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ABSTRACT 

The airline industry implements many simulation 

models to optimise its operations, knowing that small 

changes in the policies of its companies involve 

significant improvements in the long run. Here, we have 

developed some simulation models to make a 

comparison between different boarding strategies for 

passengers in an A380 aircraft. After suggesting six 

different strategies (back-to-front, outside-inside, 

optimization, by blocks, random, and alternative rows) 

and having performed the apposite simulation models 

and their corresponding ANOVA analysis, the 

alternative rows strategy has revealed as superior in 

relation to the other strategies. Some final 

considerations have also been discussed about the 

limitations of each strategy and the goodness of the 

proposed as the better. 

 

Keywords: Simulation, Boarding Strategy, Turn-time, 

Passengers Air Transport  

 

1. INTRODUCTION 

The airline sector is a highly competitive industry where 

each airline must struggle to win a suitable position in 

the market. In order to increase the associated 

profitability, the greatest efforts are focused on 

optimising operational processes controlled by the 

airline companies such as the use of available resources. 

 The wild competition between airlines (especially 

between legacy and low-cost airlines) and the current 

fuel prices generate small profitability margins, being 

sometimes negative. Therefore, airlines are always 

interested on maximizing resources usage. Increasing 

aircraft utilization, for example, allows the airlines to 

serve more origin-destination routes and to place more 

frequencies on them, thus serving more passengers and 

capturing greater revenues. Reducing the time an 

aircraft spends on the ground increases profit (Ferrari 

and Nagel, 2004; Van Landeghem and Beuselinck, 

2002, Lewis and Lieber, 2005): an aircraft in the ground 

does not generate any revenue (Van de Briel et al., 

2005) but does airport fees. According to Van 

Landeghem and Beuselinck (2002) the turn-time of an 

aircraft (i.e., the elapsed time in ground with the chocks 

placed) is about 30-60 minutes (i.e., it depends on the 

aircraft size). Each minute an airline spends during the 

boarding process costs $30: for an airline operating a 

flight network with 500 daily flights, a decrease of a 

single minute for all the turn-times results in annual 

savings of $5,475,000 (Nyquist et al., 2008). 

 Therefore, the process of passenger boarding is a 

key step during the turn-time of an aircraft. Based on 

the airline tradition and the level of service it wants to 

offer, a specific boarding strategy is chosen (Van de 

Briel et al., 2005). Factors such as the speed of 

passengers, the amount of hand luggage they carry on, 

and the interference that may exist for each strategy 

should also be taken into account in order to be 

efficient. Furthermore, the robustness of the strategy 

should not be neglected because many of them are 

efficient but few are robust when implemented. The 

most common strategies among legacy airlines are 

back-to-front and outside-inside. They are also used in a 

hybrid way. 

 This paper focuses on the study and comparison of 

different strategies used for boarding passengers in 

medium to long haul flights operated by the A380 fleet 

type. We focus on the optimization and improvement of 

the boarding process, neglecting the events out of 

control of the airline. There are two main reasons why 

this study is carried out: (1) there are few studies on 

boarding strategies for large aircraft types since other 

authors have focused on optimizing the process for 

smaller fleet types; and, (2) we think it is more 

important to study boarding strategies for larger aircraft 

types due to the number of passengers, the existence of 

more than one aisle and boarding gates and sometimes 

two decks. These factors make the boarding process 

more complex: more interference arise as compared to 

smaller aircraft types such as those ones with a single 

door, aisle and deck. Furthermore, as passengers may 

usually carry on more than one hand luggage in the 

flights served by this fleet type, the difficulty for 
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reaching an efficient and smooth boarding process is 

greater. 

 

2. STATE OF THE ART 

The passenger boarding process has been studied by 

many other researchers. Most of the past studies focus 

on the simulation rather than in an analytical approach. 

Marelli et al. (1998) developed a simulation model in 

order to study different strategies under different 

configurations of a Boeing 757 for boarding and 

deboarding of passengers. Van Landeghem and 

Beuselink (2002) explored different patterns of 

boarding; Van den Briel et al. (2003, 2005) studied the 

boarding problem using integer programming, non-

linear assignment models and simulation models with 

real data samples. Ferrari (2005) used different schemes 

to evaluate different boarding strategies and designed a 

new model consisting of boarding small groups; they 

concluded that the most efficient strategies were 

separating groups traveling together, thus decreasing 

passenger satisfaction. Van Landeghem and Beuselinck 

(2002) reached similar conclusions to those ones in 

Ferrari and Nagel (2005). 

