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ABSTRACT 
In a container terminal, many operations occur within 
the storage area: containers import, containers export 
and containers shifting. All these operations require the 
respect of many rules and even laws in order to 
guarantee the port safety and to prevent risks, especially 
when hazardous material is concerned. In this paper, we 
propose a hybrid architecture, using a Cellular 
Automaton and a Multi-Agent System to handle the 
dangerous container storage problem. It is an 
optimization problem since the aim is to improve the 
container terminal configuration, that is, the way 
hazardous containers are dispatched through the 
terminal to improve its security. In our model, we 
consider containers as agents, in order to use a Multi-
Agent System for the decision aid software, and a 
Cellular Automaton for modelling the terminal itself. To 
validate our approach many tests have been performed 
and the results show the relevance of our model.  
 
Keywords: container terminal, dangerous container, 
multi-agents system, security 

 
1. INTRODUCTION 
This paper proposes a dynamic technique to manage the 
storage of containerized dangerous goods in a terminal. 
This work aims at maintaining the safety of a terminal 
during all the handling operations that can be executed 
in such areas. 
 More precisely, our research is about stacking 
activities and dangerous containers storage in a port 
terminal. The problem is: how to position hazardous 
containers in compliance with physical constraints and 
regulations? The International Maritime Dangerous 
Goods (IMDG) Code, available on IMO web site 
(International Maritime Dangerous Goods 2013), 
classifies dangerous goods into 9 main classes (Table 
1). Their stockpiling must respect regulation and 
separation rules for each class. Our aim is to maintain a 
safe configuration of the terminal. The management of 
handling equipment is outside the scope of this paper. 
Methods for the scheduling of Straddle Carrier (SC) 
missions, and the subsequent routing, are investigated in 
other papers, see (Lesauvage, Balev and Guinand 2011) 
and (Balev, et al. 2009). 

In the following, we first present more precisely 
our problem and some related works. Then, our multi-

agents hybrid architecture and the behaviours of our 
agents are presented. Thereafter our tests and results are 
discussed. 
 
2. PROBLEM DESCRIPTION AND 

LITERATURE 
In this section, we will describe the problem of 
dangerous container storage: first we define the storage 
area structure we use. Then dangerous goods’ classes 
are determined with examples of security rules. After 
that, we explain the objective of our work.  

 
2.1. Problem Description 
 

2.1.1. Storage Area Structure 
A container terminal is a part of a port where containers 
are stored and handled. The storage area (yard) is 
divided in blocks. On each block containers are 
arranged in rows and slots (piles of at most 4 containers 
high); see Figure 1.  
 Spaces between two rows allow the handling 
equipment circulation. Handling equipment is required 
for terminal management. It transfers containers within 
terminal and tranship them. Common types of handling 
equipment are chassis based transporter, straddle 
carriers, quay crane, rubber tired gantry crane and rail 
mounted gantry crane (Stahlbock and Voss 2008). 
 In a terminal, there are three main activities 
concerning containers: 

 Unloading: containers are discharged from a 
ship or other transport mode like trucks or 
train, to be transferred to the storage area using 
handling equipment. 

 Staking: containers are stored on the area 
dedicated to them, respecting physical 
constraints and regulations. 

 Loading: containers leave storage area and are 
loaded to be transported on train or ship. 

 This paper focuses on the stacking activities, and 
the storage area where containers are moved by Straddle 
Carriers. When a container is moved from one place to 
another, within the terminal, we talk about a 
"movement". 
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Figure 1 Storage Area Structure 

 
 

2.1.2. Dangerous Containers 
Containers are boxes which contain goods. These goods 
can be dangerous and are then called hazardous 
materials or dangerous goods. This means articles or 
materials potentially dangerous for people or 
environment. It includes items of common use, such as 
aerosol cans, perfumes, and paints (Dangerous goods 
definition). 
The nine IMDG classes of dangerous goods are listed in 
the following table: 

