in which smaller cells are 

used and pedestrian body may occupy several cells. The 

model allows the use of different body sizes, shapes and 

speeds for pedestrian.  

The majority of the pedestrian movements can be 

described in terms of movements toward successive 

targets. A least effort cellular automata model uses a 

measure distance to the target for calculating the 

probability of transition into neighboring cells.The 
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concept of least effort (Zipf, 1949)mostly results into a 

shortest path straight line walking toward the target. In 

addition to least effort movement behavior, pedestrians 

show other behaviors like collision avoidance, density 

and congestion aversion and group formation. Siarmady 

et al. (2009) proposed a variation of least effort cellular 

automata algorithm which also considers the effect of 

pedestrian groups on crowd movement. The main idea 

behind the model is that pedestrians in a group maintain 

a short distance to the leader of the group or other group 

members.  

The cellular automata models portray the interactions 

between pedestrians by intuitively understandable rule 

sets, rather than complex mathematical functions. It also 

provides an easier treatment of complex geometries 

than models with long-range interactions 

(Schadschneider, 2001). Therefore, one can easily 

implement cellular automata on computers and the 

computational speed is exceedingly fast compared to 

other microscopic pedestrian models. However, CA 

models have the disadvantage of dividing space into 

coarse cells, which may lead to larger errors than social 

force models in which space is not discretised (Köster et 

al. 2011).  

Among the researchers who have used cellular automata 

for the simulation of pedestrian movements Dijkstra 

(Dijkstra, 2000), Blue and Adler (1998), Kirchner et al. 

(2001), Kirchner et al. (2003) and Schadschneider 

(2002) can be mentioned. 

 

4. WEAKNESS OF THE CURRENT 

APPROACHES AND NEW POSSIBLE 

FUTURE DIRECTIONS 

 

Planning and design of pedestrian environmentsis based 

on traffic efficiency that could be synthesized in the 

Level of Service, as it happens in the transport field. 

The authors believe that the Level of Serviceshould be 

based on the individual perceived levels of service and 

not to average pedestrian flow characteristics. The 

individual perceived Level of Service should be related 

to the discomfort while walking in the pedestrian 

environment. The discomfort should be a function of: 

the personal space lost due to interactions with objects 

and other pedestrians and of reduced quality of the 

conversation and maybe,communication interruptions, 

in case of members of social groups. In assessing 

individual discomfort, heterogeneity in the pedestrian 

population is a key issue. A microscopic agent based 

approach seems suitable for this. As far as the authors 

know, no models have been developed for assessing 

discomfort at individual level. A first trial in this 

direction is the work performed by Cepolina et al. 

(Cepolina, Caroti et al.2015 and Cepolina, Cervia et al. 

2015). 

The overall traffic efficiency become relevant as density 

increases and become crucial in case of crowd 

accidents.  

When density increases, crowd dynamics is 

characterized by spatial organization of group members, 

by segmentation of opposite flows in pedestrian 

counterstreams and by the zipper effect at bottlenecks. 

These emergent phenomena deeply affect the overall 

traffic efficiency (for instance in terms of pedestrian 

speed or walking times). Many of the reviewed 

microscopic simulators are able to give rise to these self 

organizing emergent phenomena and result suitable for 

testing the overall traffic efficiency of different 

pedestrian environment designs, in different density 

conditions. 

In case of dense crowds and emergency situations, it has 

been demonstrated that communication between social 

group members do not take place but that other social 

and psychological factors significantly influence 

pedestrians’ movements and, in case of crowd 

accidents, cooperative behaviors emerge. The dynamic 

of this temporal cooperation between pedestrians in 

crowds in emergent situations should be further studied 

and modeled:the reviewed models seem to not include 

it. 

A robot that navigates in a pedestrian environment (as 

well as a video game player, or a person doing training, 

in a virtual environment) interacts with a population of 

pedestrians or avatars (in the second case).In these 

cases, heterogeneity in the behaviors of the 

pedestrians/avatars populationbecome crucial.Most 

current simulators animate homogeneous crowds. Some 

include underlying parameters that can be tuned to 

create variations within the crowd, others implement 

perception cognitive models and a few models use a 

personality model (Wiggins, 1996) as a basis for agent 

psychology. There is still considerable controversy in 

personality research over how many personality traits 

there are. Further research in agent psychology will 

increase the plausibility of virtual worlds and thus, 

improve robustness of robot navigation and of training 

activities. 

The study of pedestrian social groups plays a very 

important role also in the case these groups include 

mobile robots as individuals and as a robot team. This 

may happen in next future in case of security problems 

or in case of natural risky events where robots and 

humans are required to efficiently cooperate. 
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