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ABSTRACT 
The processing of ships at a container terminal is 
divided into two stages, namely Berthing and 
Loading/Unloading. Both stages use labor and time as 
inputs. The Loading/Unloading stage also uses other 
resources, such as Quay and Stacking Cranes and other 
material handling equipment. Each stage has its own 
outputs. Thus, the outputs of the Berthing stage are the 
ship characteristic data, such as the Tonnage, Length 
and Depth. The single output of the Loading/Unloading 
stage is the number of TEUs loaded and unloaded. An 
input-oriented, parallel-process network DEA model is 
proposed to compute the overall system technical 
efficiency together with labor and time targets. A cost 
minimization network DEA model is also proposed so 
that the cost efficiency of previous ships processing can 
be assessed and a minimum cost resource allocation can 
be computed for an arriving ship. The proposed 
approach is illustrated on a real-world dataset. 

 
Keywords: ship calls, time in port, network DEA, cost 
efficiency 

 
1. INTRODUCTION 
Data Envelopment Analysis (DEA) is a non-parametric 
technique widely used to assess the relative efficiency 
of a set of comparable units referred as Decision 
Making Units (DMUs). DMUs use certain inputs to 
produce certain outputs. There are many studies that 
have used DEA to study the efficiency and productivity 
change of seaports and container terminals (e.g. Barros 
2006; Wang and Cullinane 2006; Lin and Tseng 2007; 
Lozano 2009; Lozano et al. 2011; Barros et al. 2012, 
Bang et al. 2012; Chang 2013; etc). DEA has also been 
used to measure the efficiency and productivity change 
of shipping companies and container shipping lines 
(Managi 2007, Gutiérrez et al. 2014) as well as the 
performance of shipbuilding yards (Pires and Lamb 
2008). There are not however, to the best of our 
knowledge, DEA studies of the efficiency with which 
individual ships are processed at container terminals.  

In this paper a DEA approach is proposed to assess 
the efficiency of these port operations. Specifically, a 
network DEA approach is used. Contrary to 
conventional DEA, which considers a DMU as a single, 

aggregated process (like a black box), network DEA 
considers different stages or sub-processes within the 
DMU, each stage consuming its own inputs and 
producing its own outputs and, in some cases, with 
internal flows between the stages. The literature on the 
theory of network DEA has grown rapidly in the last 
few years (e.g. Kao 2009a, 2009b; Tone and Tsutsui 
2009, 2014; Fukuyama and Weber 2010; Lozano, 2011; 
Lozano et al. 2013, etc). The applications of network 
DEA have also increased, including transportation, with 
the most relevant being the two-stage supply chain 
model for measuring container terminal efficiency of 
Bichou (2011) and the two-stage network DEA 
approach to container shipping lines of Lozano et al. 
(2012). 

The structure of the paper is the following. In 
Section 2, the proposed parallel-processes network 
DEA approach is presented and the corresponding 
technical efficiency model formulated. In Section 3, a 
minimum cost network DEA model is also introduced 
with the aim of estimating the optimal resource 
allocation and time-in-port for an arriving ship. Section 
4 presents the results of the application of the proposed 
approach to a real-world dataset. Finally, in Section 5, 
the main conclusions of the study are drawn and further 
research outlined. 
 
2. PROPOSED PARALLEL-PROCESSES 

NETWORK DEA APPROACH 
In this section, a parallel-processes network DEA 
approach to container ships processing is presented. It 
considers that the processing of a container ship 
consists of two stages: Berthing (B) and 
Loading/Unloading (L/U). Although these two stages 
occur sequentially within the temporal dimension the 
corresponding network approach is deemed a parallel-
processes one in the sense that the two stages have 
common inputs but there are no intermediate products 
that are produced in one stage and consumed in another. 
Thus, as shown in Figure 1, both Stages B and L/U use 
LABOR and TIME inputs. In addition, Stage L/U uses 
Quay Cranes (QCRANES), Stacking Cranes 
(SCRANES) and Automated Guided Vehicles or 
similar Shuttle Vehicles (SHUTTLES). In addition, 
Stage L/U consumes storage space. This is included 
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he proposed input-oriented 

relational DEA model, let 

j,J=1,2,…, 

input LABOR of stage B of DMU j 

input TIME of stage B of DMU j 

input LABOR of stage LU of DMU j 

input TIME of stage LU of DMU j 

input QCRANES of stage LU of DMU j 

input SCRANES of stage LU of DMU j 

input SHUTTLES of stage LU DMU j 

iscretionary input AVAILSS of 

stage LU of D

-discretionary output TONNAGE of 

stage B of D

n-discretionary output 

LENGTH

on-discretionary output 

DEPT

 non-discretionary output TEU of 

stage L

ngle-process (SP) DEA model for a 
certain

P DEA model 
 

s.t. 