Table 1 IMDG Classes 
Class # Dangerous Goods

1 Explosives 
2 Gases 
3 Flammable liquids 
4 Flammable solids; substances liable to 

spontaneous combustion; substances which, 
in contact with water, emit flammable gases 

5 Oxidizing substances and organic peroxides 
6 Toxic and infectious substances 
7 Radioactive material 
8 Corrosive substances 
9 Miscellaneous dangerous substances and 

articles 
 

Storage constraints exist for each class. The containers 
of a particular class cannot be stored next to another, or 
must be separated from them by a fixed distance. An 
example of separation rules is cited below, see (IDIT 
2013). 
Flammable liquids containers (class 3) must be 
separated by: 

 Distance F from explosives (class 1). F equals 
to  

F=4 . 8× Q13
  

where: 
 F is a separation distance in meters; and  
 Q is the explosive net weight in kilograms. 

 30 meters from gases (class 2). 
 7 meters from radioactive. 
  etc. 
 

2.1.3. Objective 
To explain the objective of this work, we use an 
example.  
 N Containers of different types T1, T2,.. Tr are 
packed together on one terminal. For simplicity, it shall 

be supposed in that presentation that the terminal is 
composed of one unique block of n rows. According to 
its type and the typology presented before, the well-
being of one container can be evaluated. For instance, 
considering a dangerous container of radioactive type as 
in previous section, its well-being depends on the 
number of containers of any dangerous type present in 
its neighbourhood (defined in terms of Euclidean 
distance). Generalizing this observation, it is easy to 
derive a well-being value for each container of the 
terminal, which can be normalized according to all 
container types. The total well-being value of a whole 
terminal configuration can be computed as the worse of 
the well-being values of all containers it contains (an 
alternative criterion is the sum of well-beings). This is 
also called fitness function in section 3. 

 Consider now some initial terminal configuration, 
associated with its well-being value. The problem 
consists in changing the configuration through a 
sequence of transfers (moves of a container from one 
place to another) so as to optimize the total well-being 
by minimizing movements number. This optimization 
problem is not simple to solve because of the different 
types of containers, and the special dimension of the 
problem. It is also clear that the optimal configuration 
does not depend on the initial configuration, but only on 
the number of containers of each type. Finding this 
optimal configuration is a problem of placing objects in 
a three-dimensional environment, so as to allot each 
type at best with a minimum number of movements.  

2.2. Literature 
As far as we know, there is no work specially dedicated 
to the storage of containers with dangerous goods in a 
terminal, excepted in (Salido, Rodriguez-Molins and 
Barber 2011). They resolved both allocation berth 
problem and container stacking problem by a set of 
Artificial Intelligence based heuristics. In the container 
stacking problem, the objective was the minimization of 
number of relocation. In this paper, dangerous 
containers were considered but the constraint was: two 
dangerous containers must maintain a minimum 
security distance, but different existing classes and rules 
of dangerous containers were not been considered. 
 However, many research papers use agent-based 
approach to simulate or solve transport logistics 
problems (Davidsson, et al. 2005). Some of them study 
the container terminal management problem using 
Multi-Agent System and their aims focus on various 
aspects of terminal planning and management (Rebollo, 
et al. 2000), (Henesey, Wernstedt et Davidsson 2003) 
and (Thurston and Hu 2002). 
 In (Kefi, et al. 2007), a MAS approach was used for 
storing containers respecting their departure time. The 
authors use two kinds of agents (Container Agents and 
Interface Agent) in order to optimize the container 
storage area on a port terminal; their goal was to reduce 
the transportation cost within the terminal. 

All these works reinforce our idea to use a MAS 
approach to model the management of a port terminal 
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and to solve our problem. Moreover, (Kefi, et al. 2007) 
used such architecture to perform container storage 
optimization which has a spatial aspect like our 
problem. 
Other papers used Operational Research techniques to 
solve container storage problem in a terminal. (Kim and 
Hong 2006) proposed two methods for determining the 
relocation of containers: a branch-and-bound algorithm 
and a decision rule, but it was limited to only 6 stacks 
by 5 containers high (5 tiers). 
In (Kim and Lee 2006), constraint satisfaction technique 
was used for space allocation to export containers. The 
objective was the maximization of the equipment 
efficiency. 
 The spatial aspect also appears in works on cellular 
automata (Wolfram 2002). Cellular automata are in 
particular used by geographers and economists to model 
the evolution of a population inside a given space 
(Schelling 1978). As we shall see later, we use a similar 
model (see section 3.2.2). 
 

