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ABSTRACT 

In this paper the operational planning of drayage 

operations in the service area of intermodal terminals is 

studied. Drayage operations are the full truckload and 

empty container transport activities between container 

terminals, container depots, consignees and shippers. 

Most existing models consider travel times to be 

constant over time. In reality travel times depend on the 

time of the day. In this paper, time-dependent travel 

times are considered while planning daily drayage 

operations. A deterministic annealing meta-heuristic is 

proposed to solve the problem. The algorithm provides 

high quality results. Finally, two approaches to reduce 

computation time are presented. 

 

Keywords: intermodal terminals, drayage operations, 

time-dependent travel times, vehicle routing 

 

1. INTRODUCTION 

Drayage operations refer to the full truckload container 

transport activities that take place on a regional scale 

around the intermodal container terminals. They involve 

the transport of loaded and empty containers between 

these container terminals, container depots, consignees 

and shippers. Drayage operations are mostly performed 

by truck and constitute a large part of total costs of an 

intermodal transport. Therefore, efficient planning of 

these operations is an important task. Special attention 

should be paid to minimizing empty container 

movements since these are costly activities which do 

not generate any revenue.  

Often a sequential planning approach is proposed 

to plan daily drayage operations. First, an empty 

container allocation model is used to determine the 

optimal distribution of empty containers in the region, 

based on supply and demand information of consignees 

and shippers respectively. Next, a vehicle routing 

problem is solved to create efficient vehicle routes 

performing loaded and empty container transports. 

Recently, efforts to integrate both planning steps are 

introduced by several authors (Smilowitz 2006; Ileri 

2006; Zhang, Yun, and Moon 2009; Zhang, Yun, and 

Kopfer 2010; Braekers, Caris, and Janssens 2012). In an 

integrated planning approach empty container allocation 

decisions are not taken in advance. Instead, these 

decisions are taken simultaneously with vehicle routing 

decisions. As a result, drayage costs may be reduced 

(Braekers, Caris, and Janssens 2012). Therefore, in this 

paper an integrated planning approach is used. 

The majority of papers on the operational planning 

of drayage operations, like the ones mentioned above, 

make the simplifying assumption that travel times 

between locations are constant and only depend on the 

distance to be travelled. This is a very common 

assumption in vehicle routing literature. However, in 

reality travel times are not solely a function of the 

distance. Rather they will vary from time to time. 

Several causes of these variations in travel times may be 

identified. A major cause is the temporal variation in 

traffic density. Average traffic volumes are affected by 

hourly, daily, weekly and seasonal influences. Traffic 

density will be higher during peak hours than during 

non-peak hours while holidays and specific events may 

result in daily or weekly variations. Other causes of 

travel time variation include stochastic or unforeseeable 

events like accidents, vehicle breakdowns and weather 

conditions. (Malandraki and Daskin 1992; Balseiro, 

Loiseau, and Ramonet 2011) Neglecting the time-

dependency of travel times may seriously affect the 

applicability of vehicle routing models in practice, 

especially when time windows at customers are 

involved and vehicle movements are planned in heavily 

congested areas (Hill and Benton 1992). 

In this paper, the effect of hourly variations in 

travel times on the operational planning of drayage 

operations is studied. Travel times are assumed to be a 

deterministic function of the distance and the time of 

the day. This means that although travel times are not 

constant during the planning period, travel times at each 

point in time are known in advance. As a result, a 

deterministic planning approach may be used. Travel 

time variations due to random events like weather 

conditions and accidents are not considered. To take 

these variations into account, a stochastic approach 

should be considered. 

Related literature is reviewed in Section 2. In 

Section 3, a detailed problem description is presented. A 

time-dependent version of the deterministic annealing 
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algorithm for the integrated drayage problem presented 

in Braekers, Caris, and Janssens (2012) is introduced in 

Section 4. Results on randomly generated problem 

instances are discussed in Section 5. Finally, Section 6 

contains conclusions and opportunities for further 

research. 

 

2. LITERATURE REVIEW 

In this section, an overview of literature on time-

dependent vehicle routing is presented. For a detailed 

review of literature on drayage operations, the reader is 

referred to Braekers, Caris, and Janssens (2012). 

Vehicle routing with time-dependent travel times is 

a relatively new research direction. The first steps to 

account for time-dependency of travel times in vehicle 

routing problems are presented by Hill and Benton 

(1992) and Malandraki and Daskin (1992). Hill and 

Benton (1992) propose to calculate time-dependent 

travel times on a link by using the average of speed 

levels in the area of the origin and destination. 