 Bazargan (2007) analyzed the interferences 

between passengers causing greater boarding times and 

designed an integer programming model to minimize 

these interferences. Nyquist and McFadden (2008) 

analyzed the most effective boarding strategies in terms 

of costs while also accounting for customer satisfaction. 

Steffen (2008) used simulation to study the sequencing 

of passengers to minimize the boarding time. Steiner 

and Philipp (2009) built a simulation model and used 

samples of observations drawn from the Zurich airport 

to calibrate the model; they accounted for various 

actions carried out in and out of the aircraft. 

 Thus, the main contributions of this paper are 

summarized as follows: (a) we have developed a 

simulation model to replicate the different boarding 

strategies in an A380 aircraft with the purpose of 

finding the lowest boarding time strategy; and (b) we 

have tested the previous optimal strategy with realistic 

instances in the aforementioned A380. In this way, we 

use simulation models to make decisions with 

optimization objectives. 

 

3. PROBLEM DESCRIPTION 

In this section, the boarding problem is described in 

detail. First, the boarding process is presented. Then, 

the different boarding strategies are introduced.  

 

3.1. The Boarding Process 

The boarding process is one of the processes included in 

the set of activities that are performed during the 

turnaround of an aircraft; the turnaround begins when 

an operator puts ramp chocks and finishes when the 

aircraft pushback starts. 

 During the turnaround of an aircraft, besides the 

passenger boarding process, other activities are carried 

out, such as baggage unloading and loading, visual 

inspections of the aircraft, cleaning, fuelling, and 

catering. The handling of these services may be done by 

the airport itself, or by specific companies specialized in 

handling services (which may be owned by the airline, 

the airport or any other entity). The speed, accuracy and 

efficiency provided by these handling companies are 

key factors to minimize the overall turn-time. Most of 

these activities can be made while other activities are 

being performed. However, there are activities such as 

deboarding and boarding of passengers that cannot be 

performed in parallel. Figure 1 shows the different 

activities to be carried out during the turnaround. 

 

 
Figure 1: Turnaround process for a passenger aircraft 

 

The total boarding time depends on factors such as the 

size of the aircraft, airport infrastructure, ground 

handling services, human resources workload, hand 

luggage or passenger behaviour. Some of them are 

controllable while others not. 

 The boarding process is composed of three 

different steps: 

1. announcement: the boarding start is announced 

to the passengers and passengers queue at the 

gate;  

2. check in: an airline agent checks all boarding 

passes and registers passengers into the system;  

3. and access: passengers access to the aircraft 

through the finger or by bus. In the latter case, 

passengers arrive at the door of the aircraft in 

large batches. Once inside the aircraft, 

passengers queue in a straight line in order to 

reach their assigned seat.  

 

There are several causes of delays during the boarding 

process such as late arrival of passengers (e.g., delayed 

connecting passengers), malfunction of electronic 

systems used during the boarding, removal of excess 

baggage in the gateway (due to the strengthening of 

control over luggage limits) and passenger behaviour 

(i.e., storage of hand luggage and sitting down). Some 

of these delays are increased due to the nature of some 

flight networks such as hub-and-spoke networks. 

 

3.2. Boarding Strategies 

There is no a universal strategy which is efficient for 

every boarding that is performed around the world. 
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Each airline must ensure that its strategy reaches a 

trade-off between the multiple different objectives, such 

as the level of service offered to the passengers, the 

flexibility to the characteristics of the aircraft, the load 

factor of the flight and the early and/or late arrival of 

the passengers. Furthermore, there are also external 

factors affecting the suitability of each one of the 

strategies such as the availability of fingers and multiple 

aircraft doors. 

 The most employed strategies by legacy airlines 

are: back-to-front and front-to-back, outside-inside, 

optimization, by blocks, random and alternating rows. 

We describe each of the strategies in the following 

subsections. 

