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ABSTRACT 
A method of description and optimal design of the 
structure of complicated multi-level processing systems 
is presented. The set of feasible structures for such class 
of systems is defined. The representation of this set is 
constructed in terms of the graph theory. For the 
reduced statement two types of variable parameters are 
defined: for the level size and for the relations of 
adjacent levels. The choice of variable parameters 
guarantees the discrete-convexity of objective function. 
A class of iteration methods for solving the discrete-
convex programming problem is derived. The method 
based on the extension of discrete-convex function to 
the convex function and on extension of discrete-
convex programming problem to the convex 
programming problem. On each step of the iteration the 
calculation of the value of objective function is required 
only on some vertices of unit cube. The considered 
approach is illustrated by an academic example of 
modelling and optimal design of the multi-level 
manufacturing system. 
 
Keywords: discrete manufacturing and processing 
environment, optimal multi-level partitioning, discrete-
convex function, nonlinear integer programming. 
 
1. INTRODUCTION 
Large-scale problems can be decomposed in many 
different ways (Mesarovic et al. 1970; Bruzzone et al. 
2007). The current approach for describing and 
optimizing the structure of hierarchical systems is based 
on a multi-level partitioning of given finite set in which 
the qualities of the system may depend on the 
partitioning. 

Examples of problems of this class are aggregation 
problems, structuring of decision-making systems, 
database structuring, the problems of multiple 
centralization or decentralization, multi-level selection 
problems, multi-level tournament systems (Laslier 
1997), multi-level distribution systems, different 
clustering problems (Bruzzone et al. 2009). 

In a multi-level distribution system each element is 
a supplier for some lower level elements and a customer 
for one higher-level element. The zero-level elements 

are only customers and the unique top-level element is 
only a supplier. The choice of optimal number of 
suppliers-customers on each level is a mathematically 
complicated problem. 
 
 

 
 
Figure 1: Multi-Level Partitioning of a Set of 9 
Elements. 
 
 

 
Figure 2: Hierarchy of Multi-Level Partitioning of a Set 
of 9 Elements 
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The tournament system (Laslier 1997) is a 
relatively simple special case of a multi-level 
processing system. To consider this system, the number 
of games (pair-wise comparisons) is a quadratic 
function of the number of participants. This is a quickly 
increasing function. If the number of participants is 
large, the number of games is very large. This is a 
reason why the multi-level approach is useful for the 
selection of the winner. From the tournaments of the 
first level the winners are distributed between the 
tournaments of the next level. The second level 
tournaments winners are going to the third level, until 
the winner is selected. Suppose the goal is to minimize 
the number of all games. If the price for all games is the 
same, the solution is well known. Each tournament has 
two participants and one game is played. If the prices of 
games for different levels are different or constraints to 
the number of levels are active, a relatively complicated 
nonlinear integer-programming problem arises. 

Simulation model of logistic processes in container 
terminals allows considering terminal operation at three 
different partitioning levels (Merkuryev et al. 2003). 

The main difficulty from the point of view of 
optimization is that the number of subsets of 
partitioning is a variable parameter. This means for 
corresponding optimization problem that upper limit of 
summation, the number of summands (integer valued 
parameter) is a variable parameter. It is hard to solve 
that kind discrete programming problem. 

The advantage of the considered approach is that 
this choice of variables enables to extend the structure 
optimization problem to the convex programming 
problem. A finite steps algorithm converging to the 
global solution of this problem is presented. 
 
2. FEASIBLE SET OF HIERARHIES 
Consider all s-levels hierarchies, where nodes on level i 
are selected from the given nonempty and disjoint sets 
and all selected nodes are connected with selected nodes 
on adjacent levels. All oriented trees of this kind form 
the feasible set of hierarchies (Riismaa 1993). The 
illustration of this formalism is given in Figure 3. 
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Figure 3: Feasible Set of Structures 
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Suppose 0m is the number of 0-level elements 

(level of object, level of non-ordered set). 
Theorem 1. All hierarchies with adjacent matrixes 

{ }sYY ,...,1 from the described set of hierarchies satisfy 
the condition 
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The assertion of this theorem is determined directly 

(Riismaa et al. 2003). 
The illustration of multiplication of adjacency 

matrices is given on Figure 2. To the multiplication of 
adjacent matrices correspond the annihilation of levels. 
To the presentation an adjacent matrix as a product of 
two adjacent matrices correspond the creation a new 
level.  

