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ABSTRACT

This paper presents a hybrid simulation optimigatio
algorithm that integrates a multi-objective genetic
algorithm and response surface-based metamodelling
techniques. The optimisation problem involves adea
in a high dimensional space with different ranges f
decision variable scales, multiple stochastic dbjec
functions and problem specific constraints. A cstsely
demonstrates the application of a hybrid simulation
optimisation algorithm to optimal cyclic planningrfa
generic supply chain network.

Keywords: simulation optimisation, genetic alganith
response surface-based metamodelling, supply chain
cyclic planning

1. INTRODUCTION

Pareto-based evolutionary algorithms are powerful
algorithms for solving complex multi-objective
problems. They present the class of direct search
methods that apply the concepts of Pareto-optiyalit
and dominance relation. They evolve multiple patall
solutions that allow generating a set of non-doteida
solutions and preserving a diverse set of the cateli
solutions. In addition, they are able to performearch

in a high dimensional space with different rangés o
decision variables and could incorporate constraint
handling techniques, such as rejection of unfeasibl
solutions, penalty function, etc. The obvious difece
between various types of evolutionary algorithmsnis
encoding mechanism of candidate solutions, i.@gsr
over a finite alphabet in genetic algorithms (GAsgl-
valued vectors in evolution strategies; finite atat
automata in evolutionary programming and trees in
genetic evolutionary programming. In particular, €A
encoding mechanism allows easy implementation of
specific constraints in supply chain planning peohs.

The need for hybridization of Pareto-based search
algorithms with other methods and techniques islyid
discussed in literature (Hiroyasu et al 1999). is t
paper, hybridisation of Pareto-based genetic algms
with response surface-based metamodelling techsique
applied to simulation optimisation is investigated.

Response surface methodology (RSM) is a
collection of statistical and mathematical techeis|for

optimisation of stochastic functions. RSM is deypeld

in order to analyse experimental data and to build
empirical models based on observations of the
stochastic function. In case of a computer simoiati
model, simulation output dependence on its input
variables could be interpreted by a response srfac
function. The main advantage of RSM methodology
(Merkuryeva 2005) is its applicability for a small
number of observations in conditions of costly and
time-consuming simulation experiments. RSM-based
optimization is based on local approximation of the
simulation response surface by a regression type
metamodel in a small region of independent factors.
Exploration and optimisation of the resulting resg®
surface function approximations provide effectivels

for iterative optimisation of the simulation resgen
function applicable for a small number of simulatio
experiments.

For the last years, there has been an increasing
attention placed on the performance, design, and
analysis of multi-echelon supply chains (Merkurystv
al 2008). Optimisation of multi-echelon cyclic ptam
supply chains that is performed in the case stefsrs
to the class of multi-objective optimisation prabke
which are usually characterised by a large segvabes
of decision variables, conflicting and stochastic
objectives etc. While there is no a single optimal
solution for a number of conflicting objectivedet
development of an algorithm, which gives a large
number of alternative solutions lying near the Rare
optimal front and tackles the variations of a rewsm
generated from the uncertainties in the environment
variables, is of great practical value.

The case study is aimed to find the optimal
parameters of a multi-echelon cyclic plan for eath
supply chain nodes in order to minimise the supply
chain total cost and maximise end-customers file ra
taking into account cyclic planning constraints and
assumptions of stochastic demand and backordering.

A network simulation model (Merkuryeva and
Napalkova 2009) is built as a process-oriented fnode
with a one-directional flow of goods. It is repretsl
by two types of nodes: stock points and procesEes.
stock points correspond to stock keeping units,levhi
the processes denote transformation activities
(assembly, transportation and packaging operations)
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2. OPTIMISATION PROBLEM
The stochastic optimisation problem is formulated a
follows:

Min E[f(X)] = E[fy(X),..., fu(X)], 1)
subject tog(x) = E[r(x)] < 0 and h(x) < 0,

where E[] is a mathematical expectation;= (Xy,...%)

e X f=(f,.....) € Z K is the number of decision
variables;M is the number of objective functionX;is

the decision spacg;is the objective space;is a vector

of decision variables;f is a vector of objective
functions; g is a vector of stochastic constraintsijs a
vector of deterministic constraints on the decision
variables;r is a random vector that represents several
responses of the simulation model for a given
Decision variables could be of different types .(i.e
discrete, continuous) and have metrics with diffiere
ranges of possible values. Proceeding from (1), the
solution of multi-objective simulation-based
optimisation problem is interpreted as a vector of
decision variableg that satisfies all feasible constraints
and provides the best trade-off between multiple
objectives.