3. PROBLEM MODELING  
In this section, we define Cellular Automata and show 
the similarity between the block structure and the 
Cellular Automata architecture. Then, multi-agent 
systems are defined and described in the container 
terminal context. Finally, we detail the adopted 
strategies and the agents’ behaviours.  

 
3.1. Hybrid Approach 
 
3.1.1. Cellular Automaton structure 
A container terminal is a set of three-dimension cubic 
cells arranged in rows. These properties inspire us to 
introduce, by similarity of structure, the notion of 3D 
Cellular Automaton (CA).  
 A Cellular Automaton is a complex and dynamic 
system. It is a collection of cells on a grid. Each cell has 
a "state" among a finite set of states, and evolves 
through a number of discrete time steps according to a 
set of rules based on the states of neighboring cells. The 
grid can be in any finite number of dimensions 
(Wolfram 2002). If state updates occur synchronously, 
we speak about synchronous cellular automata, i.e. the 
states of every cell in the model are updated together. In 
contrast, in an asynchronous cellular automaton cells 
are updated individually and independently, in such a 
way that the new state of a cell affects the calculation of 
states in neighbor cells. 
 Thus, each cell of our cellular automaton 
corresponds to a container place on terminal. It can be 
free or occupied. The neighbourhood of each cell 
depends on the container class and its separation rules, 
it is defined in terms of Euclidean distance, but a 
transition function is not simple to be expressed. It will 
correspond to agents’ decisions. 

 
3.1.2. Multi-Agent System Model 
A Multi-Agent System is a set of physical or virtual 
autonomous entities, located on an environment. They 

can coordinate, communicate, negotiate and interact 
with each other, using their resources and skills, in 
order to fulfil common and individual goals (Weiss 
1999). Our project aims to avoid a coordination center 
and consequently to introduce local and neighbourhood 
consideration to proceed the placing of hazardous items. 
 As dynamic and complex systems, requiring many 
decision makers with different objectives, dangerous 
containers storage problem is suitable for distributed 
solving techniques. The specification of mobility 
attached to our agents engaged us to use situated agents 
in the grid and to precise that elements are not fixed in a 
definitive cell into the CA. Nevertheless, the agents 
come in, come out, and move into the CA. 
 The aim is to satisfy container objectives, that is 
why container centred model is developed. 
Consequently, containers are considered as agents and 
they attempt to reach their goals. Each agent has to be 
placed in a cell, in which its safety rules are respected. 
They also contribute to reach the global objective. 
 Container agents have to execute two processes. 
The first one is the negotiation phase; the second one is 
the movement phase. The negotiation phase is 
composed by the following tasks: 
First, each agent computes its well-being. We can 
restrict the number of partners (containers) interacting 
in the negotiation phase. Candidates are chosen 
according to their well-being. The next step consists in 
finding a destination for elected agent(s); the chosen 
container can be selected before this step or after to 
consider the well-being enhancement. 
Among the strategies intervening to decide the winner 
of the negotiation, the moving cost can be considered. It 
depends on the distance.  
 After that, the agent selected to be moved will 
execute the movement process. In this process, 
container searches a new place better than its current 
position, and moves using resources. 
The “search new place” task can be in the first process 
or the second process. It depends on the strategy chosen 
and the agent situation. 
 This model allows us to test various strategies for 
dangerous container placement or displacement on a 
terminal. These strategies depend on processes 
execution of agents. 

 
 To summary our model, first we structure these 
objects using the CA architecture, secondly, we 
introduce agent based modelling to add communication 
protocols and behaviours. 

