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ABSTRACT 
This paper presents a hybrid simulation optimisation 
algorithm that integrates a multi-objective genetic 
algorithm and response surface-based metamodelling 
techniques. The optimisation problem involves a search 
in a high dimensional space with different ranges for 
decision variable scales, multiple stochastic objective 
functions and problem specific constraints. A case study 
demonstrates the application of a hybrid simulation 
optimisation algorithm to optimal cyclic planning for a 
generic supply chain network. 
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1. INTRODUCTION 
Pareto-based evolutionary algorithms are powerful 
algorithms for solving complex multi-objective 
problems. They present the class of direct search 
methods that apply the concepts of Pareto-optimality 
and dominance relation. They evolve multiple parallel 
solutions that allow generating a set of non-dominated 
solutions and preserving a diverse set of the candidate 
solutions. In addition, they are able to perform a search 
in a high dimensional space with different ranges of 
decision variables and could incorporate constraint 
handling techniques, such as rejection of unfeasible 
solutions, penalty function, etc. The obvious difference 
between various types of evolutionary algorithms is in 
encoding mechanism of candidate solutions, i.e. strings 
over a finite alphabet in genetic algorithms (GAs); real-
valued vectors in evolution strategies; finite state 
automata in evolutionary programming and trees in 
genetic evolutionary programming. In particular, GA’s 
encoding mechanism allows easy implementation of 
specific constraints in supply chain planning problems. 

The need for hybridization of Pareto-based search 
algorithms with other methods and techniques is widely 
discussed in literature (Hiroyasu et al 1999). In this 
paper, hybridisation of Pareto-based genetic algorithms 
with response surface-based metamodelling techniques 
applied to simulation optimisation is investigated.  

Response surface methodology (RSM) is a 
collection of statistical and mathematical techniques for 

optimisation of stochastic functions. RSM is developed 
in order to analyse experimental data and to build 
empirical models based on observations of the 
stochastic function. In case of a computer simulation 
model, simulation output dependence on its input 
variables could be interpreted by a response surface 
function. The main advantage of RSM methodology 
(Merkuryeva 2005) is its applicability for a small 
number of observations in conditions of costly and 
time-consuming simulation experiments. RSM-based 
optimization is based on local approximation of the 
simulation response surface by a regression type 
metamodel in a small region of independent factors. 
Exploration and optimisation of the resulting response 
surface function approximations provide effective tools 
for iterative optimisation of the simulation response 
function applicable for a small number of simulation 
experiments. 

For the last years, there has been an increasing 
attention placed on the performance, design, and 
analysis of multi-echelon supply chains (Merkuryev et 
al 2008). Optimisation of multi-echelon cyclic plans in 
supply chains that is performed in the case study refers 
to the class of multi-objective optimisation problems, 
which are usually characterised by a large search space 
of decision variables, conflicting and stochastic 
objectives etc. While there is no a single optimal 
solution for  a number of conflicting objectives, the 
development of an algorithm, which gives a large 
number of alternative solutions lying near the Pareto-
optimal front and tackles the variations of a response 
generated from the uncertainties in the environment 
variables, is of great practical value. 

The case study is aimed to find the optimal 
parameters of a multi-echelon cyclic plan for each of 
supply chain nodes in order to minimise the supply 
chain total cost and maximise end-customers fill rate 
taking into account cyclic planning constraints and 
assumptions of stochastic demand and backordering. 

A network simulation model (Merkuryeva and 
Napalkova 2009) is built as a process-oriented model 
with a one-directional flow of goods. It is represented 
by two types of nodes: stock points and processes. The 
stock points correspond to stock keeping units, while 
the processes denote transformation activities 
(assembly, transportation and packaging operations). 
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2. OPTIMISATION PROBLEM 
The stochastic optimisation problem is formulated as 
follows: 
 
Min E[f(x)] = E[f1(x),…, fM(x)], (1) 
subject to: g(x) = E[r(x)] ≤ 0 and  h(x) ≤ 0, 
 
where E[⋅] is a mathematical expectation; x = (x1,…xK) 
∈ X, f = (f1,…,fM) ∈ Z; K is the number of decision 
variables; M is the number of objective functions; X is 
the decision space; Z is the objective space; x is a vector 
of decision variables; f is a vector of objective 
functions; g is a vector of stochastic constraints; h is a 
vector of deterministic constraints on the decision 
variables; r is a random vector that represents several 
responses of the simulation model for a given x. 
Decision variables could be of different types (i.e. 
discrete, continuous) and have metrics with different 
ranges of possible values. Proceeding from (1), the 
solution of multi-objective simulation-based 
optimisation problem is interpreted as a vector of 
decision variables x that satisfies all feasible constraints 
and provides the best trade-off between multiple 
objectives.   

