
REAL-TIME SIMULATORS DEVELOPMENTS: CURRENT AND NEW TRENDS

Rafael J. Martínez Durá

Instituto de Robótica, Universidad de Valencia

C/ Catedrático José Beltrán, 2

46980, Paterna, SPAIN

Rafael.Martinez@uv.es

ABSTRACT
This article briefly describes some technologies applied

to current real-time simulation training systems. It

focuses on nowadays and future trends both in hardware

and software architectures. The most important open

source and commercially available physics engines are

briefly described along with some scene graph

management libraries. Additionally, cluster-based

simulator issues are also discussed, including the main

problems that arise from using distributed GPU

programming. An analysis of current state of the art

regarding web browser-based simulators is also done.

Finally new trends and cutting-edge research that is

done in the real-time simulation field are discussed.

Keywords: real-time simulation, browser-based

simulation, GPU clusters, shaders

1. INTRODUCTION

Simulation issues always deal with a set of techniques

that allow reproducing the behaviour of both physical

processes, such nuclear reactions, store stocks

fluctuations or vehicles, and human behaviours, such as

evacuation systems or collaborative works. Nowadays,

due mainly to the availability of high performance

computer systems, it is possible to simulate in real time

the behaviour of devices, machinery, vehicles, control

rooms, allowing the user to be trained to obtain the

necessary skills to handle the real system with high

confidence.

A training simulator is built based upon a set of

functional blocks, being the most important the image

generation subsystem, the dynamical models that

compute the behaviour of the simulated objects, the

input/output subsystem that connect the user interfaces,

the instructor subsystem, the user management

subsystem and the evaluation subsystem. All of them

are closely coupled, in a way that the actions over any

simulator controller are computed by the dynamical

models and produce a reaction that is observed

immediately by the simulator operator, indicating some

kind of interactivity.

This capability presented in any real-time

simulator is achieved whenever the computation time

that the systems dedicates to calculate the evolution of

the simulated environment is smaller than the time that

is being simulated. As a consequence, every simulation

model, or the image rendering phases, should not be as

complex as desired, having to assume some kind of

simplifications (reduce the integration step, simplify the

dynamical model, reduce the number of polygons in the

scene, use levels of detail in the objects, etc.).

Training by means of simulation has several

advantages against the use of the real machine, although

in any case the simulator can substitute the real one, due

mainly to the fact that the simulator will always

simplify the working environment. The main

characteristics that make the simulators an

indispensable element in the training process are:

• Risk avoidance

• Training costs savings

• Ability to reproduce extreme situations

• Ability to train with faulty machinery

• Objective evaluation of user skills

When designing a training simulator, special care

must be taken with the details of the simulated

environment in order to keep it close to reality, since

this will greatly influence in the decrease of the time

involved in the training process. The term presence

(Sheridan 1992 and Slater, Khanna, Mortensen and Insu

Yu 2009) refers to the user impression of “being there”,

in the virtual world that the computer simulates. In

order to achieve a high presence, every user sense must

be stimulated as much as possible and also as real as

possible. Therefore, when integrating a simulator, it is

highly recommended to use immersive visualization

technologies, moving platforms, real dimension cabins

and controllers, 3D sound surround systems and mainly

graphical scenes and dynamical models highly accurate.

Along this paper a review of the technology related

with real-time training simulator design will be done.

Section 2 deals with new trends in computers and I/O

hardware that will be used in future simulators.

Following, in Section 3, the most important simulation

engines are described and also the new trends that exist

in multi GPU programming. Next section describes the

state in the art in browser-based simulators and finally

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 1

some open problems and current research lines

regarding simulation are explained.

2. HARDWARE ISSUES

When building a simulator, it can be done using many

hardware alternatives. The decision will depend on the

presence and accuracy that the simulator must provide.

Following, a description of the future trends in the

computational systems commonly used in the

implementation of training simulators is done.

2.1. Computer Architectures

The computer used to execute a simulator always

depends on the number of different views that the

simulator employs. There are simulators that have one

or two screens, like those used in crane simulators, three

screens, used in vehicle simulators and even five in

general purpose simulators implemented with CAVES

(C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V.

Kenyon and J. C.Hart 1992). Every view has to be

computed by a graphic card, so the simulator computer

system at least must provide the capability to include all

of them inside, and additionally, it must have enough

performance to be able for rendering the images at high

refresh rates.

For these two main reasons, PC-based simulators

and virtual reality systems were traditionally built with

computer clusters, since a graphic card could be

plugged in every node and there are also several CPUs

that allow the implementation of parallel algorithms and

complex dynamical and visual models. In such systems,

designers had to cope with the problems derived from

the synchronization of simulation data, scene graphs

and user inputs.

Nowadays, the evolution of PCs performance and

the ability to plug several graphic cards in the same

computer, make clusters being superseded by low-cost

single computers, avoiding the synchronization issues

present in clusters.

2.1.1. PC based configurations examples

Following some advice is given for choosing the

hardware to build a simulator, based, as viewed before,

in the number of views it has to provide.

