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ABSTRACT 
We present a new model and algorithm for optimal 
scheduling of a supply chain (SC) with multiple 
customers and suppliers. The formulation assumes that 
suppliers can dynamically allocate jobs and schedule 
their resources in a coordinated manner so that all the 
suppliers are equally utilized and jobs are accomplished 
without interruptions and scheduled subject to maximal 
customer service level and minimal delays. This 
problem is represented as a special case of the job shop 
scheduling problem with dynamically distributed jobs. 
The approach is based on a natural dynamic 
decomposition of the problem and its solution with the 
help of a modified form of continuous maximum 
principle blended with combinatorial optimization. 

 
Keywords: supply chain, scheduling, dynamic model, 
optimal program control, continuous maximum 
principle, combinatorial optimization. 
 
1. INTRODUCTION 

We present the scheduling model and algorithm 
where an SC (Ivanov, Sokolov, 2010) is a networked 
controlled system that is described through differential 
equations based on a dynamic interpretation of the job 
execution. The studies by Holt, Modigliani, Muth, and 
Simon (1960), Hwang, Fan, and Erikson (1967), Zimin 
and Ivanilov (1971) and Moiseev (1974) were among 
the first to apply the optimal program control (OPC) 
and the maximum principle to multi-level and multi-
period master production scheduling that determined the 
production as an optimal control with a corresponding 
trajectory of the state variables (i.e., the inventory). This 
stream was continued by Kimemia and Gershwin 
(1983), who applied a hierarchical method in designing 
a solution procedure to the overall model, and by 
Khmelnitsky, Kogan, and Maimom (1997) for planning 
continuous-time flows in flexible manufacturing 
systems.  

The study (Sarimveis, Patrinos, Tarantilis & 
Kiranoudis, 2008) showed a wide range of advantages 
regarding the application of OPC to production and 
logistics. They include, first of all, a non-stationary 
process view and accuracy of continuous time. In 

addition, a wide range of analysis tools from control 
theory regarding stability, controllability, adaptability, 
etc. may be used if a schedule is described in terms of 
control. Recent studies (e.g., Subramanian, Rawlings, 
Maravelias, Flores-Cerrillo, & Megan 2013) discussed 
the possibilities to translate the MP scheduling models 
into a state-space form and the design of rescheduling 
algorithms with the desired closed-loop properties. 

However, although the OPC was widely applied to 
flexible manufacturing system scheduling, it cannot be 
directly applied to the flow or job shop scheduling level 
as a computational procedure. The continuous time 
models are not applicable in their direct form to discrete 
assignment problems due to the continuous values of 
the control variables from 0 to 1. In addition, such 
problems as numerical instability, non-existence of 
gradients, and non-convexity of state space should be 
mentioned. The calculation of the OPC with direct 
methods of the continuous maximum principle has also 
not been proved efficient. It can be concluded that the 
application of OPC to scheduling is not a trivial 
problem for two reasons. First, a conceptual problem 
consists of the continuous values of the control 
variables. Second, a computational problem with a 
direct method of the maximum principle exists. In this 
paper we present a new model and algorithm for 
optimal scheduling of a SC with multiple customers and 
suppliers. In this case the job execution is characterized 
by (1) execution results (e.g., volume, time, etc.), (2) 
capacity consumption of the resources, and (3) supply 
flows resulting from the delivery to the customer. We 
propose to use a two-stage scheduling procedure in line 
with Chen and Pundoor (2006). A job control model 
(M1) is first used to assign jobs to suppliers, and then a 
flow control model (M2) is used to schedule the 
processing of assigned orders subject to capacity 
restrictions of the production and transportation 
resources. The basic interaction of these two models is 
that after the solving the job control model, the found 
control variables are used in the constraints of the flow 
control model. In additional models of resource and 
channel control, the material supply to resources and its 
consumption as well as setup times are represented. 
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2. PROBLEM STATEMENT AND MODEL 
 

2.1. Dynamic Model of Job Control (model M1) 
We consider the mathematical model of job control. We 
denote the job state variable xiµ

(o) , where (o)  — 
indicates the relation to jobs (orders). The execution 
dynamics of the job Dµ

(i) can be expressed as (1). 
 

dxiµ
(o)

dt
= !xiµ

(o) = ε ij (t)uiµ j
(o)

j=1

n

∑
  

(1) 

 
where ε ij (t)  isan element of the preset matrix time 

function of time-spatial constraints, uiµ j
(o) (t) is a 0–1 

assignment control variable. 
Remark 1. The economic sense of (1) consists of 

the job dynamics representation in which process non-
stationary and time consumption are reflected.  