 
3.2. CA and MAS Application: Strategies 
To solve the dangerous container storage problem, 
many strategies are implemented using the Cellular 
Automata and Multi-Agent System approach.  
 First, some terms definition, useful for describing 
strategies, are remained. Then two strategies are 
detailed  
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3.2.1. Notations 
 Neighbourhood: The neighbourhood of 

container agent A is a set of containers. These 
containers are separated from A by a known 
distance. For example, a radioactive container 
R neighbourhood is a set of containers which 
are located within a radius of 6 meters from the 
container R. 

 Fitness: the function fit(A) is used to denote 
the fitness of the container A. It measures its 
well-being. It is equal to the number of 
violated rules of container A. 

 Weighted fitness: the function fitw(A) is used to 
denote the weighted fitness of container A. It is 
equal to the fitness multiplied by a factor 
between 0 and 1. This factor depends on the 
neighbourhood size of the container agent A. 
The weighted fitness is used to choose 
candidates agent containers. 

 Configuration: exact location of each type of 
container in the block. An Undesirable 
configuration is a configuration in which some 
security rules are not respected. 

3.2.2. Schelling Strategy  
This strategy was inspired by Schelling’s segregation 
model (Schelling 1978). This model was proposed by 
Thomas Schelling in 70's. It is a Cellular Automaton 
used to study racial segregation mechanism inside an 
urban area. A cell of the automaton is an 
accommodation (flat or house). Its state is the group of 
its inhabitant, or empty. The inhabitant decides to leave 
if the percentage of foreigners (relatively to his group) 
in its neighbourhood exceeds a given threshold. He then 
moves to any free accommodation. Under very weak 
initial conditions and a high tolerant threshold, 
segregation appears between the different groups of 
inhabitants. 
 We use a similar model, where inhabitants are 
replaced by containers. In this strategy, each container 
agent interacts with its neighbours, and computes its 
fitness, then its weighted fitness. Agents with weighted 
fitness equals to the maximum value of weighted fitness 
of all agents in the block, move randomly within the 
terminal. Many agents can be moved in the same time. 
They choose randomly an empty cell. This strategy is 
repeated until all security rules are respected, or until 
the movements becomes too high. 
 If a container agent is selected to be moved (i.e. his 
weighted fitness equals to the maximum weighted 
fitness in the block) and is not on the top of the stack, 
then this agent asks the agents above to be moved. They 
also move randomly, from the highest to the lowest. 
 
Advantages 

 Even if agents move to random places, like 
Shelling’s segregation model, this strategy 
often find a solution.  

 

Disadvantages 
 The number of movements is very high. 
 Some movements are useless. 
 Maximal fitness value of all container agents 

varies considerably between two 
configurations (after one strategy run). 

 
3.2.3. Cognitive Agent Based Strategy (CABS) 
Unlike the previous strategy where container agents are 
reactive, in this one, agents are cognitive. They 
anticipate before acting. Only one container moves in 
the same time.  
 First, all agents compute their fitness, and their 
weighted fitness. Then they compare their weighted 
fitness. The ten agents that have the worst (the ten 
maximum values) weighted fitness compose “the 
candidates set”. According to strategy steps, this set will 
be reduced until it contains only one element: the agent 
to be moved. 
Hereafter, step run by candidate agents (agents that are 
members of “candidate set”): 

a) Search place in the block: agents search places; 
they begin by the nearest empty cells. The best 
place with the best fitness for each agent is 
saved in its memory. Each agents stop 
searching when it finds a place which respects 
all its security rules.  

b) Compute utility value: this value measures 
fitness improving. It is equal to the difference 
between the current fitness and the future 
potential fitness of the agent container. Each 
candidate agent computes its utility. 

c) Reduce candidates set: agents having utility 
equals to the biggest utility of all candidate 
agents are retained in the “candidates set”. The 
others are deleted from this set. More over the 
best utility value must be positive or zero, 
otherwise the strategy running stops. At this 
level, candidates set cardinality can be one or 
more. 

d) Candidate agents compare fitness of all 
neighbour agents, and save on its memory the 
maximum value called “neighbourhoods’ 
maximum fitness”. The agents having the 
neighbourhoods’ maximum fitness value equal 
to the highest one, are kept in the candidates 
set, the others are removed. 

e) If “candidates set” has more than one element, 
then one container agent is chosen randomly to 
be the final candidate. 

f) The final candidate moves. If one or more 
containers are placed just above it, they have to 
be moved. So, they search the best existing 
places in the terminal without comparing with 
the current places, and without taking into 
account the place chosen by the final candidate 
(so they can take its chosen place). 