(1)

through a non-discretionary input that represents 
Storage Space Availability (AVAILSS). Other 
resources used in either stage may be included if the 
corresponding data are available although that is not 
necessary if the amount of the resource consumed by a 
ship is constant for all ships (e.g. if one tug is used by 
every ship). With respect to the outputs of each stage, 
those of Berthing are the main data about the 
characteristics of the ship such as Gross Register 
Tonnage (TONNAGE), LENGTH and DEPTH while 
the output of Loading/Unloading is the total number of 
TEUs loaded and unloaded. The outputs of both stages 
are non-discretionary and, together with the non-
discretionary input AVAILSS, can be handled as 
proposed in Banker and Morey (1986). 
 

 Figure 1. Inputs and outputs of Berthing and 
Loading/Unloading stages of a ship call 
 

A conventional DEA approach would consider a 
single, aggregate process as shown in Figure 2 where 
LABOR and TIME correspond respectively to the total 
labor and time inputs of a ship, i.e. the sum of those of 
its two stages. 
 

 Figure 2: Inputs and outputs of a ship call considered as 
a single process 

Before formulating t

 
n   number of DMUs 

n indexes on the DMUs 

LABORBj  

TIMEBj  

LABORLU j  

TIMELU j  

QCRANESj  

TIMEB 

LABORB

Stage B 

TONNAGE 

LENGTH 

DEPTH 

TIMELU

LABORLU

Stage LU 

QCRANES 

SCRANES 

TEU 

AVAILSS

SHUTTLES

SCRANESj   

SHUTTLES  j

AVAILSSj   non-d

MU j 

TONNAGE j  non

MU j 

LENGTH j   value of the no

 of stage B of DMU j 

DEPTH j   value of the n

H of stage B of DMU j 

TEU j   value of the

U of DMU j 
 
The corresponding input-oriented Variable Returns 

to Scale (VRS) si
 DMU 0 is 

 
S

SPMin θ0  

n SPη LABOR θ LABORj 0 0j
j 1

  

  

n SPη TIME θ TIMEj 0 0j
j 1

  

  

n SPη QCRANES θ QCRANESj 0 0j
j 1

  

  

TONNAGE 

LENGTH

DEPTH

TIME 

LABOR

Aggregate 
Process 

QCRANES 

SCRANES 

TEU AVAILSS

SHUTTLES
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n SPη SCRANES θ SCRANESj 0 0j
j 1

  

  

n SPη SHUTTLES θ SHUTTLESj 0 0j
j 1

  

  

n
η AVAILSS AVAILSSj 0j

j 1
 


  

n
η TONNAGE TONNAGEj 0j

j 1
 


  

n
η LENGTH LENGTHj 0j

j 1
 


  

n
η DEPTH DEPTHj 0j

j 1
 


  

n
η TEU TEUj 0j

j 1
 


  

n
η 1j

j 1



  

SPη 0 j θ freej 0   

 
An alternative DEA approach would be to consider 

the two stages B and LU separately and assess their 
efficiency as if they were independent processes. The 
corresponding input-oriented DEA models would be 

 
Stage B DEA model 
 

BMin θ0  

s.t. 

n Bλ LABORB θ LABORBj 0 0j
j 1

  

  

n Bλ TIMEB θ TIMEBj 0 0j
j 1

  

  

n
λ TONNAGE TONNAGEj 0j

j 1
 


  (2)

n
λ LENGTH LENGTHj 0j

j 1
 


  

n
λ DEPTH DEPTHj 0j

j 1
 


  

n
λ 1j

j 1



  

Bλ 0 j θ freej 0   

 
Stage LU DEA model 
 

LUMin θ0  

s.t. 

n LUμ LABORLU θ LABORLUj 0 0j
j 1

  