When building a simple simulator, a single graphic

card with several heads can be used (the Matrox M9140

LP has four inside) for connecting several displays. If

high quality images are needed, as motherboards with

up to four PCI-e 16X slots are already available, it is

possible to have several graphic cards plugged in the

same PC. They can be configured to act as a single card

with high resolution and antialiasing capabilities (SLI

from NVidia and CrossFire from ATI) or in an

independent way providing several outputs. Another

similar solution is provided by NVidia. Its Quadro Plex

Model II is capable of connecting eight displays (it uses

four NVidia Quadro FX 4500 X2) and the NVIDIA

Quadro Plex Model IV, is capable of connecting four

synchronized displays (it uses two NVidia Quadro FX

5600 with GSync boards).

2.1.2. Game Consoles based Systems

Another important line to take into account is all the

hardware related with video games. Video games are

similar to simulators in many aspects, so the computer

architectures specially developed for them also have

enough power to drive a simulator, but with very low

costs. The only restriction is that video game consoles

are thought to have just a single screen, so they are not

good for multi display systems, however clusters of

them can be easily built in the way that traditionally has

been done with the PC-based simulators. The most

important game consoles that are currently available

are:

Sony PlayStation 3 (http://www.playstation.com):

Its parallel Cell processor and the NVidia RSX

architecture (based on a GeForce 7800) provide high

performance to this videoconsole, allowing the

development of highly parallel applications. Although

an official software development kit exists, it is also

possible to install Linux Yellow Dog and other

distributions for the PS3. They include a set of

compilers and libraries for programming the Cell

Processor. The main drawback they show is that their

kernels restrict the access both the GPU and some

peripherals, avoiding the development of high

performance applications (See Barttlet 2007).

Microsoft XBOX 360: It is based on a 3 core

Xenon CPU with an ATI Xenos graphic card that

supports unified shaders. Microsoft has developed a free

API (Application Program Interface) that allows the

development of applications for this architecture. In

order to develop professional games a subscription to

the Xbox Registered Developer Program must be done

(http://www.xbox.com/dev).

Computer architectures for real-time simulation are

thus evolving in two main directions. On the one hand,

the use of Personal Supercomputers offers an alternative

to clusters, reducing cost and system complexity. On

the other hand, the use of clusters is also being reviewed

by the introduction of Video Game Consoles which

provide a step ahead in parallelism and reduce costs.

2.2. Input Devices
Professional simulators trend to use the same devices

employed in game simulators and other video game

applications. Main reasons are that its interfaces are

very well defined and supported by the operating

system and that these devices have very low costs.

One example is the WiiRemote. It is one of the

most common computer input devices in the world. It

also happens to be one of the most sophisticated. It

contains a 1024x768 infrared camera with built-in

hardware blob tracking of up to 4 points at 100Hz, a 3-

axis accelerometer also operating at 100Hz and an

expansion port for even more capability. Its Bluetooth

interface allows connecting the device to any personal

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 2

computer. Many simulation related applications are

including the wireless WiiRemote, since it can provide

positional information that can be used as a tracker or a

wand. See http://www.wiimoteproject.com

Future simulators will also include personal

trackers. The high reality you get with this devices

increment the presence of the simulator at very low

costs. They are based on infrared cameras, like the ones

included in the wiimote.

One example to take into account is the Microsoft

Natal Project (http://www.xbox.com/live/projectnatal),

that uses a video camera that tracks where your body is

and what you're doing with it. It also uses a

monochrome camera (it works with infrared) that reads

depth — how far away your body and its component

parts are — and a highly specialized microphone that

can pick up voice commands. Along with all this

hardware, it's got a ton of software that tells the Xbox

how to find your body's various joints (it tracks 48 of

them) and how to keep track of multiple players at the

same time.

Others examples are the NaturalPoint low cost

trackers (http://www.naturalpoint.com/trackir). One of

its products, TrakcIR5, makes 6 DOF head tracking by

means of detecting some marks on the head of the user.

They provide a free software development kit that can

be used to include tracking in your own simulators.

Also, new low-cost data acquisition boards are

currently emerging, allowing the connection of any

analogue o digital device to the computer through the

usb interface in a straightforward way. They are HID

compatible, so another advantage is that they are

programmed very easily, as this protocol is supported

by any operating system since it is the one employed to

connect the standard game devices. In the same way,

you can use your home-built simulator device to play

with every commercial game simulator.

2.3. Motion Systems

In order to avoid sickness, motion systems must be

included in simulators with immersive displays. This

will be another future trend, since their installation is

quite easy, programming the motion cueing algorithms

it is already not necessary and their cost is not very

high.

Electro-hydraulic technology has been used for

over 30 years in probably 20,000 6DOF simulators

around the world, since its response curves denote they

can work at high frequencies (over 15Hz), however the

shift to all electric systems is the ground breaking event

that will change the world of simulation.