Let us introduce equation (2) to assess the total 
resource availability time: 

 

!x j
(o) = (uiµ j

(o) )
ρ=1

pi

∑
µ=1

si

∑
η=1
η≠i

n

∑
i=1

n

∑
 

 (2)
 

 
Equation (2) represents resource utilization in job 

execution dynamics. The variable x j
(o) characterizes the 

total employment time of the j-supplier. The control 
actions are constrained as follows: 

 

uiµ j
(ο ) (t)

µ=1

si

∑
i=1

n

∑ ≤1,∀j; uiµ j
(ο ) (t)

j=1

n

∑ ≤1, ∀i, ∀µ
 

(3) 

uiµ j
(o)[ (aiα

(o) − xiα
(ο ) )

α∈Γiµ1
−

∑ + (aiβ
(o) − xiβ

(o) )
β∈Γiµ2

−
∏ ]

j=1

n

∑ = 0
 

(4) 

uiµ j
(ο ) (t)∈{0,1};   (5) 

 
where Γ iµ1

− , Γ iµ2
−  are the sets of job numbers which 

immediately precede the job Dµ
(i)  subject to 

accomplishing of all the predecessor jobs or at least one 
of the jobs correspondingly, and aiα

(o), aiβ
(o)  are the 

planned lot-sizes. Constraint (3) refers to the allocation 
problem constraint according to the problem statement 
(i.e., only a single order can be processed at any time by 
the manufacturer). Constraint (4) determines the 
precedence relations; more over, this constraint implies 
the blocking of operation Dµ

(i)  until the previous 

operations Dα
(i),Dβ

(i)  have been executed. If uiµ j
(o) (t) =1 , 

all the predecessor jobs of the operation )(iDµ  have been 
executed. Note that these constraints are identical to 
those in MP models. 

Proposition 1 .  The constraints (4) ensure that all 
the scheduled jobs from one customer should be fully 
fulfilled, i.e. the planned service level can be reached. 

Corollary 1.  The analysis of constraints (4) shows 
that control u(t) is switching on only when the 
necessary predecessor operations have been executed. 

uiµ j

(o) (aiα
(o) − xiα

(ο ) (t))
α∈Γiµ1

−
∑

j=1

n

∑ = 0  guarantees the total 

processing of all the predecessor operations, and 

uiµ j

(o) (aiβ
(o) − xiβ

(o) )
β∈Γiµ2

−
∏

j=1

n

∑ = 0  of at least one of the 

predecessor operations.  
According to equation (5), controls contain the 

values of the Boolean variables. In order to assess the 
results of job execution, we define the following initial 
and end conditions at the moments t = T0 , t = Tf : 
 
xiµ
(o) (T0 ) = 0; xiµ

(o) (Tf ) = aiµ
(o);   (6) 

 
Conditions (6) reflect the desired end state. The 

right parts of equations are predetermined at the 
planning stage subject to the lot-sizes of each job.  

According to the problem statement, let us 
introduce the following performance indicators (7)–(9): 

 

J1
(o) = 1

2
[(aiµ

(o) − xiµ
(o) (Tf ))

2

µ=1

si

∑
i=1

n

∑ ]
 

(7) 

J2
(o) = α iµ j

(o) (τ )uiµ j
(o) (τ )dτ

T0

Tf

∫
j=1

n

∑
µ=1

si

∑
i=1

n

∑
 

(8) 

J3
(o) = 1

2
(T − x j

(o) (Tf ))
2

j=1

n

∑
  

(9) 

 
The performance indicator (7) characterizes the 

accuracy of the end conditions’ accomplishment, i.e. the 
service level of an SC. The goal function (8) refers to 
the estimation of an job’s execution time with regard to 
the planned supply terms and reflects the delivery 
reliability, i.e., the accomplishing the delivery to the 
fixed due dates. The functions α iµ

(o) (τ ) , assumed to be 
known, characterizes the fulfilment of time conditions 
for different jobs and time points of the penalties 
increase due to breaking supply terms respectively. The 
indicator (9)estimates the equal resource utilization in 
the SC. 