 

3.2.1. Back-to-front and front-to-back 

Back-to-front is the most often used strategy by the 

majority of the small and large fleet sized airlines. In 

this strategy, first class boards first and then the rest of 

the passengers are called to board by groups, following 

a sequence from the back to the front of the aircraft.  

 It is the most common strategy due to its simplicity 

and ease to be understood. Also, it allows groups of 

passengers traveling together to board at once. As 

disadvantages, there is no evidence that it is the most 

efficient strategy and there are large interferences 

between the passengers.  

 Front-to-back is the opposite strategy, i.e. first 

class boards first and then the rest of the passengers are 

called to board by groups, following a sequence from 

the front to the back. 

 

3.2.2. Outside-inside 

The outside-inside strategy, also known as Wilma 

(window-middle-aisle), consist of boarding passengers 

as follows: first class passengers, passengers who are 

assigned a seat next to the window, then middle seats 

and finally aisle seats. The advantages of this strategy 

are that it has less interference and if the boarding is 

successfully conducted, seat interferences are 

completely eliminated. The main disadvantage is that 

this strategy forces passengers traveling together to 

board separately and during different time periods.  

 

3.2.3. Optimization 

It consists of first boarding passengers with a window 

seat, followed by those in the middle and finally the 

aisle seats; passengers board diagonally in this strategy. 

Thus, it can be considered a hybrid strategy between 

back-to-front and Wilma strategies. This strategy boards 

passengers traveling together at once.  

 

3.2.4. By blocks 

This strategy consists of boarding passengers sitting in 

the middle of the aircraft at the last place. The 

passengers are grouped by areas and are boarded as 

follows: first the area of the front, then the one at the 

rear and again an area from the front and so on; 

therefore, the strategy rotates from the front to the rear. 

The first class is always boarded first. 

 

3.2.5. Random 

The random strategy accommodates passengers 

randomly so there is only one area. The first class 

passengers board first, and then the rest of the 

passengers with assigned seats are boarded. This 

strategy is known as FIFO (first in-first out).  

 

3.2.6. Alternating rows 

In this boarding strategy, first, all passengers sitting in 

the window seats on one side of the plane board at once, 

in alternating rows (rows 1, 3, 5, etc.). Then the same is 

done on the other side of the plane. Then the middle 

seats, still in alternating rows, board on the first side of 

the plane. That continues with the other side's middle 

seats, then aisle seats (first one side and then the other 

one). Then, the process is repeated for the even-

numbered rows. 

 It is simple, but very efficient; alternating rows 

gives everyone enough elbow room; taking careful 

notice of seat position it reduces bottlenecks from aisle-

passengers having to stand up all the time. 

 

4. SIMULATION MODEL 

The simulation model makes the following 

assumptions: 

1. passengers are assigned to seats randomly; 

2. seats are classified into different groups; 

3. and passengers within the same group board 

the aircraft randomly. 

 The following subsections describe the passenger 

behaviour and the aircraft and load factor influences on 

the process. 

 

4.1. Passenger Behaviour 

Once inside the aircraft, each passenger goes to his/her 

seat based on his/her walking speed (walking time per 

seat row). Obviously, he/she will stop if another 

passenger obstructs his/her way. We assume that 

passengers are not mistaken about their seats and, 

therefore, they go the right way when reaching their 

seats. In addition, passengers have an associated delay 

time to get to the seats because they need a certain time 

to locate their hand-luggage in the upper compartments 

(hand-luggage time); we assume every passenger carries 

hand-luggage. Moreover, when a passenger reaches the 

seat row where he/she is sitting, if there is another 

sitting passenger, we assume that some time is needed 

to wait for this passenger to clear the way for the 

incoming person (interference seating time). 

 We have relied on the study by Mas et al. (2012) in 

order to determine the passengers’ parameters. They 

observed several real boarding processes and obtained 

realistic values for parameters such as the walking time 

per row, delays caused by passengers’ interferences, or 

the time associated with luggage handling inside the 

plane. We assume the following values are constant and 

read as follows:  

1. walking time per row equals to one time period 

(i.e., one time period represents half a second); 
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2. interference seating time equals to ten time 

periods; 

3. and hand-luggage time equals twelve time 

periods. 