Neutral containers (i.e. containers that don’t store 
dangerous goods) have always a fitness equals to 
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zero. When they are ordered to be moved they 
chose the nearest empty cell. 
  The program stops if all security rules are 
respected in the block, or all candidate agents don’t 
find a place that improves or stabilises their fitness. 

 
Advantages 

 Agents anticipate: before moving, agents 
search places. Then they compare their fitness 
improving before they decide which one will 
be moved. 

 A container agent does not move until it 
improves its fitness or stabilizes it. 

 Movement number is strongly reduced 
comparing with Schelling Strategy 

Disadvantages 
 Anticipation is efficient only if the final 

candidate container is on top of the stack. 
 Risk of getting movement cycles: after x 

movements, the block turns back in a previous 
configuration and same container(s) move(s) 
indefinitely. 

 The strategy can fall in a local minimum: it can 
be possible that none of agents container 
within the candidates set finds a new cell 
improving or stabilizing its fitness. In this case, 
the program stops without finding a solution. 

 
4. TESTS AND RESULTS 
To estimate the efficiency of these strategies, tests were 
executed. To simplify the model, only five types of 
containers are considered, with realistic separation 
rules: 

 T1: Highly dangerous containers 
 T2: containers storing flammable material 
 T3: containers storing oxidizing material 
 T4: food containers 
 T5: neutral containers 

 
The Table 2 below shows these classes with their 
separation rules: 

 
Table 2 Separation Rules 

Types T1 T2 T3 T4 T5 
T1 X 20m 20m VN X 
T2 20m X 6m VN X 
T3 20m 6m X VN X 
T4 VN VN VN X X 

 
Significance of the table: 

 l m: it means that there must be a separation of 
l meters between two container types. For 
example a flammable container (T2) must be 
stored away from highly dangerous containers 
(T1) for at least 20 meters and away from 
oxidizing containers (T3) for at least 6 meters. 

 VN is the Von Neumann neighbourhood: a 
food container cannot be close to a dangerous 
one.  

 X: no constraints. 
 
The solution is implemented with Repast 

Simphony (Repast Simphony). It is an open source 
toolkit for agent-based modelling and simulation.  

In the following, we present a selection of tests and 
their results. Remember that, the optimization begins 
from an initial random configuration, in which many 
security rules are violated. The purpose is to obtain a 
final configuration where the number of violated rules is 
minimum or zero if it is possible, with a minimum of 
movements. In this first phase, the dynamic of 
containers terminal is not taken into account: during 
simulation, there is no arrival or departure to or from 
the terminal.  

 
4.1. Schelling vs. CABS 
To compare the two strategies defined in section 3.2, we 
consider one block with the five previously defined 
container types. The block is composed of 10 rows; 
each row is composed of 10 container stacks, and each 
stack is at most four containers high. So, the block 
contains 400 cells.  
 75% of cells are occupied by containers. The 
average percentage of dangerous containers is about 
10% of the global traffic. In our tests, the percentage is 
increased to 15% to verify the robustness of our 
approach. Food containers (T4) represent 20% and the 
rest (65%) are neutral containers (T5). Hereafter a 
recapitulative of the block properties: 
 
Dimensions : 10x10x4 
Filling          : 75% 
%T1             : 1% 
%T2             : 7% 
%T3             : 7% 
%T4             : 20% 
 Tests were done on 1000 instances. Results are 
expressed on the table above: 
 