 
2.2. Dynamic Model of Flow Control (model 

M2) 
We consider the mathematical model of flow control in 
the form of equation (10): 

 
!xiµ j
( f ) = uiµ j

( f ) , !xijηρ
( f ) = uijηρ

( f )   (10)
  

We denote the flow state variable !xiµ j
( f ) , where 

( f ) indicates the relation of the variable x to flows.  
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Remark 2.The economic sense of the first part of 
equation (10) consists of the representation of flow 
consumption of the resource C ( j ) . The second part of 
(10) describes the delivery to the customer B (η ) . 

The control actions are constrained by maximal 
capacities and intensities as follows: 

 

uiµ j
( f ) (t)

µ=1

si

∑
i=1

n

∑ ≤ !!R1 j
( f ) , uijηρ

( f ) (t)
ρ=1

pi

∑ ≤ !!R1 jη
( f ) ,

 
(11) 

0 ≤ uiµ j
( f ) (t) ≤ ciµ j

( f ) ⋅uiµ j
(o) , 0 ≤ uijηρ

( f ) (t) ≤ ciηρ j
( f ) ⋅uiηρ j

(o) ,
 

(12) 
 

where !!R1 j
( f ) is the total potential intensity of the resource 

C ( j ) , !!R1 jη
( f )  is the maximal potential channel intensity to 

deliver products to the customer B (η ) , ciµ j
( f )  is the 

maximal potential capacity of the resource C ( j ) for the 
jobDµ

(i) , and ciηρ j
( f ) is the total potential capacity of the 

channel delivering the product flow P<si ,ρ>
( j,η )  of the job 

Dµ
(i) to the customer B (η ) .  

The end conditions are similar to those in (6) and 
subject to the units of processing time. The goal 
functionals of the flow control model are defined in the 
form of equations (11) and (12): 

 

J1
( f ) = 1

2
[(aiµ j

( f ) − xiµ
( f ) (Tf ))

2

j=1

n

∑
µ=1

si

∑
i=1

n

∑

+ (aijηρ
( f ) − xijηρ

( f ) (Tf ))
2 ]

ρ=1

pi

∑
η=1
η≠i

n

∑

, (13) 

J2
( f ) = 1

2
βiµ
( f ) (τ )uiµ j

( f ) (τ )dτ
T0

Tf

∫
j=1

n

∑
µ=1

si

∑
i=1

n

∑ . (14) 

 
The economic meaning of these performance 

indicators correspond to equations (7) and (8). With the 
help of the weighting performance indicators, a general 
performance vector can be denoted as (15): 

 

J x(t),u(t)( ) = J1
(o), J2

(o), J3
(0), J1

( f ), J2
( f ) T

.
 

(15) 
 

The partial indicators may be weighted depending 
on the planning goals and SC strategies. Original 
methods (Gubarev et al. 1988) have been used to 
transform the vector J to a scalar form JG .  

The job shop scheduling problem can be 
formulated as the following problem of OPC: this is 
necessary to find an allowable control u(t) , t ∈(T0,Tf ]  
that ensures for the model (1)–(2), and (10) meeting the 
vector constraint functions q(1) x,u( ) = 0 , q(2) x,u( ) ≤ 0  
(3)–(5) and (10–11), and guides the dynamic system 
(i.e., job shop schedule) !x = φ(t, x,u)  from the initial 
state to the specified final state. If there are several 
allowable controls (schedules), then the best one 

(optimal) should be selected in order to maximize 
(minimize) JG . In terms of optimal program control 
(OPC), the program control of job execution is also the 
job shop schedule. We will refer to this problem of OPC 
as PS. 

The formulated model is a linear non-stationary 
finite-dimensional controlled differential system with 
the convex area of admissible control. Note that the 
PSis a standard OPC problem; see (Lee and Markus 
1967). In fact, this model is linear in the state and 
control variables, and the objective is linear. The 
transfer of non-linearity to the constraint ensures 
convexity and allows using interval constraints. 
 
3. COMPUTATIONAL PROCEDURE AND 
ANALYSIS OF THE ALGORITHM 
The computational procedure for the developed model 
is based on the integration of the main and conjunctive 
equation systems subject to the maximization of the 
following Hamiltonian (16)–(18): 

 

H (x*(t),u*(t),ψ (t)*) = max
!!u∈!!Q(x )

Hl (x(t), u(t),ψ (t))
z=1

2

∑ (16) 

H1 = [ψ iµ
(o) ⋅ε ij +ψ j

(k ) +w2
(o)α iµ j

(o) ]uiµ j
(o)

j=1

n

∑
µ=1

si

∑
i=1

n

∑
 

(17)

 
H2 = [ψ iµ j

( f ) +w5
( f )βiµ

( f ) ]uiµ j
( f )

j=1

n

∑
µ=1

si

∑
i=1

n

∑
 

(18)

  
whereψ (t)  is the conjunctive vector.  