 Interferences among passengers are considered in 

our simulation model, i.e., we implemented in the code 

a logic such that whenever a passenger stops in the 

aisle, the passengers behind him/her are forced to wait 

(unless available space exists between the stopping 

passenger and them). Likewise, similar logics have been 

implemented to account for interferences related to 

luggage handling or seat movements. 

 

4.2. Aircraft and Load Factor 

We represent the aircraft with a grid (see Figure 2 for an 

example). Each highlighted cell in the grid represents a 

seat. The load factor of a flight represents the 

percentage of seats occupied by passengers. This 

parameter is important because the more passengers, the 

more interference will exist and, therefore, it will take 

longer to complete the boarding. 

We consider two levels of occupation, medium-

high (load factor of 90%) and high (load factor of 

100%). The level of passenger interference will be 

lower for lower load factors; therefore, we are not 

interested in studying low occupancy levels: the 

different boarding strategies will behave similarly. 

 

 
Figure 2: Aircraft grid for the simulation model: lower (left) 

and upper (right) decks. 

 

5. COMPUTATIONAL RESULTS 

 

Each aircraft type is classified according to the number 

of passengers that it can carry and the distance it can 

cover. The aircraft studied here is an Airbus 380-800 

used by Singapore Airlines SQ with 471 seats on two 

decks: 12 Suite Class seats and 311 Economy Class 

seats on the main deck, and 60 Business seats and 88 

Economy seats on the upper deck. There are three gates: 

two for the main deck (one for the Suite Class) and one 

for the upper deck of the aircraft. 

 We have developed an ad-hoc simulator using 

VBA inside Excel. With this software, we have 

performed simulations independently for the main deck 

and the upper deck. As we study 6 different boarding 

strategies and 2 different load factors, we carry out 12 

simulations for the main deck and 12 for the upper 

deck; from each of the 12 simulations, 6 (one for each 

strategy) at a load factor of 90% and the other 6 at a 

load factor of 100%. We run 30 iterations for each 

simulation in order to have 30 different observations. 

The assignment of passengers to seats is randomly 

changed at each iteration. The Suite Class, which 

consists of 12 seats, has not been modelled since it has a 

self-boarding gate and is the area that requires the least 

boarding time. 

 The main objective is to observe the boarding time 

at the two decks. For each of the six strategies, the total 

boarding time will be the maximum time between the 

two decks. 

 

5.1. Load Factor of 90% 

In this subsection, we study the different boarding 

strategies for a load factor of 90%. We conduct the 

simulations independently for the main and upper 

decks. 

 

5.1.1. Main deck 

In order to be able to visually detect the differences 

between the six boarding strategies studied, we use a 

boxplot. Figure 3 shows a boxplot with the obtained 

results. The y-axis shows boarding times in time periods 

and the x-axis the strategy used (i.e., Rand for random, 

BF for back-to-front, FB for front-to-back, ALTROW 

for alternating rows, BLOCKS for by blocks and RP for 

optimization). The circle inside each box represents the 

average boarding time. 

 

 
Figure 3: Boxplot for the main deck and load factor of 90% 

 

Notice that there are two outliers, which are the extreme 

values of the data set (within the 30 observations, 2 

have had a larger value than the average one). These 

values are represented by an asterisk in Figure 3. 

Regarding average values, the boarding times for 

alternating rows strategy appear to be the lowest, 

although the random strategy also provides low 

boarding times. The front-to-back strategy clearly 

provides the worst boarding times.  

In order to examine whether there are significant 

differences between the average boarding times 
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provided by the studied strategies we make an Analysis 

of Variance (ANOVA). Figure 4 shows the results. 

According to the p-value, which in this case is 

0.000<0.005, we reject the null hypothesis: not all the 

(expected) boarding times are equal. The boarding times 

of random and alternating rows strategies and the back-

to-front and by blocks are overlapping strategies: there 

are not many differences between them. For the other 

strategies there is no overlapping: the differences 

between them are significant.  

 We can conclude that the boarding strategy which 

works best on the main deck for a load factor of 90% is 

the alternating rows strategy. 

 

 
Figure 4: ANOVA for the main deck and load factor of 90% 

 

5.1.2. Upper deck 

The obtained results for the upper deck are similar to 

those ones for the main deck. 

