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ABSTRACT 
Robust detection of various hostile threats is vital to 
protect Navy ships and other facilities under harbour 
and maritime environments. Traditional single-input 
single-output (SISO) sonar transmits single acoustic 
waveform by single projector, which has a few 
disadvantages including low target detection probability, 
low resolution, vulnerability of interception by the 
enemy, sensitivity to jamming, etc. Multi-input multi-
output (MIMO) sonar is an emerging technology to 
overcome all these disadvantages. In this paper, 
cognitive monostatic/bistatic/multistatic MIMO sonar 
approaches are proposed. MIMO sonar transmits 
different orthogonal acoustic waveforms from multiple 
projectors with different spatial distribution. Through 
space-time-waveform diversity, MIMO sonar is able to 
apply coherent processing techniques over the received 
signals, and acquires more diversity gains. The 
cognition concept proposed in the literature for radar 
and wireless communication is applied to MIMO sonar 
to improve its robustness and adaptability. The 
advantages of proposed cognitive MIMO sonar will be 
demonstrated by Monte Carlo computer simulations. 
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1. INTRODUCTION 
There are many threats such as submarines, mines, 
unmanned underwater vehicles (UUVs), unmanned 
surface vehicles (USV), manned surface vehicles (MSV) 
to Navy ships and other important facilities under 
harbour and maritime environments.  All-weather day-
night robust detection of underwater and surface threat 
targets is very important for military applications in the 
presence of severe clutter, jamming, and some kinds of 
sonar measurement errors. Sonar has been widely 
investigated in the last few decades and exploited for 
target detection, tracking, classification and imaging. 
According to the numbers of transmitters and receivers, 
sonar mainly has four schemes: (1) single-input single 
output (SISO); (2) single-input multiple-output (SIMO); 
(3) multi-input single-output (MISO); (4) multi-input 

multi-output (MIMO) (Akyildiz 2005, Li 2008, Coon 
2008, Maiwald 2008, Guerci 2003).  
       SISO is the most traditional sonar working 
approach which transmits single acoustic waveform by 
single projector. It has a few disadvantages including 
low target detection probability, low resolution, 
vulnerability of interception by the enemy, sensitivity to 
jamming, etc. SIMO sonar transmits single acoustic 
waveform by single projector but the received acoustic 
waveforms are coherently processed by the multiple 
receivers. Multiple-input multiple-output (MIMO) radar 
and sonar has recently become a hot research area for 
its potential advantages (Xu 2007, Li 2007, Yang 2007, 
Lehmann 2006). MIMO sonar uses multiple antennas to 
simultaneously transmit several linearly independent 
acoustic waveforms and deploy multiple antennas to 
receive the reflected signals. The echoes from different 
targets can be linearly independent of each other.    
       According to the location of transmitters and 
receivers, sonar can be divided into three categories: (1) 
monostatic sonar whose transmitters and receivers are 
co-located; (2) bistatic/multistatic sonar whose 
transmitters and receivers are distributed in different 
places; (3) hybrid multistatic sonar in which part of the 
transmitters and receivers are co-located and others are 
located in different places. At present the most popular 
sonar in use is the monostatic sonar because it is easier 
to operate. However, there are some disadvantages of 
monostatic sonar. The first is its comparatively lower 
survivability because it is easy to be detected by the 
enemy when in operation. Its resolution is limited by 
the size of the sonar aperture. Bistatic sonar has some 
advantages over monostatic sonar such as covert 
receiver, higher survivability, and improved ECCM. 
Multistatic sonar is initially defined as netted 
configurations of bistatic sonars (Tsakalides 1999). 
Recently the multistatic sonar concept is generalized to 
consist of different kinds of netted sonars such as 
conventional SIMO monostatic sonars, SIMO bistatic 
sonars, multiple-input-single-output (MISO) monostatic 
sonars, MISO bistatic sonars, and most recently 
proposed monostatic/bistatic/sparse-aperture MIMO 
sonars. Multistatic sonar has many advantages over 
monostatic and bistatic sonars but with more 
complexity and communication capacity requirements. 
The illuminators installed on a high valued ISR 
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platform and those on each monostatic sonar can 
provide space-time-waveform diversity with the 
potential of improved SNR, wider coverage, anti-
jamming, and higher detection rates and lower false 
alarm rates, and higher resolution because of much 
bigger sonar aperture. 
       There are important and challenging problems still 
needed to be solved, especially for monostatic/ 
bistatic/multistatic sonar. In this paper, we try to 
improve the robustness of target detection by 
monostatic and bistatic MIMO sonars through artificial 
intelligence. Cognitive radar is a very newly proposed 
technique (Haykin 2006). Through cognition, the sensor 
working status and environment sensing such as 
jamming can be obtained. The sonar system bias, sonar 
element failure, and jamming information is integrated 
with the space-time-waveform adaptive processing 
module which can greatly improve the robustness 
performance of MIMO sonar based target detection. 