There will be small increments in software

improvements, including special effects, buffets and the

use of white noise generators to complement the

increased fidelity of the visual displays. User interface

continues to be improved. Automatic testing is being

integrated into the core software so that acceptance

testing can be run daily and compared to yesterday/last

week/last year's data to show a trend in degraded

performance indicating a need for maintenance, or no

degradation which would indicate the system is being

properly maintained. Moog Inc. is one of the main

companies that supply full 6 DoF motion platforms. See

http://www.moog.com/products/motion-systems.

Apart from this, in the near future, independent

actuators will be used to build your own motions seats.

They are mainly used in games, although for medium-

size simulators it is very easy to build your own 2-3

DoF motion cabin. SimCraft has recently announced a

motion simulation development kit, that allow to built

your chassis from one of SimCraft's various free plan

options, order a bolt-together kit, or design your own

within the SimCraft architecture specification. See

http://www.simcraft.com/star.html.

2.4. Display Systems

When dealing with high immersive simulators, today

emerging technologies trend to substitute the projection

systems that use rear-projection screens and mirrors

with embedded in-cabin display systems. Stereoscopic

images will be a must, since simulation for training

demands a high degree of depth perception. Passive

stereo technologies, although more comfortable, need to

duplicate the number of visuals generated, so its uses

will still remain be very restricted.

New solutions will use 3D LCD monitors with

large 46-inch screens and Full HD 1920x1080

resolutions. Nowadays cutting-edge display

technologies are based in new single chip solid state

illuminated DLP projectors, with WUXGA resolutions

(1920x1200). The main drawback of these systems is

that brightness is only up to about 700 ANSI lumens,

however they are capable of processing and displaying

infrared content for simultaneous display of both visible

light and the infrared spectrum, and the solid state

illumination allow a nearly virtually maintenance-free

system.

In the very near future, customizable high

resolution panels will be built, by means of replicating

low profile tileable single displays. Also some research

is being done in auto-stereo systems, avoiding the

necessity of wearing glasses, but this technology is still

to come.

3. SOFTWARE TRENDS

The main problem that arises when designing a training

simulator is that its software is compound by many

different modules: the user data bases management

system, the graphical user interfaces for the exercises

and the instructor, the report generators, and the most

important, the scene graph management system and the

dynamical models for calculating the behaviour of the

active objects. Everyone needs to be programmed using

different tools.

The design and implementation of such software

elements strongly depends on the computer systems

they are thought to be executed. The introduction of

new processor architectures, such as GPUs and PPUs,

with many cores capable of execute instructions in

parallel, has made that new programming paradigms

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 3

have to be used for them. Furthermore, new algorithms

and techniques to increase the simulation realism and

performance should be applied to the existing methods.

In order to understand what new problems arise when

designing the software for current simulation systems, a

brief description of the advances in computer

architectures follows.

3.1. GPU and PPU Programming
Current trends in computer architectures use replicated

parallel cores to increment performance. This is done

both at CPU level (for example Intel is currently

developing a processor with 80 cores inside, see S.

Vangal et all 2007) and also at the graphic processing

units (GPU) level (for example see NVidia Testla

architecture in E. Lindholm, J. Nickolls, S. Oberman, J.

Montrym 2008). The GPU evolved from a fixed

function graphics pipeline to a programmable parallel

processor with computing power exceeding that of

multicore CPUs. The main impact of these current

architectures was that now it is possible to execute

programs at GPU levels through what are called

shaders. They are simple programs that describe the

traits of either a vertex or a pixel. Following the

Direct3D version 9 it is possible to write vertex and

pixel shaders in a more abstract, readable and reusable

fashion, using a high level C-Style like language called

High Level Shader Language (see St-Laurent 2005).

Later OpenGL 2.0 introduced a common high level

shading language for vertex and pixel programs called

OpenGL Shading Language (see Rost 2006). New

GPUs incorporate a new architecture called “unified

shading core” (Blythe 2006) allowing that both vertex

and pixel processing can be handled by one single

programmable unit instead of having separate

programmable units for both the vertex and pixel

pipeline and also added to the pipeline another

programmable stage called the geometry shader.

In parallel, NVIDIA developed CUDA (Compute

Unified Device Architecture), where the GPU is seen as

a massively parallel set of multiprocessors, capable of

executing a high number of threads in parallel. In the

same way, AMD's response to GPU programming for

high-performance data parallel tasks was the AMD

Stream Computing Model. Both programming models

are based on an extension of the C programming

language. Furthermore, NVIDIA and ATI recently have

added to their consumer level graphics cards a new

concept: the Physics Processing Units (PPUs). These

units implement the most common physics simulation

techniques, accelerating their calculation. They are also

programmed by means of CUDA or other high level

libraries. Additional details can be seen in NVidia 2008.

This hardware evolution has stated a revolution in

the programming paradigms of the new simulation

algorithms, since from then, GPUs can be used for

general purpose computations, and therefore have a

specific weigh much more important than before. Now,

they are responsible of taking care of light, shadows,

particle systems, and complex dynamical models more

and more. In Borgo and Brodlie (2009) a beginner’s

introduction to GPUs, from both hardware and software

point of view, is done.

