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ABSTRACT 
We present an optimization model for the yard 
allocation process in an automotive transshipment 
terminal. The cars arrive and depart by ships in large 
batches and the yard planners have to dynamically 
assign incoming cars to parking rows. The integer linear 
programming  model has been implemented in a 
commercial solver (CPLEX). We will present at the 
conference the model, the CPLEX computational 
results, and a new meta-heuristic. 
 
Keywords: automotive transshipment terminal, yard 
management, integer linear programming  

 
1. INTRODUCTION 
We discuss an operational problem arising in an 
automotive transshipment terminal. Maritime 
automotive transportation is developing along lines 
similar to container transportation where the hub and 
spoke arrangement is widely adopted (Mattfeld, 2006). 
Deep-sea vessels operate between a limited number of 
transshipment terminals (hubs). Smaller vessels 
(feeders) link the hubs with the other ports (spokes). 
This network topology results in the consolidation of 
capacity along the routes linking the transshipment 
ports and in the growth of their importance. Deep-sea 
car carriers have a capacity up to 6000 vehicles while 
ships deployed on the short-sea segment attain a 
capacity up to 1000 vehicles. Therefore, automotive 
transshipment terminals manage large flows of 
incoming and outgoing cars. Unlike containers, cars are 
“fragile” objects that require careful and consequently 
labour intensive handling. For example, cars can not be 
stacked and this results in larger yards with respect to 
container terminals. The yard management process is 
the heart of a transshipment terminal. The cars arrive 
and depart by ships in large batches and the yard 
planners have to dynamically assign incoming cars to 
parking rows. Once assigned to parking rows, the cars 
are not relocated inside the yard, i.e. their initial yard 
position is not modified during their duration of stay. 

The reason is that a re-handling process will augment 
the risk of damage which has to be kept at the lowest 
possible level. This “no-relocation” rule, combined with 
the low density yard, augments the importance of 
optimal yard assignment. In fact, the total traveled 
distance becomes a critical issue in such a low density 
yard. The transport of a car from the quay to the parking 
slot is performed by a driver. The drivers are grouped in 
teams and they are assisted by a mini-bus that brings 
back the drivers to the quay when unloading (to the yard 
in the loading case). This driver gathering process is 
another relevant operational problem. In the following 
we will indicate as a group a set of cars that arrive and 
depart by the same pair of vessels, and are of the same 
type (car model and brand). In order to facilitate the 
yard management and the driver gathering process, a 
group is allocated to a set of adjacent parking rows, 
Figure 1. The number of required parking rows depends 
upon the car length, and upon the row length since the 
rows have variable lengths in the yard. Yard managers 
prefer not to share a row between different groups. 
Therefore, partially empty rows are possible. 

We present an optimization model for the yard 
allocation process. The model has been implemented in 
a commercial integer linear programming solver 
(CPLEX).We will present at the conference the model, 
the CPLEX computational results, and a new meta-
heuristic. The meta-heuristic is inspired by the well-
known Greedy Randomized Adaptive Search Procedure 
(GRASP), (Resende and Ribeiro, 2003), and it is guided 
by the principle of maximizing the rotation index of the 
most favorable yard positions (Goetschalkx and Ratliff, 
1990). 
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Figure 1: Example of yard allocation 

 
2. MATHEMATICAL MODEL 

We assume a discretized rolling time horizon, and 
we define as a time step a fraction of a work shift. Let t 
express the time step index, t ∈  T = {1,…, |T|}, i.e. the 
time horizon consists in |T| time steps. The set of groups 
to allocate during the time horizon is indicated by K = 
{1,…, |K|}, and R = {1,…, |R|} is the set of parking 
rows. The group related data are: 

 
• kη , number of cars of the group k; 

• k
rv , maximum number of cars of the group k 

that can fill the row r; 
• ka , arrival time; 
• kb , departure time; 
• ko , quay unloading position; 
• kd , quay loading position; 
• k

ac , largest admissible unloading handling 
time, i.e. transport from the quay unloading 
positions to the assigned parking rows; 

• k
bc , largest admissible loading handling time, 

i.e. transport from the parking rows to the the 
quay loading positions. 