   The paper is organized as follows. Section 2 
presents robust STAP for cognitive monostatic SIMO 
sonar. Cognitive monostatic and bistatic MIMO sonars 
are described in Section 3 and 4, respectively. Robust 
target detection by cognitive MIMO sonar is developed 
in Section 5. Monte Carlo computer simulation is 
presented in Section 6. Finally, the conclusons are 
provided in Section 7.   

 
 
2. ROBUST STAP FOR COGNITIVE 

MONOSTATIC SIMO   
Space-time adaptive processing (STAP) is an important 
module of the SIMO sonar. The output of the STAP 
module is input into the target detection module 
(discussed in Section 5). The basic structure of the 
second-order statistics based STAP beamformer is 
shown in Figure 1. Without loss of generality, we 
consider a uniform linear array (ULA) with N-element. 
A coherent processing interval (CPI) consists of M 
pulses with a fixed repetition interval (PRI) T. Many 
techniques can be easily extended to nonuniform linear 
array, rectangle array, circular array, and other array 
structures. For a N-element ULA, the steering vector of 
the i-th waveform (i = 1 for SIMO sonar) is given by 
                

i i i= ⊗s b a                                                                   (1) 

 
where ⊗  denotes the Kronecker product, and its N-
dimensional spatial steering vector ia  and M-
dimensional Doppler steering vector ib  are defined as 

 
2 cos 2 ( 1) cos1 i ij d j N d

i e eπ θ λ π θ λ−⎡ ⎤= ⎣ ⎦a L ,      (2)    
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where θ  is the wavefront angle, 
idf  is the Doppler 

frequency for the i-th orthogonal waveform. The 
original statistics based STAP algorithm is given by 

 
 ,min . . 1

w
w R w w sH H

i n i i i is t =                                    (4) 

 
where ,n iR  is the positive-definite NM NM×  
dimensional covariance matrix for the i-th waveform 
which is associated with the total interference (clutter 
plus jamming plus receiver noise) for the given range 
cell under test. The optimal weight and filter output iy  
for the i-th waveform are given by 

                              

( ) ( )1 1
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        ŵ xH

i i iy = .                                                           (6) 
                                                
              The original second-order statistics based STAP 

algorithm given by equation (4) is not robust to steering 
vector error, array element failure, jamming, and clutter. 
It has been shown that prior knowledge can improve the 
performance of STAP radar detection effectively. 
Cognitive STAP is proposed here to robustly detect 
targets for sonars. Prior knowledge and online learning 
of environments are both utilized to improve the 
detection performance. Prior knowledge is used to help 
selecting the secondary data. Some constraints are also 
formed for STAP beamformer from prior knowledge. 
The steering error is calibrated by the sensor 
registration module. Sensor health monitoring module 
can detect the health of each array element. The failure 
element is not included in the STAP beamformer. The 
cognitive statistics based STAP beamformer is 
expressed as 

 