3.2. New programming paradigms

Nowadays PC clusters are still being used for

implementing multi-view training simulators. In the

past, software developers must cope mainly with the

problems derived from the multichannel

synchronization (gen-lock & frame-lock issues) and the

data distribution between the I/O devices (sensors,

tracking), the dynamical model and the different nodes

that were replicated in the visual scene graphs. Within

this scheme, only a centralized node that executes a

single dynamical model must cope with the dynamics

properties of the scene, sending at visual loop rates the

position of the different objects that move around the

virtual word and the position of the observer. The rest

of the nodes execute an instance of the scene graph,

modifying it according to the data received from the

dynamical models. Then every graphic card renders

locally the images that were displayed on the screen.

Current architectures trend to build many cores for

increasing program concurrency. This is not a problem

since compilers can manage processor affinities very

well and also operating systems provide the necessary

services to cope with multi-thread applications.

Additionally, programmable GPUs allow, also without

any problem, the implementation of a dynamical scene

graph whose nodes where directly controlled by shaders

entirely executed in them. If everything runs in a single

personal supercomputer with several graphics boards

inside, still we don’t have any problem with the

renderization of our multiple views.

But however, if we get a cluster of GPUs

connected, with everyone executing its own shaders,

current software technologies are not ready to cope with

the distributed pipelines configuration necessary to

execute the shader in parallel, so new paradigms are still

pending to come.

Some developments are already being done in

what respect to general purpose computing in the GPU.

For example OpenCL (Open Computing Language),

described in http://www.khronos.org/opencl, aims are

the design of an open standard for parallel programming

of heterogeneous computational resources at processor

level. More than just a programming language it

includes an API, libraries and runtime system for

software development.

The framework aspires at enabling portable and

efficient access to general purpose parallel

programming across CPUs, GPUs, Cell and ManyCores

architectures for both HPC and commodity applications.

The main key is to allow applications to use a host and

one or more OpenCL devices as a single heterogeneous

parallel computer system. Experienced programmers are

supported throughout the process of developing general

purpose algorithm without the necessity of mapping the

algorithm onto architecture/platform specific features

like 3D graphics API such as OpenGL or DirectX.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 4

Also, other studies have been recently made, trying

to uniform both the GPU and CPU calculations and the

communications between them. The most relevant are

the Zippy project (Fan, Qiu, and Kaufman 2008) and

the CUDASA project (Strengert, Mller, Dachsbacher

and Ertl 2008) that present a non-uniform memory

access scheme between GPUS, the work done by

Moweschell and Owens (2008), that implements a

multi-GPU distributed shared memory architecture and

DCGN (Stuart and Owens 2009), a message passing

interface usable on systems with data-parallel

processors. All of them ease the development and

integration of parallel visualization, graphics, and

computation modules on a heterogeneous cluster, but

still lack of generalities to share a dynamic scene graph

between the nodes of a GPU cluster.

3.3. Software for simulator developments

The core of a simulator is, at the end, a software

application which computes the evolution of the

simulated environment. There are a lot of libraries that

allow developing such kind of applications; however it

is difficult to choose which one better fits to our needs.

Following a brief description is done of those that are

the most active in the field of real-time simulation,

divided in two: physic engines and scene graph

management engines.

3.3.1. Physics Engines
Traditional physics engines are mainly based on solid-

rigid simulations coupled with links. Their main

drawbacks are that when developing the models, many

simplifications have to be done in order to guarantee

real-time and stability. Simulation aims, in this case, are

limited to have a realistic behaviour of a few scene

objects, the most important.

Nowadays, as viewed before, GPUs are in charge

of executing the dynamical models, allowing the

simulation of physically based visual effects, complex

systems and the calculation of real-time collision

detections. Nowadays everything is simulated,

including plants movements, trees, atmospheric effects,

particle systems, fire, fluids and deformable objects.

Programmers must choose one of the many

physical engines available to develop the dynamical

models of the scene objects. It is worth mentioning that

if different engines are used for physics and graphics,

special care must be taken when matching the

dimensions and positions of the objects in the scene

graph with those equivalents that the physical engine

handles for calculating collisions. The whole

information should be extracted from the 3D models

and from the scene graph in order to avoid

discrepancies between the calculated behaviour of the

objects and what you see.

The most important physics engines that today are

used in real-time simulations are the following:

ODE (http://www.ode.org): ODE is an open

source library for simulating rigid body dynamics. It has

advanced joint types and integrated collision detection

with friction capabilities.

Bullet physics (http://www.bulletphysics.com): It

is a professional open source collision detection, rigid

body and soft body dynamics library. It is also

integrated in MAYA and Blender3D.

Newton Dynamics (http://newtondynamics.com):

It is an integrated solution for real time simulation of

physics environments. The API provides scene

management, collision detection and dynamic behaviour

of objects.

Vortex (http://www.vxsim.com): It simulates the

behaviour of vehicles, robotics, and heavy equipment in

real-time synthetic environments for operator training

and testing. It is integrated in OSG and VEGA.

PhysX (http://nvidia.com/object/physx_new.html):

It delivers real-time, hyper-realistic physical and

environmental gaming effects: explosions, reactive

debris, realistic water, and lifelike character motion.