To describe the objective vector function, one
could use traditional methods of aggregating midtip
objectives into a single one, or optimising the mos
important objective while treating others as caaists.
The main strength of these techniques is their
computational efficiency and simple implementation.
The weakness is the difficulty to determine a prior
information about the objectives, such as weight
coefficients that reflect a relative importance ezfch
criterion or their ranks. Moreover, this approadn c
produce only one optimal solution during a single
experiment, which may not be the best trade-off.
However, in multi-objective optimisation problems,
each objective function could have individual omlm
solution and none of them can be considered teebierb
than any other with respect to all objective fuoict.
Therefore, in order to find trade-off solutionsstipiaper
applies the principles of Pareto optimality. The
dominance relation can be formulated in the folluyvi
way:

A trade-off solutiorx* e X is said to dominate a
solutionx € X iff Vi € {1,...,M}: fi(x*) < f(x) and3j e
{1,.... M} §i(x*) < §i(x).

As it follows from the definition, a solutior* is
Pareto-optimal if it is not worse than any othdusons
for all criteria and is better for at least ondemibn. For
simplification, it is assumed here that all objeeti
functions are minimised.

In the case study, two objective functions that
define the quality of a multi-echelon cyclic plarea
introduced. The first one is aimed at minimising th
average total cost of the supply chain, which ideki
the sum of production, inventory and reorderingt€os
The second objective function is aimed to maximise
end-customer service requirements specified by the
average order fill rate. The parameters of a multi-

echelon cyclic plan identify decision variables.eyh
are: replenishment of cyclé€y; and order-up-to-levels
S defined at each stock pointon the network. These
variables determine the reorder period and quaigity
be ordered or produced for each mature productaad
interpreted as discrete and continuous type vasabl
correspondingly. A large number of decision varabl
in practice make conducting simulation experiments
difficult. Specific constraints are introduced thifine
cycles by the power-of-two policy, in which cyclase
integers and multiples of two.

3. ANALYSIS OF THE PROBLEM SOLVING

METHODS
In order to solve the aforedescribed simulatiorebdas
optimisation problem (1), an appropriate methodutho
be applied. Based on analysing the properties ef th
objective functions and decision search space, the
following requirements are imposed on the problem
solving method: (i) it should converge to the
approximate Pareto-optimal front while keeping its
diversity, (ii) it should be able to guide the sd#ar
toward a near-optimal direction using only the ntime
values of the multiple stochastic objective funet@nd
constraints, (iii) it should incorporate some tdgaes
for generating statistically significant candidate
solutions and (iv) it should manage a search peooes
such a way that the total number of simulation
experiments and, in consequence, the total
computational time would be decreased.

The first and second requirements restrict the
choice to the class afirect search methodthat apply
the concepts of Pareto-optimality and dominance
relation. Pareto-based evolutionary algorithms (EAs
refer to the most efficient representatives of ttass.
The tremendous advantage of EAs over others is that
they evolve multiple parallel solutions instead @f
single one that allows generating a set of non-dated
solutions at each iteration. On the other hand, Brs
able to preserve a diverse set of non-dominated
solutions using specific mechanisms. In additioAsE
are able to perform a search in a high dimensispate
with different ranges for decision variables. Moreg
EAs have proved to be independent on strong problem
structure, such as, for example, convexity and
discontinuity of the objective function. Also, thailow
one to incorporate different constraint handling
techniques, such as rejection of unfeasible salatio
penalty function, etc.

Although Pareto-based EAs are powerful
algorithms for solving complex multi-objective
problems, they are unable to fulfil all of the abev
formulated problem requirements. This fact clearly
illustrates the need for hybridisation of Paretsdzh
EAs with others methods and techniques.

Typically, the hybridisation is performed following
some predefined scheme. In literature, it is pdssib
outline three hybridisation schemes, suchpasallel
hybridisation sequential hybridisationand built-in
hybridisation Parallel hybridisation requires that the
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search space is investigated independently by pheilti
optimisation methods. For instance, a populatiantoa
divided into sub-populations called islands, whante
associated with particular objective functions ertain
ranges of the Pareto-optimal front. Another example
includes dividing the control of genetic operators
between computer processors. The parallel
hybridisation scheme is implemented in a dividathma
multi-objective  genetic  algorithm  (DRMOGA)
(Hiroyasu et al 1999), parallel strength Pareto timul
objective evolutionary algorithm (PSPMEA) and
parallel multi-objective evolutionary algorithm Wita
hypergraph represented population structure
(PMOHypEA).