      
,min . . 1,

0, 0,

H H
i n i i i i

H H H
i c i jam i i

s t

ε

=

= = ≤
w

w R w w s

w U w U w w

)

                       (7) 

 
where si

)  is the steering vector after calibration of the 
sensor system bias parameter θΔ ,   

                          
2 cos( ) 2 ( 1) cos( )1 i ij d j N d

i e eπ θ θ λ π θ θ λ−Δ − −Δ⎡ ⎤= ⎣ ⎦a) L

                                                                                      (8)                      
       i i i= ⊗s b a) ) .                                                                  (9) 

 
Uc  is the prior knowledge of the dominant clutter 
subspace, U jam  is the jamming subspace detected 
online by the spectrum sensing module. The failure 
array element detected by the sensor health monitoring 
has been excluded from the angle-Doppler steering 
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vector. The quadratic constraint expressed by equation 
(7) can improve the robustness of the STAP 
beamformer against channel mismatch and steering 
errors. The covariance matrix ,Rn i  is estimated by 

 

      , , ,
1

R̂ x x
K

K
n i k i k i

k=
= ∑ .                                                         (10) 

Prior knowledge (GIS, clutter model database, MIMO 
sonar waveform library) and online learning of 
environments (sonar system bias, sonar health 
monitoring, jamming) are used to adaptively select the 
secondary data.  
 
     

 
Figure 1: The Basic Structure Of The STAP Beamformer 

 
 

 
Figure 2: Block Diagram Of The Cognitive Monostatic MIMO Sonar 

 
      Many optimization algorithms proposed in the 
literature can be used to solve the STAP problems 
expressed as equations (4) and (7). Some popular 
methods are SMI, constrained LMS (CLMS), 
constrained RLS (CRLS), Generalized Sidelobe 
Canceller (GSC), and neural network based 
optimization methods. The criteria (4) and (7) optimize 
the output variance subject to constraints. It is not very 

robust to non-Gaussian heavy-tailed clutter. A more 
robust STAP beamformer is based on lower order 
statistics such as fractional lower-order statistics (FLOS) 
or zero-order statistics (ZOS). The FLOS based STAP 
beamformer is defined as  
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where p is the fractional lower-order. When p = 2, 
FLOS based STAP becomes the second-order statistics 
based STAP in equation (7). The ZOS based STAP 
beamformer is defined by  
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    There are no closed form solution to (11) and (12). A 
stochastic gradient method or Genetic Algorithms (GA) 
can be used with the results of (4) or (7) as its 
initialization. 

 
 

 

 
Figure 3: Block Diagram Of The Cognitive Bistatic MIMO Sonar 

 
 

3. COGNITIVE MONOSTATIC MIMO SONAR  
The block diagram of the cognitive monostatic MIMO 
sonar is shown in Figure 2. There are mainly four 
modules: (1) multiple transmitters; (2) co-located 
multiple receivers: acoustic waveform matching filter 
(AWMF), space-time-waveform adaptive processing 
(STWAP), target detector, and tracker; (3) cognition 
module: prior knowledge and online sensing of 
environments; (4) sensor management (SM).  The 
STWAP is described in detail here. 

   Multiple transmitters and multiple receivers are co-
located which can be two ULAs or the same ULA for 
both transmitting and receiving. Suppose that the 
element distances for the transmitter and receiver ULAs 
are Td  and Rd , respectively. Monostatic MIMO 
processes all waveforms together by a single STWAP 
instead of using one STAP for each waveform. Suppose 
there are L transmitters, N receivers, and M coherent 
pulses. T is the coherent pulse interval. ( , )θ φ   is the 

wavefront angle of the target in 3D space to the ULA. 
Statistics based STWAP can be expressed as: 
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where       
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(X is the NML -dimensional baseband measurements,)  
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 (steering vector after sensor calibration), 
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(spatial   steering vector of l-th waveform), 
 

( )( )2
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l

f
λ
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(Doppler frequency of l-th waveform). 
 