Everything is computed in the NVidia GPU.

Havok FX (http://www.havok.com): It is a physic

engine that runs entirely on the GPU and provides

failure-free physic simulation using proprietary

techniques for ensuring robustness, collision detection,

dynamics and constraint solving. It provides integrated

vehicle solutions and other tools available for

simulating clothes, skeletons physics and rigid body

destruction.

3.3.2. Scene graph management

Regarding scene graph management, there are many

sdks dedicated to that. This topic is highly influenced

by game technologies, where commercially available

graphics engines use shaders executed in the GPU to

increase performance. Mostly game engines also

incorporate other features like sound, networking,

artificial intelligence, collision, physics, etc.

Following are described the most important scene

graph managers, game engines and cluster related

applications that make possible the integration of a high

performance real-time simulator.

OpenSceneGraph (http://openscenegraph.org): It

is an open source high performance 3D graphics toolkit,

used by application developers in fields such as visual

simulation, games, virtual reality, scientific

visualization and modelling. Written entirely in

Standard C++ and OpenGL it runs on all Windows

platforms, OSX, GNU/Linux, IRIX, Solaris, HP-Ux,

AIX and FreeBSD operating systems.

OGRE (http://www.ogre3d.org): The Object-

Oriented Graphics Rendering Engine is a scene-

oriented, flexible 3D engine written in C++ designed to

make it easier and more intuitive for developers to

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 5

produce applications utilising hardware-accelerated 3D

graphics. The class library abstracts all the details of

using the underlying system libraries like Direct3D and

OpenGL and provides an interface based on world

objects and other intuitive classes.

Irrlicht Engine (http://irrlicht.sourceforge.net): It

is a cross-platform high performance real-time 3D

engine written in C++. It is a powerful high level API

for creating complete 3D and 2D applications like

games or scientific visualizations. It integrates all the

state-of-the-art features for visual representation like

dynamic shadows, particle systems, character

animation, indoor and outdoor technology, and collision

detection.

Delta3D (http://www.delta3d.org): It is a widely

used and well-supported open source game and

simulation engine. Delta3D is a fully-featured game

engine appropriate for a wide variety of uses including

training, education, visualization, and entertainment.

Delta3D is unique because it offers features specifically

suited to the Modelling and Simulation community such

as High Level Architecture (HLA), After Action

Review (AAR), large scale terrain support, and

SCORM Learning Management System (LMS)

integration.

Unreal Engine 3 (http://unrealtechnology.com): It

is under the hood of the most visually intensive

computer and video games on the market. It is available

under license for PC, PlayStation3, and Wii. Its main

features are: multi-threaded rendering, 64-bit high

dynamic range rendering pipeline with gamma

correction, dynamic composition and compilation of

shaders, post-processing effects (ambient occlusion,

motion blur, bloom, depth of field, tone mapping),

artist-defined materials, dynamic fluid surfaces, soft

body physics, deformable geometries, texture streaming

system for maintaining constant memory usage, particle

physics and skeletal animation.

Cry Engine 3 (http://www.crytek.com): It gives

developers full control over their multi-platform

creations in real-time. It features many improved

efficiency tools to enable the fastest development of

game environments and game-play available on PC,

PlayStation® 3 and Xbox 360™. Its main

characteristics are: road and river tools, vehicle

creation, multi-core support, and multithreaded physics,

deferred lighting, facial animation editor, dynamic

pathfinding, rope physics, parametric skeletal animation

and soft particle systems.

OpenSG (http://opensg.vrsource.org): It is a scene

graph system to create real-time graphics programs, e.g.

for virtual reality applications. It is developed following

Open Source principles, LGPL licensed, and it can be

used freely. It runs on Microsoft Windows, Linux,

Solaris and Mac OS X and is based on OpenGL. Its

main features are advanced multithreading and

clustering support (with sort-first and sort-last

rendering, amongst other techniques), although it is

perfectly usable in a single-threaded single-system

application as well.

VR Juggler (http://www.vrjuggler.org): It is a

platform for virtual reality application development.

This component allows a user to run an application on

almost any VR system. VR Juggler acts as "glue"

between all the other Juggler components. VR Juggler

is scalable from simple desktop systems like PCs to

complex multi-screen systems running on high-end

work stations and super computers. Its development

environment supports many VR configurations

including desktop VR, HMD, CAVE™-like devices,

and Powerwall™-like devices.

Equalizer (http://www.equalizergraphics.com): It

is the standard middleware to create parallel OpenGL-

based applications. It enables applications to benefit

from multiple graphics cards, processors and computers

to scale rendering performance, visual quality and

display size. An Equalizer-based application runs

unmodified on any visualization system, from a simple

workstation to large scale graphics clusters, multi-GPU

workstations and Virtual Reality installations.