  

n LUμ TIMELU θ TIMELUj 0 0j
j 1

  

  

n LUμ QCRANES θ QCRANESj 0 0j
j 1

  

  

n LUμ SCRANES θ SCRANESj 0 0j
j 1

  

  (3)

n LUμ SHUTTLES θ SHUTTLESj 0 0j
j 1

  

  

n
μ AVAILSS AVAILSSj 0j

j 1
 


  

n
μ TEU TEUj 0j

j 1
 


  

n
μ 1j

j 1



  

LUμ 0 j θ freej 0   

 
Finally, the proposed parallel-processes network 

DEA approach jointly considers the B and LU stages, 
aiming at reducing the total inputs consumed by both 
stages (see Kao 2009b). The corresponding input-
oriented, VRS model is 
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Network DEA (NDEA) model 
 

NDEAMin θ0  

s.t. 

n n
λ TIMEB μ TIMELUj jj j

j 1 j 1

NDEAθ TIME0 0

  
 

 

 
 

n n
λ LABORB μ LABORLUj jj j

j 1 j 1

NDEAθ LABOR0 0

  
 

 

 
 

n NDEAμ SCRANES θ SCRANESj 0 0j
j 1

  

  

n NDEAμ SHUTTLES θ SHUTTLESj 0j
j 1

  

 0

On the one hand, although this model decreases the 
total LABOR and TIME inputs of the two stages, as 

does

 
In this section the network DEA approach is extended 

s 

Data

RCOST    cost per unit of input LABOR 
(LA  measured in man•hours) 

r unit of input 
tim

 
o

 

    optimal value of input LABOR of 
stage B for arriving ship 

g ship 

 

n
μ AVAILSS AVAILSSj 0j

j 1
 


  (4)

n
λ TONNAGE TONNAGEj 0j

j 1
 


  

n
λ LENGTH LENGTHj 0j

j 1
 


  

n
λ DEPTH DEPTHj 0j

j 1
 


  

n NDEAμ QCRANES θ QCRANESj 0 0j
j 1

  

  

n
μ TEU TEUj 0j

j 1
 


  

n
λ 1j

j 1



  

n
μ 1j

j 1



  

NDEAλ 0 j μ 0 j θ freej j 0     

 

 the SP DEA model (1), it uses different intensity 
variables for each stage ( j,j) instead of just one set of 
intensity variables ( j) as in the SP DEA model. On the 
other hand, although the proposed NDEA model uses 
different intensity variables for each stage as do the 
separate models of each stage (2) and (3), it computes a 
single efficiency score for the whole system (as does 
also the SP DEA model) instead of two efficiency 
scores, one for each stage. Therefore, in some sense, the 
NDEA model is in between the other two approaches. 
Note also that all three models treat the non-
discretionary input and outputs in the same manner. 

 
3. MINIMUM COST NETWORK DEA MODEL

so that a minimum cost model is formulated. It i
assumed that the unit cost of each input of each stage is 
known so that the model computes the optimal resource 
level for each stage given the value of the outputs, i.e. 
given the ship characteristics and the number of TEUs 
to be loaded/unloaded. In particular, since the durations 
of the two stages are among the inputs that are 
computed, the model determines the optimal time-in-
port value. The idea is to apply this model to plan in 
advance and optimally allocate the resources required 
for the processing of an arriving ship whose 
characteristics and cargo requirements are known. 

Let 
 
 
 

LABO
BOR

TIMECOST    cost per unit of input TIME 
QCRANESCOST cost pe
QCRANES per unit of e 
SCRANESCOST   cost per unit of input 
SCRANES per unit of time 
SHUTTLESCOST   cost per unit of input 
SHUTTLES per unit of time
AVAILSS   value f the non-discretionary input 
AVAILSS of arriving ship 
TONNAGE    value of the non-discretionary output 
TONNAGE of arriving ship
LENGTH    value of the non-discretionary output 
LENGTH of arriving ship 
DEPTH    value of the non-discretionary output 
DEPTH of arriving ship 
TEU     value of the non-discretionary output 
TEU of arriving ship 

 
Variables 

 
TLABORB

TTIMEB    optimal value of input TIME of stage 
B for arriving ship 
TLABORLU   optimal value of input LABOR of 
stage LU for arrivin
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TTIMELU    optimal value of input TIME of stage 
LU for arriving ship 
TQCRANES   optimal value of input QCRANES for 
arriving ship 
TSCRANES   optimal value of input SCRANES for 
arriving ship 
TSHUTTLES  optimal value of input SHUTTLES 
for arriving ship 

 the case of the cranes and shuttle 
vehicles the above cost coefficients are per unit of time. 
This






 

r 




s.t. 