The maximization of the Hamiltonian H1  for 
model (1) in combination with the constraints (3)–(5) 
solves the assignment problem. The maximization of 
the Hamiltonian H2  for model (10) in combination with 
the constraints (11)–(12) solves the LP problem. At 
each time instant, only those jobs and constraints from 
the “active scheduling zone” are considered in the 
models Mo and Mf which meet the requirements (3)–(5), 
(11), and (12). By a dynamic switching of the 
constraints (4) from inequalities to equalities, the size of 
the scheduling problem at each time point is reduced. 
The Hamiltonians (17) and (18) can be maximized 
when the constraints (4) satisfy the corresponding 
variables uiµ j

(o)  and uiµ j
( f ) . In this case, only a part of the 

constraints (4) is considered for the current assignment 
problem since, when the control in (4) is switched to 
zero, then it becomes active in the right-hand part of the 
equations (12). Therefore, the reduction of the problem 
dimensionality at each time instant in the calculation 
process is ensured due to the recurrent operation 
description.  

A methodical challenge in applying the maximum 
principle is to find the coefficients of the conjunctive 
system, which change in dynamics. One of the 
contributions of this paper is that these coefficients can 
be found analytically (Boltyanskiy, 1973, Ivanov, 
Sokolov, 2010). The coefficients of the conjunctive 
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system play the role of the dynamical Lagrange 
multipliers as compared with MP dual formulations.  

In accordance with the maximum principle, the 
following conjugate system can be written: 

 
dψ iµ

(o)

dt
= !ψ iµ

(o) = − [ψ i(µ+1)
(o) ε ij +ψ j

(k ) + λ2
(o)α i(µ+1) j

(o) ]ui(µ+1) j
(o)

j=1

n

∑ ,
 

(19) 

dψ j
(k )

dt
= !ψ j

(k ) = 0 , (20) 

dψ iµ j
( f )

dt
= !ψ iµ j

( f ) = 0 . (21) 

 
The transversality conditions can be formulated in 

the following way: 
 

ψ iµ
(o) (Tf ) = λ1

(o) (aiµ
(o) − xiµ

(o) (Tf )),  (22) 

ψ j
(k ) (Tf ) = λ3

(k ) (T − x j
(k ) (Tf )),  (23) 

ψ iµ j
( f ) (Tf ) = λ5

( f ) (aiµ j
( f ) − xiµ j

( f ) (Tf )).  (24) 
 
The basic peculiarity of the boundary problem 

considered is that the initial conditions for the 
conjunctive variables ψ(t0) are not given. At the same 
time, an OPC should be calculated subject to the end 
conditions. To obtain the conjunctive system vector, we 
use the Krylov–Chernousko method of successive 
approximations (MSA) for an OPC problem with a free 
right end, which is based on the joint use of a modified 
successive approximation method 
(Krylov&Chernousko, 1972). We propose to use a 
heuristic schedule u(t)  to obtain the initial conditions 
for ψ(t0). Then, the algorithm DYN can be stated as 
follows: 
Step 1. An initial solution u(t), t ∈(T0,Tf ]  (a feasible 
control, in other words, a feasible schedule) is selected 
and r = 0 . 
Step 2. As a result of the dynamic model run, x (r ) (t)  is 
received. Besides, if t = Tf  then the record value 

JG = JG
(r )  can be calculated. Then, the transversality 

conditions (22)–(24) are evaluated. 
Step 3. The conjugate system (19)–(21) is integrated 
subject to u(t) = u(t)  and over the interval from t = Tf  
to t = T0 . For the time t = T0 , the first approximation 
ψ i
(r ) (T0 )  is obtained as a result. Here, the iteration 

number r = 0  is completed. 
Step 4. From the time point t = T0  onwards, the control 
u(r+1)(t)  is determined ( r = 0,1, 2,... denotes the number 
of the iteration). In parallel with the maximization of the 
Hamiltonian, the main system of equations and the 
conjugate one are integrated. The maximization 
involves the solution of several MP problems at each 
time point. 