To the sequence of adjacent matrices 
{ }4321 ,,, YYYY  corresponds the hierarchy where the 

arcs are described with continuous lines. To the 
sequence of adjacent matrices { }4231 ,, YYYY ⋅  

correspond the hierarchy where the arcs between the 
first and the second levels are described with dash lines 
and other arcs are described with continuous lines. 
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Figure 4: The Creation and annihilation of Levels 
 

3. THE STATEMENT OF GENERAL PROBLEM 
OF STRUCTURE OPTIMIZATION 

The general optimization problem is stated as a problem 
of selecting the feasible structure that corresponds to the 
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minimum of total loss given in the separable-additive 
form: 
 

{
  .)1,...,1(

...
hmin

1
0

11

11
ij

,...,1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∑ =

=⋅⋅
⎟
⎠
⎞

⎜
⎝
⎛
∑∑

=

−

==

s

i
m

sim

r

i
jr

i
jr

im

jsYY

YY
yd

 
(1) 

 
Here ( )⋅ijh is an increasing loss function of j-th 

element on i-th level and i
jrd is the element of 

1−× ii mm  matrix iD  for the cost of connection 

between the i-th and (i-1)-th level. 
The meaning of functions ( )khij  depends on the 

type of the particular system.  
 

4. REDUCED PROBLEM OF STRUCTURE 
OPTIMIZATON 

Now an important special case is considered where the 
connection cost between the adjacent levels is the 
property of the supreme level: each row of the 
connection cost matrices between the adjacent levels 
consists of equal elements. 

There is a possibility to change the variables and to 
represent the problem so that  
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where ip  is the number of nodes on i-th level. If to 

suppose additionally that ( ) ( )khkh
iimi ≤⋅⋅⋅≤1  for 

each integer k , the general problem (1) transforms into 
the two mutually dependent phases: 
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Free variables of the inner minimization (3) are 
used to describe the connections between the adjacent 
levels. Free variables of the outer minimization (2) are 
used for the representation of the number of elements at 
each level. 
 

5. CONVEX EXTENSION OF DISCRETE-
CONVEX FUNCTIONS 

This statement has some advantages from the point of 
view of the optimization technique. It is possible to 
adapt effective methods of the convex programming for 
solving outlined special cases. 

The function RZf n →:  is called discrete-
convex (Riismaa 1993; Murota 2003) if for all 
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The use of all 1+n  elements convex combinations 

follows from the well-known theorem of Caratheodory 
(Rockafellar 1970). 

The graph of a discrete-convex function is a part of 
the graph of a convex function. 

The convex extension cf  of function 

( )nRXRXf ⊂→  :  is the majorant convex 

function RXconvfc → : , where ( ) ( ) xfxfc = if 

Xx∈ . 
Theorem 2. The function RXf →:  

)( nRX ⊂  can be extended to convex function on 
convX  if f is discrete-convex on X . The convex 

extension cf of f is 
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over )1,...,1(, += nix ii λ . 
 

Assertion of this theorem is determined directly 
(Riismaa 1993). 

Theorem 3. The convex extension cf of f is 
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Assertion is determined directly. 
From theorem 2 or theorem 3, the convex extension 

is so called point-wise maximum over all linear 
functions not exceeding the given function. 

From theorem 2 or theorem 3, the convex extension 
of a discrete-convex function is a piecewise linear 
function. 
From theorem 2 and/or 3, each discrete-convex function 
has a unique convex extension. 

From theorem 2 or theorem 3, the class of discrete-
convex functions is the largest one to be extended to the 
convex functions. 

Theorem 4. If ),...,1;,...,1)(( iij mjsikh ==  in 

(3) are discrete-convex functions then 
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The proof of this theorem is not very complicated 
but needs a lot of secondary results and can be found in 
(Riismaa 1993). 

Considered theorem 2 or theorem 3 and theorem 4 
enable to extend the objective function (2), (3) to the 
convex function.  
 