(5)

 
Note that in

 means that, if the corresponding input data 
represent the number of cranes and vehicles used, in 
order to compute the cost incurred due to these concepts 
it is necessary to multiply by the duration of the L/U 
stage, which would make the proposed model a 
quadratic, albeit easy-to-solve, optimization problem. 
On the contrary, if the corresponding input data already 
represent cumulative usage time of cranes and vehicles 
(i.e. cranes•hours and vehicles•hours) then the model is 
an ordinary Linear Programming optimization problem. 
Below the two alternative objective functions 
corresponding to both cases are formulated. 

 

Min

L BORCOST (TLABORB TLABORLU)

TIMECOST (TTIMEB TTIMELU)

QCRANESCOST TTIMELU TQCRANES

SCRANESCOST TTIMELU TSCRANES

SHUTTLESCOST TTIMELU TSHUTTLES

 
   
  
  
  

A

o

Min

LABORCOST (TLABORB TLABORLU)

TIMECOST (TTIMEB TTIMELU)

QCRANESCOST TQCRANES

SCRANESCOST TSCRANES

SHUTTLESCOST TSHUTTLES

 
  
  
  
 

n
 λ LABORB TLABORBj j
j 1

 


 

n
λ TIMEB TTIMEBj j

j 1
 


  

n
λ TONNAGE TONNAGEj j

j 1
 


  

n
λ LENGTH LENGTHj j

j 1
 


  

n
λ DEPTH DEPTHj j

j 1
 


  

n
μ TIMELU TTIME Uj j

j 1
 


  L

n
μ LABORLU TLABOR Uj j

j 1
 


  L

n
μ QCRANES TQCRANESj j

j 1
 


  

n
μ SCRANES TSCRANESj j

j 1
 


  

n
μ SHUTTLES TSHUTTLESj j

j 1
 


  

n
μ AVAILSS AVAILSSj j

j 1
 


  

n
μ TEU TEUj j

j 1
 


  

n
λ 1j

j 1



  

n
μ 1j

j 1



  

λ 0 j μ 0 jj j     

 
Note that although in principle the solution to this 

minimum cost network A model gives the same 
solution that would be btained solving a separate 
minimum cost DEA model for each stage, the network 
DEA

DE
o

 approach is more general and allows for the 
inclusion of additional constraints involving the 
allocation of the shared resources. Thus, for example, 
maximum and/or minimum total LABOR and/or TIME 
constraints can be imposed, i.e. 
 

LABORLOWERBOUND TLABORB TLABORLU   

LABORUPPERBOUND TLA BORB TLABORLU  

TIMELOWERBOUND TTIMEB TTIMELU   

TIMEUPPERBOUND TTIMEB TTIMELU   
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or constraints on the relative allocation of resources to 
the two stages can be imposed, i.e. 
 

TLABORB
RELLABORLOWERBOUND   

TLABORLU

TLABORB
RELLABORUPPERBOUND

TLABORLU
  

TTIMEB
RELTIMELOWERBOUND

TTIMELU
  

TTIMEB
RELTIMEUPPERBOUND

TTIMELU
   

 
Take into account, however, that these or other 

possible joint constraints should only be used when 
there are enough reasons to impose them
generally reduce the feasibility region of the model and 

erefore increase the minimum cost of the optimal 
lu

proach to a dataset comprising 46 ship calls 

RS is assumed it was 
decided to exclude that constant input from the 

ical efficiency scores 

, since they 

th
so tion. 