The assignments (i.e., the control variables uiµ j
(o) ) 

from the model Mo are used in the flow control Mf (10)–

(12) by means of the constraints (12). At the same time, 
the model Mf influences the model Mo through the 
transversality conditions (22)–(24), the conjunctive 
system (19)–(21), and the Hamiltonian function (16). 

 
4. EXPERIMENTAL ENVIRONMENT 

Continuous optimization is a challenging 
calculation task. Thus any sensible judgments on the 
models and algorithms can be made only by application 
of special tools. For the experiments, we elaborated the 
model in a software package. Because of the limited 
size of this paper, we cannot describe this package in-
depth here, but will sum up the main experiment design 
features. The software has three modes of operation 
with regard to scheduling and an additional mode to 
analyse stability of the schedules. This mode is beyond 
the scope of this paper. 

The first mode includes the interactive 
generation/preparation of the input data. The second 
mode lies in the evaluation of heuristic and optimal SC 
schedules. The following operations can be executed in 
an interactive regime: 

 
• multi-criteria rating, analysis, and the selection 

of SC plans and schedules; 
• the evaluation of the influence that is exerted 

by time, economic, technical, and 
technological constraints upon SC structure 
dynamics control; 

• the evaluation of a general quality measure for 
SC plans and schedules, and the evaluation of 
particular performance indicators. 

 
The third mode provides interactive selection and 

visualization of SC schedule and report generation. An 
end user can select the modes of program run, set and 
display data via a hierarchical menu.  

The first step is the input data generation. These 
data create SC structure and the environment on which 
scheduling will be performed. The data can also be 
input by a user. After setting up SC structures, planning 
goals and environment parameters (customer orders and 
possible uncertainty impacts), the scheduling algorithm 
is then run. The algorithm of dynamic control is 
programmed by us; for the optimization of problems 
(16)-(18) under the presence of constraints (3)-(5) and 
(11)-(12) at each time point by means of MP 
techniques, the OPC algorithm addresses the MP library 
of the MS Excel Solver.  

The schedule can be analyzed with regard to 
performance indicators. Subsequently, parameters of the 
SC structures and the environment can be tuned if the 
decision-maker is dissatisfied with the values of 
performance indicators. More than 15 parameters can be 
changed to investigate different interrelations of 
schedule parameters and SC planning goals (e.g., 
service level and costs) achievement. E.g., there is an 
explicit possibility to change: 
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• the amount of resources, their intensity, and 
capacities; 

• the amount and volumes of customers’ orders 
and operations within these orders (including 
key customer orders and bottleneck 
operations); 

• the priorities of orders, operations, and 
resources; 

• the lead times, supply cycles, and penalties for 
breaking delivery terms;  

• the perturbation impacts on resources and 
flows in the SC; 

• the priorities of the goal criteria. 
 
Of course, these 15 parameters should not be tuned 

all at once. The tuning depends a great deal on the SC 
strategy. In the case of a responsive strategy, the 
increase in the amount of resources and capacities leads 
in the direction to improving the values of service level 
and to increasing the amount and volumes of 
customers’ orders. In the case of an efficient strategy, 
resource consumption and penalties should be reduced 
as much as possible even if the lead times and supply 
cycles would increase and the service level decrease. 
With regard to perturbation impacts, an SC planner can 
also analyse different alternative SC plans, fill these 
plans with reliability and flexibility elements to 
different extents, and then analyse how these changes 
influence the key performance indicators. In the current 
version of the software package, this tuning is still 
performed manually; hence we are still unable to 
provide either justified conclusions of recommended 
settings of parameters or established methods for 
tuning. However, the extension of the software 
prototype in this direction is under development. The 
conducted experiments showed that the application of 
the presented dynamic scheduling model is especially 
useful for the problems where a number of operations 
are arranged in a certain order (e.g., technological 
restrictions). This is the case in SC planning and 
scheduling.  

The building of the scheduling model within the 
proved theorems and axioms of the optimal CT (Lee 
and Markus 1967) allows us to consider the found 
solutions as optimal (see the proofs of the maximum 
principle in Pontryagin et al. (1964) and the application 
of maximum principle to economic problems by Sethi 
and Thompson (2006). Based on the optimal solutions, 
we can also methodically justify the quality of different 
heuristics that have launched the optimization procedure 
(see Step 1 Section 3) (see Fig. 1). 