To describe the objective vector function, one 
could use traditional methods of aggregating multiple 
objectives into a single one, or optimising the most 
important objective while treating others as constraints. 
The main strength of these techniques is their 
computational efficiency and simple implementation. 
The weakness is the difficulty to determine a priori 
information about the objectives, such as weight 
coefficients that reflect a relative importance of each 
criterion or their ranks. Moreover, this approach can 
produce only one optimal solution during a single 
experiment, which may not be the best trade-off. 
However, in multi-objective optimisation problems, 
each objective function could have individual optimal 
solution and none of them can be considered to be better 
than any other with respect to all objective functions. 
Therefore, in order to find trade-off solutions this paper 
applies the principles of Pareto optimality. The 
dominance relation can be formulated in the following 
way: 

A trade-off solution x*  ∈ X is said to dominate a 
solution x ∈ X iff ∀i ∈ {1,…,M}: fi(x*) ≤ fi(x) and ∃j ∈ 
{1,…,M}: fj(x*) < fj(x). 

As it follows from the definition, a solution x* is 
Pareto-optimal if it is not worse than any other solutions 
for all criteria and is better for at least one criterion. For 
simplification, it is assumed here that all objective 
functions are minimised. 

In the case study, two objective functions that 
define the quality of a multi-echelon cyclic plan are 
introduced. The first one is aimed at minimising the 
average total cost of the supply chain, which includes 
the sum of production, inventory and reordering costs. 
The second objective function is aimed to maximise 
end-customer service requirements specified by the 
average order fill rate. The parameters of a multi-

echelon cyclic plan identify decision variables. They 
are: replenishment of cycles Cyi and order-up-to-levels 
Si defined at each stock point i on the network. These 
variables determine the reorder period and quantity to 
be ordered or produced for each mature product and are 
interpreted as discrete and continuous type variables, 
correspondingly. A large number of decision variables 
in practice make conducting simulation experiments 
difficult. Specific constraints are introduced that define 
cycles by the power-of-two policy, in which cycles are 
integers and multiples of two. 

 
3. ANALYSIS OF THE PROBLEM SOLVING 

METHODS 
In order to solve the aforedescribed simulation-based 
optimisation problem (1), an appropriate method should 
be applied. Based on analysing the properties of the 
objective functions and decision search space, the 
following requirements are imposed on the problem 
solving method: (i) it should converge to the 
approximate Pareto-optimal front while keeping its 
diversity, (ii) it should be able to guide the search 
toward a near-optimal direction using only the numeric 
values of the multiple stochastic objective functions and 
constraints, (iii) it should incorporate some techniques 
for generating statistically significant candidate 
solutions and (iv) it should manage a search process in 
such a way that the total number of simulation 
experiments and, in consequence, the total 
computational time would be decreased. 

The first and second requirements restrict the 
choice to the class of direct search methods that apply 
the concepts of Pareto-optimality and dominance 
relation. Pareto-based evolutionary algorithms (EAs) 
refer to the most efficient representatives of this class. 
The tremendous advantage of EAs over others is that 
they evolve multiple parallel solutions instead of a 
single one that allows generating a set of non-dominated 
solutions at each iteration. On the other hand, EAs are 
able to preserve a diverse set of non-dominated 
solutions using specific mechanisms. In addition, EAs 
are able to perform a search in a high dimensional space 
with different ranges for decision variables. Moreover, 
EAs have proved to be independent on strong problem 
structure, such as, for example, convexity and 
discontinuity of the objective function. Also, they allow 
one to incorporate different constraint handling 
techniques, such as rejection of unfeasible solutions, 
penalty function, etc.  

Although Pareto-based EAs are powerful 
algorithms for solving complex multi-objective 
problems, they are unable to fulfil all of the above-
formulated problem requirements. This fact clearly 
illustrates the need for hybridisation of Pareto-based 
EAs with others methods and techniques.  

Typically, the hybridisation is performed following 
some predefined scheme. In literature, it is possible to 
outline three hybridisation schemes, such as parallel 
hybridisation, sequential hybridisation and built-in 
hybridisation. Parallel hybridisation requires that the 
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search space is investigated independently by multiple 
optimisation methods. For instance, a population can be 
divided into sub-populations called islands, which are 
associated with particular objective functions or certain 
ranges of the Pareto-optimal front. Another example 
includes dividing the control of genetic operators 
between computer processors. The parallel 
hybridisation scheme is implemented in a divided range 
multi-objective genetic algorithm (DRMOGA) 
(Hiroyasu et al 1999), parallel strength Pareto multi-
objective evolutionary algorithm (PSPMEA) and 
parallel multi-objective evolutionary algorithm with a 
hypergraph represented population structure 
(pMOHypEA). 