Table 3 Schelling vs. CABS 
Strategies Schelling CABS 

Number of 
movements 

Min 277 62 
Max 8906 130 
Avg 703,43 92,61 

% success 95,40 % 99,70% 
 
Min, Max and Avg, are respectively the minimum, 
maximum and the average of the number of 
movements, in case the optimal solution was found. 
% success is the percentage of optimal solutions found 
by the strategy among solutions. 
 During tests, the program is stopped if the solution 
is found or if the number of movements reaches 10000 
movements for Schelling strategy and 1000 movements 
for CABS. 
 Among 1000 CABS runs, the program stopped 
without finding a solution in 3 cases. In these 3 cases 
the program reached the limit number of movements 
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(1000 movements), and movement cycles were 
observed. 
 To avoid cycles in CABS, some modifications were 
done: when an agent container moves, it keeps 
temporarily in memory the last places occupied. When a 
container searches for a new place, it checks its list of 
memorized places, and avoids them. 
 

4.2. Block Filling Variation 
In these tests of CAB Strategy, we try to vary the 
parameter of the block filling (50%, 70% and 90%), and 
observe how the strategy is efficient.  
 
Figure 2 Number of Movements When The Block 
Filling Varies 

 
 
 
 
The rate success in the six cases is 100%. 
We observe that when the filling percentage increases to 
high values, the number of movements increases no 
more than linearly. 
 
4.3. Dimension Block Variation 
 Now we vary the block dimension: the number of 
rows (X) and the stack high (Z). The other parameters 
remain unchanged and are kept as before. 
 
Table 4 Test Results: Block Dimensions Variation 
 X=10 X=20 X=40 
Z nbMvt Success nbMvt Success nbMvt Success 
2 23,87 99,9 % 50,56 100 % 103,35 100 % 
3 51,27 100 % 103,24 100 % 213,56 100 % 
4 91,49 99,8 % 177,07 100 % 355,74 100 % 
 
 
nbMvt: is the average number of movements. 
Time: is the average time of run in seconds. 
 
These tests show that the number of movements is 
linearly proportional to the number of containers.  
 
4.4. T1 Percentage Variation 
Here the percentage of T1 containers is allowed to vary. 
The block dimensions are 10x10x3 and the percentages 
of T2, T3 and T4 remain unchanged (7%, 7% and 20% 
respectively).  

 The results show that from 0 to 3% (6 containers) 
of T1 containers, almost always an optimal solution is 
found, and the number of movements increases. 
From 4% to 11%, the percentage of success decreases 
rapidly, from 91% to 1%, until no solution is found for 
12%, which corresponds to 27 T1 containers. Note that 
the number of movements is then non increasing. 
 
Figure 3 The Percentage of Success When T1 
Containers Varies 

 
 
 
 
 
Figure 4 The Number of Movements When T1 
Containers Varies 

 
 
 
4.5. Tests Conclusion 
Our decentralized multi-agents model is an efficient 
way to solve the problem of dangerous container 
storage when the parameters (percentage of dangerous 
containers) are realistic. It is efficient even if the initial 
configuration is created randomly, which is making 
things more difficult.  
 In a second step, the model will include the 
dynamics of the terminal. 
 
5. CONCLUSION 
The presented framework permits to study different 
situations. We have tested our container centred 
approach modelling. The obtained results permit to 
validate the model and the simulation compared to the 
ground truth. Complementary test are being realized to 
take into account the dynamic arrivals and departures of 
containers. 
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After validating the behaviour of our intelligent agents, 
we have introduced some extreme values considering 
the density of dangerous containers. The results show 
the existence of a threshold; beyond this threshold our 
model has difficulties to reach an optimal solution. 
Nevertheless, these unsuccessful configurations are 
quite unrealistic. 
Now, our model invites us to test specific agent 
behaviours using the centred container approach. This 
consists in modifying each intelligent agent to introduce 
different perceptions of the environment and to change 
the rules of positioning and fitness computing. So, this 
modelling permits the practical modularity and 
flexibility, allowing to test and to adapt strategies to the 
dynamic context of a container terminal. 
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