In using sequential hybridisation, separate methods
are sequentially combined based on predefined .rules
According to the most widespread implementation of
this scheme, Pareto-based EAs are combined witi loc

search based methods. The reason is that EAs have

overall global perspective, while the local sedbelsed
methods have good convergence properties to a local
optimal solution and can be used to extensivelyarp
the search space around EA solutions. On this thay,
simple multi-objective genetic local search (S-MCE3L
algorithm probabilistically applies the local sdaro
candidate solutions found by the fast elitist non-
dominated sorting genetic algorithm (NSGA-II) (Detb

al 2000). In using the local search, multiple ohjec
functions are aggregated based on randomly gederate
weight coefficients. Another example of implemegtin
the sequential hybridisation scheme is to applyldbal

search based method after running Pareto-based EA.

The weight coefficients used are computed for dagh
solution based on its location in the Pareto-optima
front.

Built-in hybridisation concerns with introducing

some features into mechanisms of Pareto-based EAs.

Recent developments in this domain include the
application of fuzzy logic to (i) the dynamical
adjustment of the crossover and mutation rateshén t
NSGA-II algorithm (Deb et al 2000), (i) selectiaf
more preferable solutions from the Pareto-optinel s
based on their degrees of fuzzy optimality and) (iii
incorporation of fuzzy ranking scheme, in which

dominance degrees are measured by using membership

functions.

The aforementioned hybridisation schemes have
been mainly tested on deterministic analytical niede
However, the simple combination of Pareto-based EAs
with the simulation model may not provide efficient
results because of time consuming simulation
experiments and the simulation noise, which infaeen
the objective function estimates and performanckAf
operators. Thus, the ongoing section is dedicabed t
hybridised approach to multi-objective simulation-
based optimisation, which can be mentioned as w ver
promising and at the same time poorly investigditdd
of research.

4. OPTIMISATION ALGORITHM

The proposed simulation optimisation algorithm (Fiy

1) is based on integration of the multi-objectiengtic
algorithm (GA) and RSM-based linear search algorith
(Merkuryeva and Napalkova 2008). While a GA is well
suited to solve combinatorial problems and is used
guide the search towards the Pareto-optimal fring,
RSM-based linear search is appropriate to improe G
solutions based on the local search.

Genetie search
Multiple
performance Decision
measures Multi-objective variables Simulation

genetic model
algorithm
Feedback on prograss
Near-optimal
decision variables

Decision
variables

Local search

Specific
performance

RSM-hased Simulation Approximate
linear search model ﬂ:} Pareto-optimal
—‘ front

algorithm

measure

Feedback on progress

Figure 1: General scheme of the hybrid simulation
optimisation algorithm

The multi-objective genetic algorithm starts with
generating an initial population of decision vatib
values (Napalkova and Merkuryeva 2008). In order to
smoothly cover the investigated search space, umifo
distribution is applied. Decision variables suclcades
are encoded using a modified binary encoding
procedure, which satisfy power-of-two synchronizati
policy in supply chains. Afterwards, fithess valums
defined based on multiple objectives, here by the
average total cost and average fill rate that ateioed
through simulation experiments. To estimate fitness
values of chromosomes, a ranking-based fithess
assignment is applied. It concerns the use of a
dominance depth that is connected with dividing a
population into several fronts in order to représan
front of a certain solution. In order to obtaing@ns
uniformly distributed over the Pareto-optimal frotite
diversity preserving mechanism based on a crowding
distance metric is implemented. The crowding distan
is an estimate of the density of solutions surraumd
the current solution. The larger a crowding distanc
value becomes, the less crowded an area around the
solution is. As a result, every chromosome in the
population has the following two attributes: (1)
domination depth and (2) crowding distance.

Then, the penalty functiois applied to decrease
the survival probability of solutions, which proeidhe
average fill rate lower than the pre-defined thodéghin
order to choose chromosomes from the current
population for breeding purposes, the algorithmliapp
a crowded two-tournament selection. The main idea o
this selection strategy is that a crowded compariso
operator is used to compare pairs of chromosomes.
From two candidate solutions the one with the lower
domination depth is preferable. If both solutioresvéd
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the same depth, then the solution with larger ciogrd
distance is selected. The crowded comparison aperat
(=) is defined as follows:

a>bif (ra<rp) or (fa=rp) and G, > dp)), (2)
wherer, andr, are domination depthsg, and J, are
crowding distances for chromosonseandb.

After applying the crossover and mutation
operators, the new population is replaced by therun
of the best parents and offspring to avoid the loks
non-dominated solutions during the evolution prsces
Domination depths of chromosomes in the combined
population are updated. The firdd solutions are
gathered for the next generation, wheké is a
population size. This elitist strategy is oftenledl(: +
1) — selection, wherex and A assign parents and
offspring, respectively. The multi-objective GA is
automatically terminated, when the number of
generations with stagnhant non-dominated set isleéqua
the predefined value (usually set to 3).