Malandraki and Daskin (1992) propose to use stepwise 

functions for modelling travel time variations. The 

planning period is divided in a number of intervals and 

the travel time on a link differs from interval to interval. 

As a result, the travel time on a link makes a jump at 

discrete moments in time. A major drawback of these 

early approaches is that they violate the non-passing or 

FIFO ('First-In-First-Out) property. This property 

encompasses the common sense idea that when a 

vehicle leaves node   for node   at a given time, any 

identical vehicle that leaves node   at a later time, 

cannot arrive earlier at node  . (Ahn and Shin 1991, 

Malandraki and Dial 1996). 

Fleischmann, Gietz, and Gnutzmann (2004) 

describe a method to exclude the possibility of passing. 

The authors propose to remove the discrete jumps in 

stepwise travel time functions by smoothing the 

function. This smoothing relies on two parameters that 

have to be set appropriately. The resulting smoothed 

travel time function satisfies the non-passing property 

as long as the slope of the function is larger than minus 

one at any point (Fleischmann, Gietz, and Gnutzmann 

2004; Kuo, Wang, and Chuang 2009). Another method 

to ensure the non-passing property is presented by 

Ichoua, Gendreau, and Potvin (2003). The authors 

propose to use a stepwise function for travel speed 

instead of a stepwise function for travel time. This 

means that the speed on a link changes at discrete points 

in time. It is easy to see that this method satisfies the 

non-passing property since at any time all vehicles 

travelling along an arc will have the same speed no 

matter where they are. 

Recently, time-dependency of travel times in 

vehicle routing problem has received increased research 

attention. All recent papers consider travel times that 

satisfy the non-passing property. 

To the authors’ knowledge, only Namboothiri and 

Erera (2004) deal with time-dependent travel times in 

drayage operations. The authors study a drayage 

problem involving the transport of loaded containers 

between customers and a single terminal at the port. 

Delays at the terminal due to congestion are the only 

source of time-dependency of travel times. Exact and 

heuristic column generation approaches are proposed to 

solve the problem. 

Other research on time-dependent vehicle routing 

has mainly focused on the Time-Dependent Vehicle 

Routing Problem (TD-VRP) and its variant where time 

windows at customers are imposed (TD-VRPTW). 

Exact approaches for the TD-VRPTW are proposed by 

Soler, Albiach, and Martinez (2009) and Dabia, Ropke, 

and Van Woensel (2011). Soler, Albiach, and Martinez 

(2009) describe a method to transform the problem to 

an asymmetric capacitated vehicle routing problem 

which may be solved exactly for small problem 

instances. Dabia, Ropke, and Van Woensel (2011) 

present a column generation approach embedded in a 

branch and cut framework. Due to the complexity of the 

problems, most research has focused on the 

development of (meta)-heuristics. Kuo, Wang, and 

Chuang (2009) and Jabali et al. (2009) propose tabu 

search algorithms for the TD-VRP. Jung and Haghani 

(2001) and Haghani and Jung (2005) present a genetic 

algorithm on the dynamic time-dependent vehicle 

routing problem with mixed linehauls and backhauls. 

Hashimoto, Yagiura, and Ibaraki (2008) discuss an 

iterated local search algorithm for the TD-VRPTW. Ant 

colony system algorithms for this problem are proposed 

by Donati et al. (2008) and Balseiro, Loiseau, and 

Ramonet (2011). Figliozzi (2012) proposes a solution 

algorithm based on a route construction and route 

improvement heuristic while Kok, Hans, and Schutten 

(2011) study a TD-VRPTW where driving regulations 

are imposed. Finally, vehicle routing problems with 

stochastic time-dependent travel times are studied by 

Van Woensel et al. (2007, 2008) and Lecluyse, Van 

Woensel and Peremans (2009). 

 

3. PROBLEM DESCRIPTION 

The problem studied in this paper is to construct 

efficient vehicle routes performing all loaded and empty 

container transports during a single day in the service 

area of one or more intermodal container terminals. 

Only full truckload container transports are considered. 

A loaded container transport represents a full 

truckload transport from a shipper to a container 

terminal (outbound loaded container) or from a 

container terminal to a consignee (inbound loaded 

container). For each container, the terminal to be used is 

predefined so that for all loaded container transports the 

origin and destination are known in advance. Time 

windows are imposed on these transport tasks. 