4. BROWSER-BASED SIMULATION

Regarding games and simulation, one of the trends that

emerged recently was the implementation of

applications that are performed through a browser-based

interface or even on hand-held mobile devices. The

motivations were the necessity for extending the use of

the simulators in order that they arrive to the maximum

people. By means of the installation of an activex

component, every simulator component (graphical

models, dynamical models, textures and user interfaces)

is downloaded automatically and the most important, is

executed locally, without the necessity of installing

anything, just the mentioned ocx. Additional advantages

are that the software maintenance is done in a way

completely transparent to the user (whenever you

execute a new instance of the program) and the software

protection can be performed using encrypted keys or

restricting the clients by its internet address.

By the other side, the disadvantages that this

methodology shows are that it is still very new, so there

are still many software development kits quite

immature, showing many instabilities and also poor

performance when rendering the images. Furthermore,

it is necessary to receive through the network

connection the whole data that will be displayed,

including textures and 3D models that can weigh

hundreds of megabytes, often requiring a high

bandwidth connection. Another aspect to take into

account is that the server is a single point of failure, and

can be also stressed if it receives many connections

simultaneously. Security is another issue, since a failure

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 6

when programming an interface can lead to intrusions in

the computer system.

This kind of applications is used to implement

cheap simulators that use a single computer with a

single display, so the presence they provide is very low.

They are similar to computer based training applications

(CBT), but provide a real-time 3D interactive

environment.

Anyhow, the browser-based game industry is

currently very active and their technologies would be

translated in a short period of time to the simulation

market.

4.1. Browser-based simulation technologies

Following a brief description of the most important

libraries and engines used in browser-based distributed

applications is shown.

4.1.1. Java
Mostly browser-based applications use Java, from Sun

Microsystems (http://java.com), as it is possible to

integrate any Java application in the navigator through

applets. However, as the Java virtual machine consumes

a lot of cpu and many applications depend closely from

the navigator they are being executed, they have relative

small use in simulation applications. Anyway if it is

only required a 2D interface, it is worth having a look to

JavaFX (http://javafx.com), an open source application

that allow making very impressive interfaces.

In order to eliminate the explorer dependencies,

Sun introduced in 2001 a new technology called Java

Web Start (JWS), allowing the execution of any Java

application outside the browser. This is done specifying

the compiled Java binary archives (Java ARchives) to

be executed in the virtual machine inside a XML file

called JNLP (Java Network Launch Protocol). Using

this technology and whatever library that links Java

applications with OpenGL it is possible to build a 3D

simulator accessible by web. The client only downloads

the JNLP file that is automatically executed, allowing

the downloading of the simulator and if necessary also

the Java engine required in a transparent way to the

user.

In order to build the Java application that links

with OpenGL, there are many libraries that can be used.

However, the most important are:

JOGL (https://jogl.dev.java.net): The Java OGL

project hosts the development version of the Java™

Binding for the OpenGL® API. It is designed to

provide hardware-supported 3D graphics to applications

written in Java, and integrates with the AWT and Swing

widget sets allowing the implementation of GUIs.

LWJGL (http://www.lwjgl.org): The Lightweight

Java Game Library is a solution aimed to enable

commercial quality games to be written in Java.

LWJGL provides developers access to high

performance cross platform libraries such as OpenGL

(Open Graphics Library) and OpenAL (Open Audio

Library) allowing for state of the art 3D games and 3D

sound. Additionally LWJGL provides access to

controllers such as Gamepads, Steering wheel and

Joysticks.

java3d (https://java3d.dev.java.net): The Java 3D

API enables the creation of three-dimensional graphics

applications and Internet-based 3D applets. It provides

high-level constructs for creating and manipulation of

scene graphs, 3D geometry and building the structures

used in rendering that geometry. It is similar to the both

described before, but it uses high level structures.

jME (http://www.jmonkeyengine.com): jMonkey

Engine is a high performance scene graph based

graphics API. Using an abstraction layer, it allows any

rendering system to be plugged in. Currently, both

LWJGL and JOGL are supported. jME also supports

many high level effects, such as imposters (render to

texture), environmental mapping, lens flare, tinting,

particle systems, etc.

4.1.2. Adobe Flash
Flash (http://www.adobe.com) is commonly used to

create animation, advertisements and various web page

components, to integrate video into web pages, and

more recently, to develop rich Internet applications.

Flash can manipulate vector and raster graphics, and

supports bidirectional streaming of audio and video. It

contains a scripting language called ActionScript

allowing the design of graphic user interfaces. In order

to facilitate their design, the Adobe Flex SDK can be

used. It comes with a set of user interface components

including buttons, list boxes, trees, data grids, several

text controls, charts, graphs and various layout

containers.

Following, the flash based libraries and engines

most commonly used for 3D graphics rendering through

the navigator are briefly described:

PV3D (http://www.papervision3d.org): It is a

technology that uses Flash and ActionScript allowing

the renderization of 3D graphics through the web

browser. It is very efficient, but still lacks the ability of

using hardware accelerated rendering techniques (only

hardware polygon rendering it is allowed).

PapervisionX will be the next version of

Papervision3D, built from the ground up based on

Flash10’s new 3D api, that will take full advantage of

the 3D features of Flash Player 10.