 
4. APPLICATION OF PROPOSED APPROACH 

TO CONTAINER TERMINAL OF 
BUENAVENTURA 

In this section the results of the application of the 
proposed ap
that took place in a two-month period at the container 
terminal of Buenaventura, Colombia, are presented. The 
inputs and outputs considered are the ones mentioned in 
the previous section except that: 
 

 the number of SHUTTLES used was not 
available and 

 since in all cases in the sample two QCRANES 
were used and since V

analysis 
 

Therefore, stage B used two inputs and produced 
three non-discretionary outputs and stage L/U used four 
inputs (one of them non-discretionary) and produced 
one non-discretionary output. Tables 1 and show the 

put-oriented, VRS technin
computed using the models of Section 2. Note that the 
results of the different models are rather consistent, with 
the SP approach having the least discriminant power of 
the three DEA approaches. Thus, SP has the highest 
average efficiency score and labels as many as 29 
DMUs as technically efficient. The separate assessment 
of the efficiency of the two stages identifies 17 cases of 
stage B efficiency and 15 cases of stage L/U efficiency. 
Finally, the RN DEA approach identifies just 12 DMUs 
as technical efficient. Except in the cases of DMUs 25 
and 39, min (0

B , 0
LU )  0

NDEA  max (0
B , 0

LU ) 
with 0

RN  generally closer to 0
LU than to 0

B. 
 

Table 1: Results of Stage B and Stage LU DEA Models 

DMU B
0 (%) LU

0 (%) 

1 100.0 72.4 
2 95.4 83.3 
3 100.0 84.6 
4 100.0 100.0 
5 69.6 86.5 
6 81.6 100.0 
7 74.4 81.6 
8 72.4 83.9 
9 75.1 100.0 

10 89.0 81.3 
11 100.0 100.0 
12 92.2 77.7 
13 97.5 68.1 
14 77.7 84.7 
15 76.3 99.0 
16 100.0 80.9 
17 89.9 84.4 
18 90.1 100.0 
19 95.1 63.3 
20 78.6 100.0 
21 100.0 80.6 
22 93.2 80.1 
23 77.9 84.7 
24 100.0 62.9 
25 88.8 90.6 
26 100.0 72.6 
27 90.9 82.8 
28 1 100.0 00.0 
29 77.7 100.0 
30 87.9 100.0 
31 62.4 100.0 
32 56.3 89.3 
33 99.8 77.8 
34 100.0 100.0 
35 100.0 75.7 
36 89.8 99.7 
37 100.0 81.3 
38 1 100.0 00.0 
39 89.9 82.8 
40 100.0 100.0 
41 100.0 94.4 
42 100.0 100.0 
43 100.0 83.9 
44 85.9 96.6 
45 66.6 84.7 
46 71.9 100.0 

Average 89.0 88.1 
 

The correlation coe t between 0
RN

0
LU  

is 0.9 hile that betw RN and 0
B is -0 he 

correlation coefficient en 0
NDEA an  is 

int , 0.589, pos ut not too high. that 
0

NDEA=1 whenever the two stages are assessed as 
effic

fficien  and 
74 w een 0 .106. T

betwe d 0
SP

ermediate itive b  Note 


ient, i.e. 0
B=0

LU=1, something which occurs to 
DMUS 4, 11, 28, 34, 38, 40 and 42. 
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Table 2: Results of SP and Network DEA Models 

DMU SP
0 (%) NDEA

0 (%) 

1 96.5 76.1 
2 100.0 84.3 
3 100.0 86.2 
4 1  00.0 100.0
5 90.0 82.6 
6 100.0 96.4 
7 82.4 80.3 
8 93.5 81.2 
9 100.0 100.0 

10 88.1 82.7 
11 100.0 100.0 
12 85.9 79.4 
13 90.8 71.7 
14 100.0 84.7 
15 100.0 91.4 
16 100.0 82.4 
17 95.4 85.0 
18 100.0 99.2 
19 70.6 67.2 
20 100.0 100.0 
21 91.7 83.0 
22 97.8 81.8 
23 85.6 83.9 
24 100.0 70.6 
25 100.0 88.5 
26 100.0 79.7 
27 87.1 83.5 
28 1 100.0 00.0 
29 100.0 100.0 
30 100.0 100.0 
31 100.0 100.0 
32 91.4 84.6 
33 89.3 82.0 
34 100.0 100.0 
35 94.4 76.0 
36 100.0 97.1 
37 100.0 83.6 
38 1 100.0 00.0 
39 100.0 82.3 
40 1 100.0 00.0 
41 95.7 94.6 
42 100.0 100.0 
43 100.0 87.6 
44 100.0 96.6 
45 100.0 81.9 
46 1 900.0 8.7 

Average 96.2 88.4 
 

Altho it can be con at all the mo
that, general, there o significant  
ineffi cies, a minim ost analysis c ct 
wh t inefficien xist. To that he 
minimum cost network DEA model of section 3 has 
been applied to each DMU. The estimated unit cost 

ugh cluded th dels agree 
in  are n technical

cien um c an dete
ether cos cies e  end t

coefficients used are 10$/manhour for LABORCOST, 
20$/hour gross Ton for TIMECOST and 25$/hour for 
SCRANESCOST. 
 