In using sequential hybridisation, separate methods 
are sequentially combined based on predefined rules. 
According to the most widespread implementation of 
this scheme, Pareto-based EAs are combined with local 
search based methods. The reason is that EAs have 
overall global perspective, while the local search based 
methods have good convergence properties to a local 
optimal solution and can be used to extensively explore 
the search space around EA solutions. On this way, the 
simple multi-objective genetic local search (S-MOGLS) 
algorithm probabilistically applies the local search to 
candidate solutions found by the fast elitist non-
dominated sorting genetic algorithm (NSGA-II) (Deb et 
al 2000). In using the local search, multiple objective 
functions are aggregated based on randomly generated 
weight coefficients. Another example of implementing 
the sequential hybridisation scheme is to apply the local 
search based method after running Pareto-based EA. 
The weight coefficients used are computed for each EA 
solution based on its location in the Pareto-optimal 
front. 

Built-in hybridisation concerns with introducing 
some features into mechanisms of Pareto-based EAs. 
Recent developments in this domain include the 
application of fuzzy logic to (i) the dynamical 
adjustment of the crossover and mutation rates in the 
NSGA-II algorithm (Deb et al 2000), (ii) selection of 
more preferable solutions from the Pareto-optimal set 
based on their degrees of fuzzy optimality and (iii) 
incorporation of fuzzy ranking scheme, in which 
dominance degrees are measured by using membership 
functions. 

The aforementioned hybridisation schemes have 
been mainly tested on deterministic analytical models. 
However, the simple combination of Pareto-based EAs 
with the simulation model may not provide efficient 
results because of time consuming simulation 
experiments and the simulation noise, which influence 
the objective function estimates and performance of EA 
operators. Thus, the ongoing section is dedicated to a 
hybridised approach to multi-objective simulation-
based optimisation, which can be mentioned as a very 
promising and at the same time poorly investigated field 
of research. 

 

4. OPTIMISATION ALGORITHM 
The proposed simulation optimisation algorithm (Figure 
1) is based on integration of the multi-objective genetic 
algorithm (GA) and RSM-based linear search algorithm 
(Merkuryeva and Napalkova 2008). While a GA is well 
suited to solve combinatorial problems and is used to 
guide the search towards the Pareto-optimal front, the 
RSM-based linear search is appropriate to improve GA 
solutions based on the local search.  
 

 
Figure 1: General scheme of the hybrid simulation 
optimisation algorithm 
 

The multi-objective genetic algorithm starts with 
generating an initial population of decision variables 
values (Napalkova and Merkuryeva 2008). In order to 
smoothly cover the investigated search space, uniform 
distribution is applied. Decision variables such as cycles 
are encoded using a modified binary encoding 
procedure, which satisfy power-of-two synchronisation 
policy in supply chains. Afterwards, fitness values are 
defined based on multiple objectives, here by the 
average total cost and average fill rate that are obtained 
through simulation experiments. To estimate fitness 
values of chromosomes, a ranking-based fitness 
assignment is applied. It concerns the use of a 
dominance depth that is connected with dividing a 
population into several fronts in order to represent a 
front of a certain solution. In order to obtain solutions 
uniformly distributed over the Pareto-optimal front, the 
diversity preserving mechanism based on a crowding 
distance metric is implemented. The crowding distance 
is an estimate of the density of solutions surrounding 
the current solution. The larger a crowding distance 
value becomes, the less crowded an area around the 
solution is. As a result, every chromosome in the 
population has the following two attributes: (1) 
domination depth and (2) crowding distance. 

Then, the penalty function is applied to decrease 
the survival probability of solutions, which provide the 
average fill rate lower than the pre-defined threshold. In 
order to choose chromosomes from the current 
population for breeding purposes, the algorithm applies 
a crowded two-tournament selection. The main idea of 
this selection strategy is that a crowded comparison 
operator is used to compare pairs of chromosomes. 
From two candidate solutions the one with the lower 
domination depth is preferable. If both solutions have 
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the same depth, then the solution with larger crowding 
distance is selected. The crowded comparison operator 
(≥ ) is defined as follows: 
 

a ≥ b if (ra < rb) or ((ra = rb) and (δa > δb)), (2) 
 

where ra and rb are domination depths, δa and δb are 
crowding distances for chromosomes a and b. 

After applying the crossover and mutation 
operators, the new population is replaced by the union 
of the best parents and offspring to avoid the loss of 
non-dominated solutions during the evolution process. 
Domination depths of chromosomes in the combined 
population are updated. The first N solutions are 
gathered for the next generation, where N is a 
population size. This elitist strategy is often called (µ + 
λ) – selection, where µ and λ assign parents and 
offspring, respectively. The multi-objective GA is 
automatically terminated, when the number of 
generations with stagnant non-dominated set is equal to 
the predefined value (usually set to 3). 