For empty container transports, either the origin or 

the destination is not defined in advance. A shipper may 

request an empty container to be delivered before a 

specific point in time. The origin of this empty 

container is irrelevant for the shipper and can be chosen 

by the decision maker. On the other hand, a consignee 

will have an empty container available after unloading 

an inbound loaded container. This container becomes 
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available at a certain point in time and should be picked 

up before the end of the day. The destination of the 

empty container is determined by the decision maker. 

Empty containers can thus be transported from 

consignees to container terminals, from container 

terminals to shippers or directly from consignees to 

shippers. 

A homogeneous fleet of vehicles with a single 

container capacity is assumed. All vehicles start and end 

their route at the vehicle depot. When a vehicle arrives 

early at a location, waiting is allowed at no cost. The 

service time to pickup and drop off containers is 

constant and the same for loaded and unloaded 

containers. A hierarchical objective function is used. 

The primary objective is to minimize the number of 

vehicles used while the secondary objective is to 

minimize total route duration (sum of travel, service and 

waiting times). 

An example of a small problem is shown in Figure 

1a. The problem consists of a single vehicle depot, two 

container terminals, an inbound loaded container 

transport task, an outbound loaded container transport 

task, an empty container supply location and an empty 

container demand location. When no time windows are 

imposed, Figure 1b shows the optimal solution for this 

problem. A single vehicle is used to execute all 

transportation tasks. First, the vehicle performs the 

inbound loaded container transport task. Second, an 

empty container is transported directly from the empty 

container supply location to the empty container 

demand location. Finally, the vehicle performs the 

outbound loaded container transport task before 

returning to the vehicle depot. 

Time-dependent travel times are calculated using 

the method of Ichoua, Gendreau, and Potvin (2003). 

The eight hour planning period is divided in five 

intervals. For each link in the network, a speed 

distribution over all five intervals is defined. In 

literature, often different speed levels are assigned to 

different (types of) links in the network. In our opinion 

this requires a good understanding of the different types 

of links and the extent to which they are subject to 

congestion. This may be the case when working with 

travel speeds on an actual road network. On the other 

hand, (randomly) assigning speed distributions to links 

might not make much sense when working with 

problem instances which are randomly generated on a 

Euclidean plane like here. Therefore, in this work the 

assumption is made that the whole region in which 

drayage operations take place is equally affected by 

congestion during peak hours. This means that all links 

in the network have the same speed distribution. A 

similar approach is considered by Jabali et al. (2009) 

and Figliozzi (2012). Speed during the first, third and 

fifth interval is assumed to be 60 kilometres per hour 

while speed drops to 36 kilometres per hour due to 

congestion during periods two and four. An overview of 

the speed distribution and the corresponding travel 

times on a link of 20 kilometres is shown in Figures 2 

and 3. 

 
Figure 1: Small Problem Example with Solution 

 

 
Figure 2: Speed Distribution 

 

 
Figure 3: Travel Times on a Link of 20 Kilometres 
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4. PROBLEM FORMULATION 

The problem described in the previous section may be 

formulated as an asymmetric multiple vehicle 

Travelling Salesman Problem with Time Windows (am-

TSPTW) as is shown in Zhang, Yun, and Moon (2009) 

and Braekers, Caris, and, Janssens (2012). The problem 

is defined on a graph         with node set   and 

arc set  . The node set             consists of a 

vehicle depot (   , index 0), a set of nodes for the 

loaded container transport tasks (  ), a set of nodes for 

the empty container demand locations (  ) and a set of 

nodes for the empty container supply locations (  ). 

Each node has a time window         during which it 

should be visited. The vehicle depot (as well as the 

container terminals) are opened during the whole 

planning period      . 
When travelling between certain types of nodes, an 

intermediate stop at a container terminal is required. 

This is the case when travelling: 

 

 from an empty container supply node to the 

vehicle depot, a loaded container task or 

another supply node, 

 from the vehicle depot, a loaded container task 

or an empty container demand node to another 

container demand node. 

 

In the first case, it is necessary to drop off the empty 

container which was picked up at the supply node 

before the vehicle is able to finish its route at the 

vehicle depot, transport a loaded container or pickup 

another empty container. The terminal which is used to 

drop off the empty container is chosen such that the 

duration of the detour is as small as possible. Similarly, 

when leaving the vehicle depot, finishing a loaded 

container task or dropping of an empty container at a 

demand node, an empty container needs to be picked up 

at a container terminal before travelling to an empty 

container demand node. 