Table 3 Cost Efficiency of Observed DMUs 
 Cost 

DMU Observed Minimum Cost Eff. (%) 
1 13,666 8,643 63.2 
2 22,394 16,451 73.5 
3 26,488 12,817 48.4 
4   17,195 10,188 59.2
5 14,094 10,930 77.5 
6 10,678 10,172 95.3 
7 8,934 5,927 66.3 
8 11,305 8,478 75.0 
9 14,177 13,386 94.4 

10 14,681 8,882 60.5 
11 26,804 18,122 67.6 
12 12,514 8,917 71.3 
13 19,890 11,414 57.4 
14 18,675 12,126 64.9 
15 14,200 11,581 81.6 
16 28,155 13,407 47.6 
17 14,793 11,361 76.8 
18 7,807 7,355 94.2 
19 11,479 6,116 53.3 
20 11,767 11,155 94.8 
21 11,166 8,759 78.4 
22 16,881 11,403 67.5 
23 22,937 10,817 47.2 
24 22,178 12,646 57.0 
25 19,717 15,506 78.6 
26 19,590 12,577 64.2 
27 7,866 5,832 74.1 
28 24,120 24,120 100.0 
29 22,220 21,531 96.9 
30 10,683 10,272 96.2 
31 13,027 10,556 81.0 
32 11,065 8,397 75.9 
33 12,208 8,660 70.9 
34 14,604 12,012 82.3 
35 28,270 12,661 44.8 
36 12,296 9,117 74.1 
37 26,668 17,131 64.2 
38 23,418 22,566 96.4 
39 19,471 14,706 75.5 
40 23,638 17,286 73.1 
41 24,449 16,559 67.7 
42 11,555 10,004 86.6 
43 16,913 13,362 79.0 
44 11,339 9,998 88.2 
45 22,118 13,507 61.1 
46 13,316 12,429 93.3 

Sum 7 581,410 59,839 - 
Savings = $ 221,571 
Savings = %       28.4 
Savings  =  $ per DM  4,817 U 
Savings  = $ per TE      15.8 U 
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Note also that not only this minimum cost model 
but all the other models compute, in addition to the 
efficiency scores, appropriate target levels for the 
controllable inputs. Thus, for example, Table 4 shows 
the value of the targets computed by the minimum cost 
network DEA model. Unlike the technical efficiency 
approach, the minimum cost feasibility region is not 
constrained to those operating points that use less inputs 
but it can, if it is cost-effective, increase some inputs 
and reduce others. In addition, the minimum cost 
approach exhaust all possible slacks that the input-
oriented radial efficiency score usually leaves 
unaccounted for. As shown in the table, the minimum 
cost efficiency approach could have obtained a 28.4% 
cost reduction for the DMUs in the sample, with total 
savings of 221,571 $ which represents 4817 per ship 
and 15.8 $ per TEU. 
 

Table 4 Cost Efficiency of Observed DMUs 
 Targets 

DMU LABORB TIMEB LABORLU TIMELU SCRANES 

1 28.9 3.7 360.3 8.4 7.6
2 28.3 4.4 407.4 10.5 10.4
3 29.6 4.0 387.1 8.7 7.2
4 8.020.7 3.8 325.6 8.1 
5 24.8 3.9 8.2 337.3 7.9
6 25.7 3.6 348.4 10.9 7.0
7 20.6 3.8 206.9 14.0 6.4
8 24.8 3.7 330.5 8.1 7.9
9 29.6 3.9 348.4 10.9 7.0