6. ALGORITHM OF LOCAL SEARCHING FOR 

THE REDUCED PROBLEM OF STRUCTURE 
OPTIMIZATION 

The particular choice of the variables (2), (3) enables to 
construct a class of methods for finding the global 
optimum. In this paper it is only declared that the 
objective function of such integer programming 
problem is a discrete-convex function.  

Recall of (2)  
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Consider following finite-step algorithm: 
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Remark 1. Consider the vertices with integer 

valued coordinates of the s-dimensional unit cube 
where: 

• the nearest vertex to the s-dimensional zero-

point is 
( ) ( ) ( )( )1,,..., 11111

s
sk

s
k

s
k ppp −−−− = ; 

• other vertices 
( ) ( )( )tqxp s

k
s

k ,1 +−  satisfy the 

condition (4). 
The number of that kind of vertices (4) is 

( )12
1 −⋅ ss . The number of vertices (4), (5) is no 

more than ( )12
1 −⋅ ss . 

The condition (4) puts in order all vertices of 
described unit cube. 

Remark 2. On the iteration step k the value of goal 
function is computed on ordered vertices (4), (5) of unit 
cube until the first value satisfying (6) is found. If that 
kind of a value does not exist, one of the solutions of 
problem (2) - (3) has been found.  
 
7. ACADEMIC EXAMPLE: OPTIMIZATION 

THE STRUCTURE OF COMPLICATED 
MULTI-LEVEL MANUFACTURING 
SYSTEM 

Consider the processing of n parts (Riismaa et al. 2003). 
In case of one processing unit the overall processing 
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and waiting time for all n  parts is proportional to 2n  
and is a quickly increasing function. For this reason the 
hierarchical system of processing can be suitable. From 
zero-level (level of object) the parts will be distributed 
between 1p  first-level processing units and processed 
(aggregated, packed etc.) by these units. After that the 
parts will be distributed between 2p  second-level 
processing units and processed further and so on. From 

1−sp  (s - 1)-level the units will be sent to the unique 

s -level unit and processed finally. The cost of 
processing and waiting on level i  is approximately 

( ) ( ) iiiiiiiiii papppldppg += −−−
2
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Here il  is the number of aggregates produced by 

one robot on level i  (a number of boxes for packing 

unit), id  is a loss unit inside the level i , and ia  is the 

cost of i-th level processing unit. The variable 
parameters are the number of processing units on each 
level ( )sipi ,...,1= . 

The goal is to minimize the total loss (processing 
time, waiting time, the cost of processing units) over all 
levels: 
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over natural ( )sipi ,...,1= . 

 Here [ ]p  is the integer part of p . The goal 
function of this discrete programming problem is 
discrete-convex. It is possible to extend this function to 
convex function (Theorem 2) and get a solvable convex 
programming problem using the method of local 
searching. 
 
8. CONCLUSION 
Many finite hierarchical structuring problems can be 
formulated mathematically as a multi-level partitioning 
procedure of a finite set of nonempty subsets. This 
partitioning procedure is considered as a hierarchy 
where to the subsets of partitioning correspond nodes of 
hierarchy and the relation of containing of subsets 
define the arcs of the hierarchy. The feasible set of 
structures is a set of hierarchies (oriented trees) 
corresponding to the full set of multi-level partitioning 
of given finite set. 

Each tree from this set is represented by a sequence 
of Boolean matrices, where each of these matrices is an 
adjacency matrix of neighboring levels. To guarantee 

the feasibility of the representation, the sequence of 
Boolean matrices must satisfy some conditions – a set 
of linear and nonlinear equalities and inequalities. 

The formalism described in this paper enables to 
state the reduced problem as a two-phase mutually 
dependent discrete optimization problem and construct 
some classes of solution methods. Variable parameters 
of the inner minimization problem are used for the 
description of connections between adjacent levels. 
Variable parameters of the outer minimization problem 
are used for the presentation of the number of elements 
on each level. 

The two-phase statement of optimization problem 
guarantees the possibility to extend the objective 
function to the convex function and enables to construct 
algorithms for finding the global optimum. In this paper 
for finding the global optimum the method of local 
searching is constructed. On each step of iteration the 
calculation of the value of objective function is required 
only on some vertices of some kind of unit cube. 
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