 
Rows are numbered in the filling direction, i.e. if 

row r is filled before row s  then r s< . The row 
ordering is such that if rows r  and , ,s r s<  are adjacent 
then 1s r= + . We will consider later in this section the 
case of  an “ending-row” arising when a given row r  
does not have an adjacent row in the filling direction. In 
the following we assume that it always exists an 
adjacent row. For each group k  we have to find a set of 
free adjacent rows of sufficient capacity. Since we 
consider parking rows of variable length, the number of 
required rows is variable as well. Let r  be the first row 
in the filling direction assigned to group k . Then the 
last row will be k

rr q+ , where k
rq  is the smallest 

positive integer value satisfying the following 
inequality: 
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The k
rq  value expresses the number of rows 

needed by the group k when the group first row is r, i.e. 
the group would occupy the row interval k

rI  defined as 

}{ , 1,..., 1k k
r rI r r r q= + + − . Analogously, we define as 
k
sϑ  the number of rows that the group k would require 

if s is the last row of the group, i.e. k
sϑ  is the smallest 

positive integer value satisfying the following 
inequality: 
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Consequently, we have the row interval 
{ }1, 2,...,k k

s ss s sϑ ϑ− + − +  which is equivalent to k
rI  if 

1k
sr s ϑ= − + . Since the k

rq and k
sϑ  values are related 

to the filling direction, we indicate them as “forward 
row request”, and “backward row request”, 
respectively. 

Thanks to this notation we can indicate an 
assignment of a group to the yard as an assignment to a 
first row. The “ending-row” case is now treaded by 
considering non-admissible an assignment of a group k 
to a first row r such that 1k

rq >  and the set 

}{ , 1,..., 2k
rr r r q+ + −  contains an ending-row. Let 

R R⊂  be the set of ending-rows, we define as R(k) the 
subset of R such that we do not have an intermediate 
ending-row for any assignment of k to ( )r R k∈  i.e. 

( ) { }{ }1: \k k
r rR k r R I r q R−= ∈ + ∩ = ∅ . Our decision 

variables are: 

• 
QuickTime™ e un
decompressore 

sono necessari per visualizzare quest'immagine.  if the first 
row of the group k is r, i.e. the group occupies 
the row set }{ , 1,..., 1k

rr r r q+ + − . 

Since we want to minimize the total handling time, 
we define as vzc  the time distance between 
v R O∈ ∪ and z R D∈ ∪ , where the set O represents 
the unloading positions { }k

k KO o∈= U , and, similarly 

we indicate by D the set of loading positions, 

{ }k
k KD o∈= U . The time distances are derived by 

the terminal operational database. Thus, these values 
incorporate set-up times and reflect real average speeds 
between positions. Our decision variables induce cost 
coefficients defined as follows: 
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• k
k
o rc , unloading handling time for the group k 

when the first assigned row is r: 
2
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• k
k
rdc , loading handling time for the group k 

when the first row is r: 
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We express by , ,tH t T∀ ∈  the largest desired handling 
per time step. We use the tH  values to avoid, if 
possible, handling peaks. The model can be solved 
iteratively by using, at the first iteration, arbitrarily large 

tH  values. Then, if the planners prefer to smooth the 
resulting handling peaks of this first solution, the model 
is solved by imposing the desired tH  values. The 
process is iterated until a feasible and satisfying 
solution has been found. 

The following sets are defined for notational 
compactness: 
 

• ( ) { : }, ,k kT k t T a t b k K= ∈ ≤ ≤ ∀ ∈ the set 
( )T k  represents the duration of stay of 

group k ; 
• ( ) { : ( )}, ,K t k K t T k t T= ∈ ∈ ∀ ∈  groups that 

at the time step t  are into the terminal; 
• ( ) { : }, ,k

aK t k K t a t T= ∈ = ∀ ∈  groups that at 
the time step t  arrive at the terminal; 

• ( ) { : }, ,k
bK t k K t b t T= ∈ = ∀ ∈  groups that at 

the time step t leave the terminal. 
 