In the local search, the RSM-based linear search 
iterative algorithm is used to improve decisions 
solutions of the genetic algorithm by adjusting specific 
decision variables, e.g. order-up-to levels in supply 
chains. The algorithm is based on local approximation 
of the simulation response surface by a regression type 
meta-model in a small region of independent factors; it 
integrates linear search techniques for optimising stock 
points’ order-up-to levels. Finally, the approximate 
Pareto-optimal front initially generated by the GA is 
updated including solutions found by the response 
surface-based linear search algorithm. 
 
5. CASE STUDY 
The case study is aimed to find an optimal cyclic plan 
of a chemical product, i.e. liquid based raisin, in order 
to minimise production, ordering and inventory holding 
costs, and maximise end-customers fill rate. As a test 
bed, the chemical manufacturing supply chain is used. 
The main operations that occur in the supply chain 
network are the following. In the plant CH, the raw 
material is converted to the liquid based raisin. It is then 
either sourced to direct customers or shipped to the 
plant DE, where other components are added to make 
different products. From that plant, the end-products are 
shipped to different types of customers. 

The Service Model-based simulation model of the 
above-described supply chain network is automatically 
generated in optimisation environment developed in 
(Merkuryeva and Napalkova 2007). The end-customer 
demand is normally distributed and cycles are defined 
according to the power-of-two policy. Cycles are 
represented in weeks as follows: 7, 14, 28, 56, where 56 
days is the maximal cycle that corresponds to one full 
turn of a “planning wheel”. In this business case, 
specific policies such as nested or inverted-nested ones 
are not analysed. Order-up-to levels are calculated using 
analytical formulas, where the cycle service level is set 
to 95%. Initial stocks are equal to order-up-to levels 

plus average demand multiplied by cycle delays. Stock 
point 1 has infinite on hand stock and is not controlled 
by any policy. Backorders are delivered in full. 

Simulation run length is equal to 224 periods. This 
allows modelling of four full turns of the planning 
wheel, i.e. 4*56 periods. Number of simulation 
replications is equal to 5. The GA is executed with the 
following parameters: the population size is 40; 
crossover and mutation probabilities are 0.5 and 0.1, 
correspondingly; a tournament size is equal to 2. The 
GA works with 66 decision variables (i.e. cycles and 
order-up-to levels assigned to network stock points). 
Initial values of order-up-to levels are calculated 
analytically. When the number of generations with a 
stagnant non-domination set is equal to 3, the GA is 
terminated. Figure 2 shows solutions received from the 
final population. 

  

 
Figure 2: Final GA population 

 
Figures 3 and 4 illustrate the execution of the GA. 

The average total cost and fill rate of parent 
chromosomes are plotted against the generation step. 
The GA makes quick progress at the beginning of the 
evolutionary process that is typical for genetic 
algorithms. Then, there are phases when it hits the local 
optimum before mutations further improve its 
performance. Finally, the GA finds three non-dominated 
solutions with the following performance average 
measures: 1) total cost = €787,431, fill rate = 100.00%; 
2) total cost = €766,669, fill rate = 98.88%; and 3) total 
cost = €752,300, fill rate = 93.76%. 

 

 
Figure 3: The GA convergence subject to total cost 

 

 
Figure 4: The GA convergence subject to fill rate 
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The response surface-based linear search algorithm 
is used to adjust order-up-to levels of three non-
dominated solutions received with the GA while fixing 
stock point cycles. Finally, the average total cost and 
average fill rate of the second solution are equal to 
€756,178 and 98.88%, respectively. The updated 
Pareto-optimal front is given in Figure 5. There are 
three non-dominated solutions found by the GA, where 
the second solution is improved by the RSM-based 
linear search algorithm.  

 

 
Figure 5: The approximate Pareto-optimal front 
 

CONCLUSIONS 
The paper has presented the hybrid simulation 
optimisation algorithm that integrates the multi-
objective genetic algorithm and response surface-based 
linear search algorithm. Although genetic algorithms 
are widely applied at solving different real world multi-
objective problems, they are often unable to ensure both 
the convergence to the Pareto-optimal front and its 
diversity. In this paper, genetic algorithm allows 
covering a broad region of the search space at each 
generation, while RSM-based linear search algorithm 
provides careful investigation of small portions of the 
search space and improves the current solution by 
moving to a better “neighbour” solution. The results of 
the case study have demonstrated performance 
efficiency of the proposed hybrid algorithm. 
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