Sandy3D (http://www.flashsandy.org): Sandy is an

object oriented ActionScript 3D library, for

programming 3D scenes for the Flash Player. The

engine's capabilities are related to the performance of

the virtual machine, which does not provide any native

3D nor hardware acceleration (although the Flash 10

player already introduces some 3D features). Sandy3D

currently provides transparent materials, video textures,

several shadow techniques and Collada, 3DS and ASE

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 7

external formats are supported. However it lacks

support for new materials with bump mapping and the

use of multiple cameras.

Away3D (http://away3d.com): It is another real-

time 3D engine for flash. It uses the hardware

acceleration techniques included in Flash10 and

supports object culling (using frustum calculations),

interchangeable camera lenses to allow for different

types of projection, collada bones animation, shadows,

fog and optimized corrective z-sorting. It is being

actively used by now and very well documented.

4.1.3. Adobe Shockwave
It allows publishing Adobe Director applications on the

Internet and viewed in a web browser by anyone who

has the Shockwave plug-in installed. The Shockwave

file format is .dcr, and it is created by the Director

authoring application. Features not replicated by Flash

include a much faster rendering engine, including

hardware-accelerated 3D, and support for various

network protocols, including Internet Relay Chat. Due

to its hardware rendering acceleration capabilities

(OpenGL and directX), it is often used in online

applications which require a very rich graphical

environment. Online Learning tools which simulate

real-world physics or involve significant graphing,

charting, or calculation sometimes use Shockwave. It is

worth seeing the many applications developed with

Adobe Shockwave in http://www.shockwave3d.com

4.1.4. Other alternatives
Apart from the graphic engines related with Flash or

Java reviewed before, there are still some other

alternatives for building 3D browser applications that

should be taken into consideration.

O3D (http://code.google.com/apis/o3d): It is an

open-source web API for creating rich, interactive 3D

applications in the browser. It is open source and it is

developed by Google. It uses OpenGL or DirectX and

depends strongly from JavaScript.

OSG4Web: (http://www.virtualrome.itabc.cnr.it):

It provides a framework for in-browser OpenGL-based

application wrapping. The framework allows the

development of OpenGL and OpenSceneGraph based

applications that open windows within the browsers,

allowing JavaScript bidirectional interaction with

surrounding page elements.

Unity3D (http://unity3d.com) Unity is a

multiplatform game development tool, designed from

the start to ease creation. Unity has a highly optimized

graphics pipeline for both DirectX and OpenGL. It

supports animated meshes, particle systems, advanced

lighting, shadows, shaders, physics, sound and

networking. The Unity Web Player enables you to view

blazing 3D content created with Unity directly in your

browser, and updates automatically as necessary.

Torque-3d (http://www.garagegames.com): This

commercial application 3D game engine features multi-

player network code, state of the art skeletal animation,

seamless indoor/outdoor rendering engines, drag-and-

drop GUI creation, a C-like scripting language and a

built in world editor. A great thing with The Torque

Game Engine is that you will receive all C++ source

code to the engine, this makes it a lot easier to add any

extra additions you might need for your game. Torque

3D supports all major browsers and operating systems,

including IE7, FF3, OS X and Chrome. Games perform

at 100% native speed, with no performance cost,

completely in your browser.

5. SIMULATION CUTTING-EDGE RESEARCH

From the late 60’s, training simulators have been used

in many military and civil applications. Simulation

technologies, therefore, are not new to the research

community, however, as has been viewed in previous

sections, new hardware advances and new user

requirements have made that new programming

paradigms be used when developing a simulator, both in

the hardware and the software side.

Following are described some of the main

problems that emerge when integrating a real-time

training simulator and that still need to be improved.

Also some important cutting-edge research lines are

included.

• Simulation for training requires a way to know if the

simulator reproduces accurately the real

environment, and also if it provides a good

instructional design making it suitable for training

purposes. This is done by means of certification and

homologation tasks. These are very well established

in military applications but not yet in the civil world.

• Improvements in 3D sound are still to come.

Auralization and real spatial sound systems

(appropriate for caves) must be improved in current

simulation systems. (See V. Pulkki 2002 and R.

Furse 2009 and T. Lentz, D. Schröder, M. Vorländer

and I. Assenmacher 2007)

• Risk prevention will be one of the main applications

of future simulators. Avatars are already very well

driven by realistic physical engines, but still we miss

a collaborative behaviour to develop some risky

tasks.

• New numerical methods for simulating multi-body

systems will come, including multi-rate integrators

(M. Arnold 2006), new distributed models (J Wang,

Z. Ma and G. Hulbert 2003) and the use of level of

details in physics (S.Redon, N.Galoppo, and M.Lin

2005).

6. CONCLUSIONS

Along this paper the most important technologies, both

hardware and software, that are involved in the design

of a real-time training simulator have been reviewed.

Although the basic simulator building blocks are

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 8

independent from the hardware used, the design of the

software architecture will be determined by the number

of displays that the simulator will provide to the user.

Serious games technologies and embedded display

systems will lead the future high-end training

simulation systems. Personal supercomputers are

replacing mostly medium sized cluster-based

simulators, however low cost web browser-based

simulators will spread around, thanks to the new

graphics engines able to render graphics using the GPU.