In the local search, the RSM-based linear search
iterative algorithm is used to improve decisions
solutions of the genetic algorithm by adjusting cfie
decision variables, e.g. order-up-to levels in $upp
chains. The algorithm is based on local approxiomati
of the simulation response surface by a regredyioa
meta-model in a small region of independent factibrs
integrates linear search techniques for optimisitagk
points’ order-up-to levels. Finally, the approximat
Pareto-optimal front initially generated by the Gg\
updated including solutions found by the response
surface-based linear search algorithm.

5. CASE STUDY

The case study is aimed to find an optimal cyclanp

of a chemical product, i.e. liquid based raisinonder

to minimise production, ordering and inventory hotd
costs, and maximise end-customers fill rate. Aes t
bed, the chemical manufacturing supply chain iduse
The main operations that occur in the supply chain
network are the following. In the plant CH, the raw
material is converted to the liquid based raiditis then
either sourced to direct customers or shipped ® th
plant DE, where other components are added to make
different products. From that plant, the end-prasiace
shipped to different types of customers.

The Service Model-based simulation model of the
above-described supply chain network is automdgical
generated in optimisation environment developed in
(Merkuryeva and Napalkova 2007). The end-customer
demand is normally distributed and cycles are @effin
according to the power-of-two policy. Cycles are
represented in weeks as follows: 7, 14, 28, 56 revbé
days is the maximal cycle that corresponds to aitle f
turn of a “planning wheel”. In this business case,
specific policies such as nested or inverted-nestexs
are not analysed. Order-up-to levels are calculasauly
analytical formulas, where the cycle service ldagedet
to 95%. Initial stocks are equal to order-up-toelsv

plus average demand multiplied by cycle delaysclSto
point 1 has infinite on hand stock and is not culigd
by any policy. Backorders are delivered in full.
Simulation run length is equal to 224 periods. This
allows modelling of four full turns of the planning
wheel, ie. 4*56 periods. Number of simulation
replications is equal to 5. The GA is executed wiith
following parameters: the population size is 40;
crossover and mutation probabilities are 0.5 arid 0.
correspondingly; a tournament size is equal tote T
GA works with 66 decision variables (i.e. cyclesdan
order-up-to levels assigned to network stock pdints
Initial values of order-up-to levels are -calculated
analytically. When the number of generations with a
stagnant non-domination set is equal to 3, the 6A i
terminated. Figure 2 shows solutions received fthen
final population.
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Fill Rate, %
‘o Dominated solutions # Non-dominated solutions ‘

Figure 2: Final GA population

Figures 3 and 4 illustrate the execution of the GA.
The average total cost and fill rate of parent
chromosomes are plotted against the generation step
The GA makes quick progress at the beginning of the
evolutionary process that is typical for genetic
algorithms. Then, there are phases when it hitdoed
optimum before mutations further improve its
performance. Finally, the GA finds three non-dortéda
solutions with the following performance average
measures: liptal cost= €787,431fill rate = 100.00%;

2) total cost= €766,669fill rate = 98.88%; and 3jotal
cost= €752,300fill rate = 93.76%.
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Figure 3: The GA convergence subject to total cost
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Figure 4: The GA convergence subject to fill rate
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The response surface-based linear search algorithm
is used to adjust order-up-to levels of three non-
dominated solutions received with the GA while rfigi
stock point cycles. Finally, the average total castl
average fill rate of the second solution are edoal
€756,178 and 98.88%, respectively. The updated
Pareto-optimal front is given in Figure 5. Theree ar
three non-dominated solutions found by the GA, wher
the second solution is improved by the RSM-based
linear search algorithm.
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850000

800000 £
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750000 -* ..

700000
100 95 90 85 80 75
FillRate, %

Figure 5: The approximate Pareto-optimal front

CONCLUSIONS

The paper has presented the hybrid simulation
optimisation algorithm that integrates the multi-
objective genetic algorithm and response surfacedha
linear search algorithm. Although genetic algorithm
are widely applied at solving different real wortailti-
objective problems, they are often unable to enbuotk

the convergence to the Pareto-optimal front and its
diversity. In this paper, genetic algorithm allows
covering a broad region of the search space at each
generation, while RSM-based linear search algorithm
provides careful investigation of small portionsthé
search space and improves the current solution by
moving to a better “neighbour” solution. The resuif

the case study have demonstrated performance
efficiency of the proposed hybrid algorithm.
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