The arrival time function        indicates the 

earliest arrival time at node   when a vehicle leaves 

node   at time  . The time needed to arrive at node   
when leaving node   at time   is equal to          and 

includes the execution of the loaded transport task at 

node   (if     ), the time to travel from node   to node 

  including a possible detour to a container terminal, 

container pickup and drop off times and possible 

waiting times at node  . 
Travel times between two locations are calculated 

using the method of Ichoua, Gendreau, and Potvin 

(2003) which ensures that the non-passing property is 

satisfied. As a consequence,  the arrival time function is 

a monotonic increasing function. Hence the inverse of 

the function    
       exists as well. This inverse 

function indicates the latest arrival time at node   in 

order to arrive at node   at the latest at time  . The 

values of    
      are calculated in a similar way as those 

of       . The major advantage of the existence of the 

inverse function is that it is possible to calculate 

backwards in a route. Hence, route feasibility checks 

may be formed in constant time (Ahn and Shin 1991; 

Fleischmann, Gietz, and Gnutzmann 2004; Donati et al 

2008). 

The arc set in the network is composed of all links 

      which are feasible:                      

   . The set of vehicles is indicated by   (index  ) 

while   represents a very large number. Two types of 

variables are considered: binary variables    
  which 

indicate whether a vehicle   travels directly from node    

to node  , and variables   
  which indicate the arrival 

time of vehicle   at node  . The problem is formulated 

as follows: 

 

        
     

 
       

      
       

        
     

   (1) 

 

 Subject to: 

 

     
 

                   (2) 

 

     
 

             (3) 

 

    
 

        
 

              (4) 

 

      
     

        
                 

        (5) 

 

      
           

              (6) 

 

     
                (7) 

 

  
                (8) 

 

   
                       (9) 

 

A hierarchical or lexicographic objective function 

is used (1). The primary objective is to minimize the 

number of vehicles used while the secondary objective 

is to minimize total route duration. Constraints (2), (3) 

and (4) are flow constraints. Constraint (5) ensures that 

a vehicle cannot arrive at a node before leaving the 

previous node and travelling to the new one. Constraint 

(6) ensures that all vehicles return to the vehicle depot 

before the end of the planning period. Time windows 

are represented by constraint (7). Finally, constraints (8) 

and (9) determine the domains of the decision variables. 

 

5. TIME-DEPENDENT ALGORITHM 

In this section, a two-phase deterministic annealing 

algorithm is presented for the integrated time-dependent 

drayage problem. Only a brief discussion of the general 

structure of this algorithm is presented here since it is 

similar to the algorithm discussed in Braekers, Caris, 

and Janssens (2012) for the time-independent integrated 

problem. 

The algorithm starts with an initial solution which 

is constructed using a simple parallel insertion heuristic. 
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In the first phase of the algorithm, the number of 

vehicles is minimized while partially ignoring the 

secondary objective of minimizing total route duration. 

During the second phase of the algorithm, total route 

duration is minimized while the number of vehicles is 

kept fixed at its minimal value obtained in phase one. 

During both phases, a deterministic annealing 

meta-heuristic is implemented to guide the search. 

Deterministic annealing is a meta-heuristic based on 

local search. During each iteration, neighbours of the 

current solution are found by local search operators. A 

neighbour is accepted to become the new current 

solution when it is better than the current solution or 

when the worsening in the objective value is smaller 

than a deterministic threshold value  . This 

deterministic threshold value is gradually lowered 

during the search. (Dueck and Scheuer 1990) 

Details on the implementation of the local search 

operators and the calculation of the optimal departure 

time of vehicles at the depot are presented in the 

following paragraphs. Two approaches to reduce 

computation times of the algorithm are discussed as 

well. 

 

5.1. Optimal Departure Time 

In the time-independent case, the departure time of a 

vehicle which minimizes the duration of a route is equal 

to the latest possible departure time. By leaving the 

depot as late as possible, waiting times at customers are 

avoided as much as possible. Unfortunately, this is no 

longer true when travel times are time-dependent. 

Leaving the depot earlier than the latest possible time, 

might result in a route of shorter duration. 