If L = 1, monostatic MIMO in equation (13) changes to 
SIMO in equation (4).   

 
4. COGNITIVE BISTATIC MIMO SONAR  
The block diagram of the cognitive bistatic MIMO 
sonar is shown in Figure 3. Transmitters ULA and 
receivers ULA are located on two different platforms. 
There are mainly four modules: (1) multiple 
transmitters on one platform; (2) co-located multiple 
receivers on another platform: acoustic waveform 
matching filter (AWMF), space-time-waveform 
adaptive processing (STWAP), target detector, and 
tracker; (3) cognition module: prior knowledge and 
online sensing of environments; (4) sensor management 
(SM).  The STWAP is described in detail in this section. 

   Suppose that the element distances for the 
transmitter and receiver ULAs are Td  and Rd , 
respectively. T is the coherent pulse interval. Suppose 
there are L transmitters, N receivers, and M coherent 
pulses. ( , )t tθ φ   and ( , )r rθ φ  are the wavefront angles of 
the target to the transmitter and receiver ULAs in 3D 
space. Statistics based bistatic MIMO STWAP can be 
expressed as the following optimization problem:    
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0, 0,

H H
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H H H
c jam
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where      
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X is the NML -dimensional baseband measurements 
after 2D Doppler compensation,  
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  (l-th spatial steering vector),  
   

 
( ) ( )
( ) ( )

1
l

t e t e t e
d

l r t r t r t

f
λ

⎡ ⎤− − − +
= ⎢ ⎥

− − −⎢ ⎥⎣ ⎦

v v P P P P

v v P P P P
                  (28) 

(Doppler frequency of l-th waveform).                     
 
       Multistatic MIMO sonar can be set up with 
networked multiple monostatic and bistatic MIMO 
sonars. We will present our multistatic MIMO sonar in 
our future paper. 
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Figure 4: Comparison Of Monostatic MIMO and SIMO Sonars Without Jamming and Clutter: (a) SIMO; (b) MIMO 
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Figure 5: Comparison Of Monostatic MIMO and SIMO Sonars With Jamming and Clutter: (a) SIMO; (b) MIMO 
 
5. ROBUST TARGET DETECTION BY 

COGNITIVE MIMO SONAR   
Distributed detection is presented here for the 
multistatic sonar with a configuration of many 
monostatic and bistatic sonars. There are three steps: (1) 
Optimal weight estimation by STAP/STWAP for each 
tested range cell. (2) Local adaptive matched filter 
(AMF) constant false alarm rate (CFAR) detection 
using the estimated weight (Goldstein 1999). (3) 
Detection fusion in the Fusion Center by DS reasoning. 
The sonar detection for the k-th tested range cell and i-
th STAP/STWAP can be expressed for each of the 
following two hypotheses, 
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: ,

: .

k k
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The adaptive matched filter (AMF) CFAR test statistic 

k
iΛ  is then calculated by 
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The local detection result is 
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The local AMF CFAR detection results are finally fused 
by our DS fusion toolbox. 

 
6. MONTE CARLO COMPUTER 

SIMULATIONS   
The performance of cognitive MIMO sonar is evaluated 
and compared with conventional SIMO sonar under 
various environments. Linear sonar arrays are used for 
MIMO transmitter and receiver. The proposed method  
 

 
can also be applied to other sonar arrays such as 
rectangular and three-dimensional sonar arrays. 
       Figure 4 compares the performance of SIMO and 
monostatic MIMO sonars without jamming and clutter 
(only random noise exists in the measurements). In 
Figure 4(a), there are 10-element for MO. In Figure 4(b), 
there are 2-element for MI and 10-element for MO. 
Figure 4 shows that through waveform diversity, the 
resolution of MIMO sonars is improved effectively. The  
resolution of 2-input 10-output sonar is 2 times higher 
than that of 1-input 10-output SIMO sonars. 
        Figure 5 compares the performance of cognitive 
SIMO and monostatic MIMO sonars with jamming and 
clutter. In Figure 5(a), there are 10-element for MO. In 
Figure 5(b), there are 2-element for MI and 10-element 
for MO. Through cognitive sensing of the environments, 
the covariance of the jammings and clutters are 
available and applied in the space-time-waveform 
adaptive processing algorithm. Figure 5 shows that 
through waveform diversity, the resolution of MIMO 
sonars is also improved effectively under jamming and 
clutter. Deep notchs are formed to filter the jamming 
and clutter. As shown in Figure 4 and Figure 5, the 
output of the SIMO and MIMO sonars at the target ‘s 
position and Doppler has a peak. After STWAP, the 
target can be detected by CFAR. 