We can now formulate our problem, in the following 
indicated as Adjacent Row Dynamic Assignment 
Problem (ARDAP): 
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{ }0,1k
ry ∈  , ( )k K r R k∀ ∈ ∀ ∈  (7) 

 
The objective function (1) minimizes the handling 
times. The constraints  (2) state that every group k  
must be allocated to one and only one admissible row 
r , since r must belong to ( )R k . The feasibility of the 
assignment is guaranteed by constraints (3): a row r  at 
a time step t  is occupied if a group ( )k K t∈  is 

allocated to r  as its first row, 1k
ry = , or if its first row 

belongs to the interval { 1, 2,..., 1}k k
r rr r rθ θ− + − + − . 

Constraints (4) and (5) model loading and unloading 
priorities, respectively. The k

ac  (equivalently k
bc ) 

coefficient  can be set to a smaller value to ensure that 
the group k  is assigned to rows closer to the unloading 
(loading) quay position. This results in user controlled 
parameters to specify group priorities, since closer rows  
mean faster handling times. Observe that constraints (4) 
and (5) could be eliminated incorporating them in the 
definition of the admissible row assignment set ( )R k . 
However, these constraints highlight the degree of 
available intervention and we prefer to maintain them. 
Constraints (6) limit the  maximum handling for each 
time step. The model dimensions are as follows: 
| | | |K R× binary variables and 3 | | | | (| | 1)K T R+ × +  
constraints. In term of computational complexity we 
prove that  ARDAP is strongly NP -hard. 

 
Theorem 1 ARDAP is strongly NP -hard. 
Proof- We will prove this by showing that the 
Generalized Assignment Problem (GAP) is a particular 
case of the ARDAP. In the GAP (Martello and Toth, 
1992) we have to find a minimum cost (or equivalently 
a maximum profit) assignment of a set of weighted 
items to a set of knapsacks. Let N  be the set of items, 

{1,..., }N n= , and M  the set of knapsacks, 
{1,..., }M m= . We indicate by ijc  the assignment cost 

of the item i  to the knapsack j , by ijw  the weight of 

the item i  when assigned to the knapsack j , and by jw  
the capacity of the knapsack j . An equivalent ARDAP 
instance could be defined as follows: 

 
• an item i corresponds to a group k and vice 

versa, i.e K N= , and in the following we 
equivalently refer to items or groups; 

• the ARDAP time horizon consists of only one 
time step, i.e. | | 1T = , and all the groups 
defined above arrive and leave the terminal at 
this time step, i.e. (1)K K= ; 
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• the set of rows has cardinality equal to the sum 
of the knapsacks capacities, | | jj M

R w
∈

=∑ ; 

• the set of ending rows has cardinality equal to 
the number of knapsacks, | |R m= ; 

• we define a partition of the set R  in m  
subsets ,jS j M∈ : { ,...., }j j jS r s=  where 

1
1

1j
j ll

r w−

=
= +∑  and 1j j js r w= + − , 

i.e. | |j jS w= , and the row js  is an ending-

row, js R∈ ; 

• the group forward row request k
rq  is constant 

for the row belonging to a given subset jS  and 
it is equal to the corresponding weight of the 
item, i.e , ,k

r kj jq w r S j M= ∀ ∈ ∈ ; similarly, 

the group backward row request k
sθ  is equal to 

the weight of the item in each subset jS ; 

• the group to row assignment cost k k
k k
o r rdc c+  is 

constant for the row belonging to a given 
subset jS  and it is equal to the corresponding 

cost of the item, i.e , ,kj jc r S j M∀ ∈ ∈ ; 

• the right-hand side coefficients of constraints 
(4) - (6) are set to arbitrarily large values. 

 
It is immediate to see that the procedure outlined above 
constructs an  ARDAP instance equivalent to the GAP 
one. An optimal solution for this ARDAP instance 
could be polynomially transformed in an optimal 
solution for the GAP. Therefore, if it exists a pseudo-
polynomial algorithm A  for the ARDAP, then A  
would solve the GAP as well. Since the GAP is known 
to be strongly NP -hard, the result follows. 
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