10 20.6 3.8 430.3 8.0 9.5
11 28.3 4.4 390.4 12.9 9.5
12 35.2 3.3 378.7 8.6 7.3
13 30.3 4.1 327.5 8.1 8.0
14 30.4 4.3 373.3 8.6 7.4
15 29.7 3.9 371.1 8.5 7.4
16 30.6 4.5 407.8 8.7 9.1
17 28.1 3.9 362.4 8.5 7.5
18 20.6 3.8 327.2 8.1 8.0
19 20.6 3.8 245.8 11.8 7.0
20 27.8 3.9 325.6 8.1 8.0
21 35.8 3.2 365.8 8.5 7.5
22 29.9 4.2 325.6 8.1 8.0
23 20.6 3.8 349.0 11.0 7.1
24 53.0 4.5 380.8 8.7 7.3
25 20.6 3.8 491.9 11.8 12.3
26 60.9 4.7 367.9 8.5 7.5
27 20.6 3.8 159.8 15.4 6.0
28 37.7 4.3 398.3 2 12.1 3.0
29 30.7 3.8 473.8 17.3 15.0
30 20.6 3.8 611.4 6.3 13.0
31 26.5 3.9 325.6 8.1 8.0

32 20.6 3.8 325.6 8.1 8.0
33 35.2 3.3 357.7 8.4 7.6
34 31.5 4.1 379.9 7.7 9.0
35 30.1 3.9 404.4 8.9 7.0
36 25.7 3.6 343.4 8.2 7.8
37 34.5 6.5 350.6 14.2 7.6
38 30.6 4.5 346.2 22.4 8.0
39 28.9 4.1 406.8 1 11.3 0.6
40 26.6 4.1 352.1 18.5 8.2
41 20.6 3.8 354.9 17.4 8.3
42 24.6 3.9 359.5 8.4 7.6
43 41.3 5.7 365.5 8.5 7.5
44 28.1 3.9 326.0 8.1 8.0
45 31.7 4.1 365.1 10.3 7.8
46 28.4 3.9 405.3 8.9 7.0
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DMUs, i.e  perform an  ana s and s  
th tent st re ion t ht h ccurr  
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co ted ts i ate of he  

bserved. Although interesting, this analysis is not too 

 a single, aggregate process, a parallel-
 approach has been used. The 

Th esults able 2 orrespo to th rved
. they ex-post lysi how

e po ial co duct hat mig ave o ed if
e pr sing of t e d ent ship had b  the 
mpu targe ndic instead being t one

o
useful because it looks into the past which cannot be 
changed. Much more useful is to apply the proposed 
approach to a ship that is to arrive and thus estimate ex-
ante the amount of resources to allocate given 
appropriate upper bounds on the durations of the two 
stages. Thus, for example, assume that a ship with 
TONNAGE=25,000 Ton, LENGTH=200 m, 
DEPTH=10 and that plans to load and unload a total of 
400 TEU. Assume also that when the ship arrives the 
storage are free capacity is AVAILSS=2,500. 
Formulating and solving the minimum cost network 
DEA model it can be estimated that the ship can be 
processed in TIMEB=4.18 hours and TIMELU=8.88 
hours (i.e. a total time-in-port of 13 hours 
approximately) allocating LABORB=30 man·hours, 
LABORLU=406 man·hours and SCRANES=7.6 with 
an estimated total cost (due to the concepts considered) 
of 12,564 $.  
 
5. CONCLUSIONS 
In this paper, a DEA approach to assessing the technical 
and cost efficiency of the processing of ships at a 
container terminal has been proposed. Unlike 
conventional DEA that looks at a DMU as a black box 
onsisting inc

processes network DEA
two stages considered have been Berthing and 
Loading/Unloading. Each stage has inputs and outputs, 
the latter being non-discretionary in nature. Not only 
can the technical efficiency of the operations be 
estimated but also its cost efficiency. A most practical 
feature of the latter approach is that not just the 
potential cost reductions of past processing can be 
measured but the resources to assign for processing an 
expected ship can be computed and the cost of its 
processing estimated. The results show the usefulness 
of the proposed approach in analyzing the historic (i.e. 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2014 
ISBN 978-88-97999-39-3; Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera Eds 

124



observed) inefficiencies of the terminal operations as 
well as estimating minimum cost resource requirements 
and time-in-port of arriving ships. 

Of course, the proposed approach has limitations 
like its being a static analysis which means that the 
feasibility of the computed target operating points need 
to be checked using for example discrete-event 
simulation. Another major limitation, which the 
reviewers kindly pointed out, is the deterministic nature 
of th
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