 
7. CONCLUSIONS 
Inspired by recent advances in MIMO radar and 
cognitive radar, we have developed a robust target 
detection based on cognitive monostatic and bistatic 
MIMO sonar for harbour and maritime surveillance 
applications. STWAP, target detector and cognition are 
three important modules in a MIMO sonar. It has been 
shown that through space-time-waveform diversity and 
cognition processing, MIMO sonar has many superior 
advantages over conventional SISO sonar such as 
higher target detection probability, higher resolution, 
much less vulnerability of interception by the enemy, 
more robustness to jamming and sonar system bias and 
sonar element failure. More complex networked 
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multistatic MIMO sonar is in investigation and the new 
results will be reported in another paper. 

 
REFERENCES 
Akyildiz, I. F., Pompili, D., and Melodia, T., 2005. 

Underwater acoustic sensor networks: research 
challenges. Ad Hoc Networks, 3, 257-279. 

Li, Y., Huang, H., Li, S., and Zhang, C., 2008. LPI 
Performance analysis of MIMO sonar detection. 
UDT Europe 2008. 

Coon, A. Hall, B., Kanyuck, B., and Skarda, G., 2008. 
Novel approaches to multistatic sonar processing 
and source deployment. UDT Europe 2008. 

Maiwald, D., Benen, S., Corsten, A., Rose, B., and  
Schmidt-Schierhorn, H., 2008. Modular multistatic 
sonar systems. UDT Europe 2008. 

Nicholas J. Willis, 2005. Bistatic Radar. Scitech 
Publishing, Inc. 

Guerci, J., 2003. Space-Time Adaptive Processing for 
Radar. Artech House. 

Goldstein, J. S., Reed, I., and Zulch, P., 1999. 
Multistage partially adaptive CFAR detection 
algorithm. IEEE Trans. AES, 35(2), 645-661. 

Tsakalides, P., and Nikias, L., 1999. Robust space-time 
adaptive processing (STAP) in non-Gaussian 
clutter environments. IEE Proc. – Radar, Sonar 
Navig., 146(2),  84-93. 

Haykin, S., 2006. Cognitive radar: a way of the future, 
IEEE Signal Processing Magazine, 23(1), 30-40. 

Xu, L., and Li, L., 2007. Iterative generalized likelihood 
ratio test for MIMO radar. IEEE Transactions on 
Signal Processing, 55(6), 2375-2385. 

Li, J., and Stoica, P., 2007. MIMO radar with colocated 
antennas: review of some recent work. IEEE Signal 
Processing Magazine, 24(5), 106-114. 

Yang, Y., and Blum, R. S., 2007. Minimax robust 
MIMO radar waveform design. IEEE Journal of 
Selected Topics in Signal Processing, special issue 
on: Adaptive Waveform Design for Agile Sensing 
and Communication, 147-155.  

Lehmann, N., Haimovich, A., Blum, R., Chizhik, D., 
Cimini, L., and Valenzuela, R., 2006. High 
resolution MIMO-radar. Proceedings of Asilomar 
Conference on Signals, Systems and Computers, 
Pacific Grove, CA, November 2006. 

Haykin, S.. Cognitive radar network, 
ieeexplore.ieee.org/iel5/11178/36018/01706227.pdf  

 
 

 

 

 

 

 

 
 

 
 

 

166