 Figure 5 shows a boxplot so as to see the 

differences between the six boarding strategies studied. 

Figure 5 can be read the same way as Figure 3. 

 

 
Figure 5: Boxplot for the upper deck and load factor of 90% 

 

Again, there are two outliers, which are represented by 

asterisks. Regarding average boarding time values, 

alternating rows and optimization strategies provide the 

lowest ones. The random strategy also yields a low 

average boarding time. The front-to-back strategy is 

clearly the worst one; moreover the box is considerably 

wider as compared with the ones for the rest of the 

strategies. 

 Figure 6 shows the ANOVA results for the upper 

deck. According to the p-value, which equals to 

0.000<0.005, we reject again the null hypothesis 

(homogeneity of expected boarding times). The average 

boarding times provided by the random and back-to-

front strategies and, the alternating rows and 

optimization strategies overlap, which means that there 

are not significant differences between them.  

 Having a load factor of 90%, the optimization 

strategy is the one which works best on the upper deck. 

 

 
Figure 6: ANOVA for the upper deck and load factor of 90% 

 

5.2. Load Factor of 100% 

In this subsection, we study the different boarding 

strategies for the main and upper decks for a load factor 

of 100%. The obtained results are very similar to those 

ones for a load factor of 90%. 

 

5.2.1. Main deck 

Figure 7 shows the ANOVA results. The differences 

between the different strategies are statistically 

significant: the boarding time intervals of the strategies 

are separated from each other. We note that not all the 

boarding strategies produce the same boarding times 

(the p-value is 0.000). 

 The alternating rows strategy average boarding 

time is the lowest one, while the strategy front-to-back 

yields the greatest average boarding time. Therefore, the 

results are the same as those ones for a load factor of 

90%. 

 

 
Figure 7: ANOVA for the main deck and load factor of 100% 

 

5.2.2. Upper deck 

Figure 8 shows the boxplot for the upper deck and for a 

load factor of 100%. We note that there are no outliers. 

The best boarding strategy is the alternating rows one; 

moreover, its boarding times vary within a small range 
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(see its box narrowness). The front-to-back strategy is 

the worst one. 

The ANOVA analysis (Figure 9) shows the 

differences between the boarding strategies regarding 

boarding times. According to the p-value (0.000), the 

expected boarding times are not equal among the 

strategies. According to our experimental results, the 

alternating rows strategy is the most efficient one.  

 

 
Figure 8: Boxplot for the upper deck and load factor of 100% 

 

 
Figure 9: ANOVA for the upper deck and load factor of 100% 

 

5.3. Summary of the Computational Results 

The alternating rows boarding strategy is the most 

efficient strategy for both load factors of 90% and 

100%. For a load factor of 90%, the optimization 

strategy works better in the upper deck; however, it 

provides little significant difference as compared to the 

alternating rows boarding strategy. 

 The computational results show that it takes more 

than twice the boarding time for the upper deck to board 

the main deck. This is due to the distribution of the 

seats in the upper deck: it provides less interference 

between passengers; moreover, the total number of seats 

is much lower in the upper deck than in the main deck. 

Figure 10 shows boarding times for load factors of 

90% and 100%. The total boarding time is significantly 

lower for the case where the load factor is 90%.  

 

 
Figure 10: Boarding times for load factors of 90% and 

100% 

 

6. CONCLUSIONS 

Conducting an efficient boarding process is a key step 

in order to minimize the total turn-time of an aircraft in 

an airport. We have demonstrated that different 

boarding strategies produce significant different 

boarding times.  

One of the most important factors affecting the 

boarding times is the interference between passengers. 

Obviously, it depends on the number of seats and its 

distribution over the deck. 

We show how for high load factor flights, small 

variations on it (i.e., within the range of 90-100%) do 

not have significant impacts on the boarding times and 

on the choice of the best boarding strategy. 

The back-to-front boarding strategy, which is the 

traditional and most common strategy used by airlines 

(Herbst, 2007), is not the most efficient one for the 

aircraft studied in this paper: we have demonstrated that 

the one which works best is the alternating rows 

strategy. We acknowledge that this strategy may be 

confusing for the passengers. However, these negative 

effects may be alleviated if passengers are properly split 

into different passenger groups according to the 

strategy. 
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