Physics engines already use parallel algorithms

executed in a single or a cluster of GPUs, however new

developments will have to come in order to solve the

distribution of dynamic scene graphs driven by GPU

computations into a set of several displays.

REFERENCES

M. Arnold. Multi-Rate Time Integration for Large Scale

Multibody System Models. IUTAM Symposium on

Multiscale Problems in Multibody System

Contacts. p. 1-10. 2006

J. Bartlett. Programming high-performance applications

on the Cell BE processor. Jan, 2007.

https://www.ibm.com/developerworks/power/libra

ry/pa-linuxps3-1/

D. Blythe. The Direct3D 10 system. ACM Transactions

on Graphics, vol. 25, nº 3, pp. 724-734, August

2006.

R. Borgo, K. Brodlie. State of the Art Report on GPU

Visualization. School of Computing – University

of Leeds. VizNET Report 2009.

C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V.

Kenyon and J. C.Hart. The Cave Audio Visual

Experience Automatic Virtual Environment,

Communication of the ACM, vol. 35, no. 6, pp.

64-72, 1992.

Z. Fan, F. Qiu, and A. E. Kaufman. Zippy: A

framework for computation and visualization on a

GPU cluster. Computer Graphics Forum, 27(2),

June 2008.

R. Furse. Building an OpenAL Implementation using

Ambisonics. AES 35th Int. Conference, 2009,

London, UK.

T. Lentz, D. Schröder, M. Vorländer and I.

Assenmacher, Virtual Reality System with

Integrated Sound Field Simulation and

Reproduction, EURASIP Journal on Advances in

Signal Processing, 2007.

E. Lindholm, J. Nickolls, S. Oberman, J. Montrym.

NVIDIA Tesla: A Unified Graphics and

Computing Architecture. Micro, IEEE, Vol. 28,

No. 2. (2008), pp. 39-55.

A. Moerschell and J. Owens. Distributed texture

memory in a multi-GPU environment. Computer

Graphics Forum, 27(1):130–151, March 2008.

NVidia, 2008. Compute Unified Device Architecture

Programming Guide Version 2.0,

http://www.nvidia.com/object/cuda develop.html

V. Pulkki "Compensating displacement of amplitude-

panned virtual sources." Audio Engineering

Society 22th Int. Conf. on Virtual, Synthetic and

Entertainment Audio. pp. 186-195. 2002 Espoo,

Finland.

S. Redon, N. Galoppo, and M. Lin. 2005. Adaptive

dynamics of articulated bodies. In ACM

SIGGRAPH 2005. p. 936 - 945. 2005.

R. Rost, 2006 OpenGL Shading Language 2nd edn.

Reading, MA: Addison-Wesley.

T. Sheridan (1992). Musings on telepresence and virtual

presence. Presence: Teleoperators and Virtual

Environments, 1, 120–126. 1992

M. Slater, P. Khanna, J. Mortensen and Y. Insu. Visual

Realism Enhances Realistic Response in an

Immersive Virtual Environment. Computer

Graphics and Applications, IEEE Volume 29,

Issue 3, May-June 2009. Page(s):76 – 84.

M. Strengert, C. Mller, C. Dachsbacher, and T. Ertl.

CUDASA: Compute Unified Device and Systems

Architecture. In Eurographics Symposium on

Parallel Graphics and Visualization (EGPGV08),

pages 49–56, 2008.

J. Stuart, J. Owens. Message Passing on Data-Parallel

Architectures. Proceedings of the 23rd IEEE

International Parallel and Distributed Processing

Symposium, pp.1-12, May 2009.

S. St-Laurent, 2005 The Complete Effect and HLSL

Guide. Redmond, WA: Paradoxal Press

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J.

Tschanz, D. Finan, P. Iyer, A. Singh, A. Singh, T.

Jacob, A10, S. Jain, A11, S. Venkataraman, A12,

Y. Hoskote, A13, N. Borkar. “An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm CMOS”.

Digest of Technical Papers. IEEE International In

Solid-State Circuits Conference, 2007. pp. 98-589.

J Wang, Z. Ma and G. Hulbert. A Gluing Algorithm for

Distributed Simulation of Multibody Systems.

Nonlinear Dynamics, 34 (1-2). p. 159-188. 2003

AUTHORS BIOGRAPHY

Rafael J. Martínez is an assistant professor at the

University of Valencia in the Computer Architecture

knowledge area. He received a PhD on Computer

Engineering from the University of Valencia in 1997.

He teaches Operating Systems and Fault Tolerant

Computing. He belongs to the Robotics Institute since

eighteen years ago and is the head of the Simulation &

Modelling Laboratory (LSyM). His main interest

research topics are computer graphics and simulation

for training. He has experience both in management,

research activities and consulting. He has coordinated

and participated in more than 20 research projects,

mostly of them related with simulation activities and

technology transfer to enterprises. He is the main

inventor of two patents related with harbour crane

simulators and has published more than 40 papers in

several congresses and research periodicals.

Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistics Modeling & Simulation, HMS 2009
ISBN 978-84-692-5416-5 9