Fig. 1 depicts the idea that having calculated 
optimal solutions for several points, it is possible to 
validate the decision to use either dynamic or one of the 
heuristic planning algorithms (for simplification, we 
consider here only FIFO, LIFO and Zimin-Ivanilov-
Moiseev (ZIM) algorithms).In ZIM algorithm priority 
of each job depends on quantity of following jobs. It 
can be observed that, in the case of a number of 
processes between 10 and 12, the quality of the heuristic 

and optimal solutions does not differ by more than 4%. 
In area 2, the DYN algorithm is preferable to the 
heuristics. If still using the heuristics, the FIFO 
algorithm is preferable to the LIFO and ZIM. The most 
benefit from using the DYN algorithm is achieved in 
area 3. In this area, the ZIM algorithm is preferable to 
the LIFO and FIFO algorithms. These data are provided 
only to depict the idea of using an optimal solution for 
the evaluation of different heuristics. Of course, for 
other data structures, the interrelation may be different. 

 
Fig. 1 Comparison of heuristic algorithms’ quality with 

regard to an optimal solution 
 
3. CONCLUSIONS 

In this paper, we considered deterministic issues in 
SC scheduling where scheduling is interconnected to 
the control function.  

In this study, an original approach to a dynamic 
decomposition of an NP-hard combinatorial SC 
scheduling problem has been presented. The 
decomposition is based on the developed model and an 
algorithm for the optimal control of the execution of the 
operations blended with mathematical programming 
(MP). The proposed dynamic decomposition is 
supported both with an algorithm of local coordination 
with the help of MP (i.e., at each time instant) and an 
algorithm of global optimization (i.e., upon the whole 
planning horizon). This results in the formulation and 
solution of partial combinatorial problems of lower 
dimensionality.  

In light of this result, the theoretical contribution 
of this study is directed towards increasing the 
scheduling quality with the help of a sophisticated 
scientific methodology. The proposed novelty of this 
study consists of a detailed theoretical analysis of the 
time-based decomposition and computational 
complexity with an application to flow-shop scheduling 
with continuous flows and discrete assignments. A 
dynamic model and an algorithm have been developed 
for the simultaneous solution of the assignment and SC 
control tasks.  

The main idea of the proposed modification of the 
classical OPC model is to implement and update (e.g., 
due to dynamic changes in capacity availability) non-
linear constraints on a convex domain of feasible 
control inputs rather than in the right-hand sides of 
differential equations. In this case, the coefficients of 
the conjunctive system (i.e., the dynamic Lagrange 
coefficients), keeping the information about the 
operational and logical constraints, can be explicitly 
defined via the local cut method (Boltyanskiy, 1973).  
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Furthermore, we proposed to substitute the relay 
constraints by interval ones, i.e., instead of the relay 
constraints uiµ j (t)∈{0,1}  less strict ones 

uiµ j (t)∈ 0,1[ ] can be considered. Nevertheless, the 
control takes Boolean values as it is caused by the 
linearity of the differential equations and the convexity. 
The proposed substitution enables us to use 
fundamental scientific results of the OPC theory in 
scheduling.  

The formulated model is a linear non-stationary 
finite–dimensional controlled system of differential 
equations with a convex area of feasible control. This is 
the essential structural property of the proposed 
approach, which allows applying methods of discrete 
optimization for the OPC calculation and ensuring the 
required consistency between OPC and LP/integer 
programming (IP) models. Although the solver works in 
the space of piecewise continuous functions, the control 
actions (i.e., the assignments) can be presented in a 
discrete form as in LP/IP models. 

The continuous time representation allows 
analyzing the execution of the operations at each time 
point, and therefore, to obtain additional information 
about the execution of the SC operations and the flow 
control. The analysis showed that, since the complexity 
of the IP/LP problem at each cut is polynomial and the 
number of integration steps and iterations increase 
linearly, the computational complexity of the proposed 
DYN algorithm is also polynomial. 

Among the limitations of this study, the strong 
orientation on centralized SC control and the lack of 
software tools for a comparative analysis with the 
existing benchmark solutions can be mentioned. This is 
the focus of our future efforts. As the convergence 
speed of the proposed algorithm depends on the 
selection of the heuristic solution to the vector of the 
conjunctive system, further research in this direction is 
needed, e.g., an application of higher-level heuristics.  
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