In this paper, the optimal departure time of a 

vehicle at the depot   
  is determined as follows. First, 

an interval in which   
  lies is determined. The upper 

bound of this interval is the latest departure time which 

satisfies time window constraints. The lower bound is 

equal to the departure time which corresponds with the 

earliest possible return time at the depot. This value can 

be found by a single backward loop through the route. 

Leaving the depot earlier than this value would result in 

waiting times along the route and hence in longer route 

durations. Second, for each departure time in the 

interval, the corresponding route duration is calculated 

by a forward loop through the route. Finally, the 

departure time which results in the smallest tour 

duration is selected. 

 

5.2. Local Search Operators 

Six different local search operators are implemented 

(Braekers, Caris, and Janssens 2012). Feasibility of 

local search moves may be checked in constant time, 

like in the time-independent case (see Section 4). 

However, evaluating the effect of a local search move 

on total route duration is much more complex when 

travel times are time-dependent. A shift in the arrival 

time at a node does not only affect arrival and waiting 

times at other nodes in the route. It may affect the travel 

time between any pair of consecutive nodes in the route 

as well. As a result, it is not possible to predict the 

effect of a local search move on total route duration 

(Fleischmann, Gietz, and Gnutzmann 2004). 

The local search operators which only affect the 

total duration of a solution (intra-route, relocate, 2-

Opt*, exchange) are implemented as follows. Each time 

a feasible local search move is found, the move is 

carried out, optimal departure times of the vehicle are 

recalculated and the effect on route duration is found. 

When this effect is acceptable (lower than the 

threshold),  the neighbouring solution is accepted. 

Otherwise the local search move is reversed and the 

search of the operator is continued. 

The two operators that reduce the number of routes 

are implemented in a different way. These operators are 

involved with re-inserting multiple nodes during a 

single local search move. Often multiple feasible 

insertion positions for each node can be found. 

Evaluating the effect on total route duration for all 

feasible positions would take too much computation 

time. Therefore, the effect on total route duration is 

estimated by looking at the effect on total minimal 

duration, where total minimal duration is defined as the 

sum of the smallest possible travel times on each link in 

the solution. This effect can be calculated in constant 

time. Selecting the insertion positions in this way offers 

the advantage that the optimal departure times of the 

vehicles at the depot and the corresponding total route 

duration do not have to be updated after every insertion. 

Instead they are updated when all nodes are inserted and 

only when the operator succeeds in reducing the number 

of vehicles. 

 

5.3. Speed-up Approaches 

To reduce the computation time of the algorithm, two 

speed-up approaches are considered. These approaches 

are compared with the base algorithm (v0) in the 

Section 6. 

The first approach (v1) is to calculate the optimal 

departure time of a vehicle only in a post-optimization 

phase, rather than recalculating it every time a local 

search move changes the route. Dabia, Ropke, and Van 

Woensel (2011) note that this is a common approach, 

both in literature and practice. During the search, the 

latest possible departure time at the depot is assumed to 

be the optimal one. To reduce the risk of ignoring 

potentially promising solutions, the fifty best solutions 

are stored during the search instead of just the single 

best solution. In a post-optimization phase, the optimal 

departure times are calculated for each of these fifty 

solutions and the solution which offers the lowest total 

route duration is reported. 

The second speed-up approach (v2) is related to 

reducing the number of feasible local search moves 

which are carried out and subsequently need to be 

reversed. This occurs when the increase in total route 

duration is larger than the deterministic threshold value 

  . It is proposed to only carry out a selection of the 

feasible local search moves while rejecting other moves 

immediately. This selection is based on the effect of a 
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local search move on total minimal duration. Moves 

which result in an increase in total minimal duration 

which is larger than the current threshold values   plus 

its maximum value     , are rejected immediately. The 

idea is that a move which results in a considerable 

increase in total minimal duration will probably not 

result in an acceptable effect on total route duration. 

Finally, a combination of both speed-up approaches 

(v3) is considered. 

 

6. EXPERIMENTAL RESULTS 

The proposed deterministic annealing algorithm is 

tested on a set of randomly generated problem 

instances. A 2
4
 full factorial design is set up to ensure 

the robustness of the algorithm. For each of the 16 

problem classes, 3 random problem instances are 

generated. Lower bounds on the number of vehicles and 

on total route duration are found by a time window 

partitioning method. For a detailed description of the 

factorial design and the calculation of the lower bounds, 

the reader is referred to Braekers, Caris, and Janssens 

(2012). 

Table 1 gives an overview of the average results 

over fifty runs of the algorithm. Detailed results for the 

base algorithm (v0) are available in appendix. It is clear 

that the algorithm provides high quality results. Using 

one of the speed-up approaches (v1, v2), hardly affects 

solution quality while computation times are reduced by 

20 to 25%. Even when a combination of both speed-up 

approaches is considered (v3), the negative effect on 

solution quality is limited while computation times are 

reduced by 30%. 

 

Table 1: Overview of Results 

Values Average results 

 v0 v1 v2 v3 

Vehicles used 11.16 11.17 11.17 11.17 

Gap (absolute) 1.16 1.17 1.17 1.17 

Duration 4751 4752 4751 4752 

Gap (%) 3.40 3.41 3.40 3.43 

Comp. time (s) 14.87 11.74 11.14 10.35 

 

7. CONCLUSIONS 

In this paper, it is studied how hourly variations in 

travel times due to congestion can be taken into account 

when planning drayage operations. An integrated 

planning approach is considered. The objective is to 

minimize first the number of vehicles and second total 

route duration. A deterministic annealing meta-heuristic 

is proposed to solve the problem. This algorithm 

provides high quality results. Finally, two approaches to 

speed-up the algorithm are proposed. 

In the future, supplementary computational tests 

could be performed. It would be interesting to analyze 

the performance of the algorithm when not all links in 

the network have the same speed distribution. 

Furthermore, more complex speed distributions with 

multiple speed levels may be considered. Another 

interesting research direction would be to study a 

dynamic version of the problem where transportation 

tasks become known during the day and travel times are 

not necessarily known at the beginning of the planning 

period. 

 

APPENDIX 

Average results over fifty runs of the base algorithm 

(v0) are shown in Table A.1. The first two columns 

indicate the average number of vehicles used and the 

absolute gap with the lower bound. Columns three and 

four show the average total duration and the relative gap 

with the lower bound. 

 

Table A1: Detailed Results 

Instance Results 

 V
 

ΔV D ΔD 

1.1 7.00 0.00 2807 2.97 

1.2 7.00 1.00 2921 1.46 

1.3 7.00 1.00 2861 2.86 

2.1 7.00 1.00 2871 1.44 

2.2 6.00 0.00 2697 2.87 

2.3 7.00 1.00 2739 2.21 

3.1 6.00 0.00 2558 2.65 

3.2 6.00 0.00 2626 2.69 

3.3 7.00 1.00 2785 2.44 

4.1 6.00 0.00 2534 2.14 

4.2 6.00 1.00 2433 2.03 

4.3 6.00 1.00 2416 1.78 

5.1 12.66 1.66 5457 3.65 

5.2 13.00 1.00 5548 2.35 

5.3 13.00 1.00 5496 3.24 

6.1 13.00 1.00 5602 4.30 

6.2 12.00 1.00 5411 5.84 

6.3 12.00 1.00 5407 4.98 

7.1 11.04 0.04 4968 3.72 

7.2 11.80 0.80 5076 2.47 

7.3 11.44 0.44 5031 2.68 

8.1 11.00 1.00 4830 4.64 

8.2 11.00 1.00 4826 5.32 

8.3 11.00 1.00 4780 5.85 

9.1 10.00 1.00 4298 2.03 

9.2 11.00 1.00 4642 0.98 

9.3 10.00 0.00 4187 2.61 

10.1 10.00 1.00 4281 1.70 

10.2 9.00 1.00 3856 1.51 

10.3 9.00 1.00 3869 2.70 

11.1 9.00 1.00 3703 3.40 

11.2 8.90 0.90 3527 2.68 

11.3 9.00 1.00 3711 2.20 

12.1 8.00 1.00 3413 3.14 

12.2 8.00 1.00 3442 3.19 

12.3 9.00 1.00 3699 2.21 

13.1 19.00 3.00 7934 4.26 

13.2 18.00 2.00 7733 2.93 

13.3 18.80 2.80 7724 3.12 
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14.1 18.90 2.90 7932 5.65 

14.2 18.00 2.00 7729 5.16 

14.3 17.98 2.98 7526 5.46 

15.1 15.64 1.64 6679 4.34 

15.2 16.76 2.76 7016 4.06 

15.3 15.94 1.94 6677 4.21 

16.1 15.00 2.00 6453 6.65 

16.2 15.00 1.00 6690 6.00 

16.3 15.00 2.00 6639 6.23 
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