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ABSTRACT 
The paper focuses on simulation results for a real 
supply network, dealing with tomatoes production, 
which is widespread in Southern Italy. The dynamics of 
the system is studied via differential equations, that 
involve either parts on arcs or queues that consider the 
exceeding goods. Two different numerical schemes are 
compared to test the approximation degrees, and then 
used for simulations. Through a procedure of Situation 
Awareness, a possible choice of the input flow to the 
supply network is analyzed. The obtained results prove 
that using Situation Awareness allows, at least for the 
real system in consideration, good compromises in 
order to modulate production queues. 

 
Keywords: supply networks, Situation Awareness, 
differential equations, tomatoes production 

 
1. INTRODUCTION 
Italian economy, as well as the wealth of each Italian 
region, depends on various phenomena that are also 
connected to the distribution/production of different 
goods. As the intention is an increment of prestige at 
international and national levels, a careful attention is 
always devoted to the analysis of some marketing 
strategies that foresee the exporting of cultivated goods. 
Hence, big efforts aim to guarantee a suitable treatment 
of products via supply networks, by which producers 
and consumers are both satisfied. Such a situation is 
highly studied in Campania, an Italian region where 
production and distribution of tomatoes represent a 
serious issue. Indeed, the primary key factor is the 
production, as its possible delays have consequent 
negative impacts on the delivery in the foreseen times. 

The aim of this paper is to focus on supply 
networks for tomatoes, also considering environment 
factors that always establish a hard constraint in terms 
of input flows to production systems. In particular, 
supply networks are modelled using a fluid-dynamic 
model, based on Partial and Ordinary Differential 
Equations (PDEs, ODEs). Input flows to such networks 
are chosen by an approach of Situation Awareness 
(Endsley 1995, Endsley 2015, Wickens 2008), applied 

to the tomatoes production. The advantages are evident: 
on one hand, the fluid-dynamic model allows focusing 
on time-space dynamics of goods; on the other hand, 
Situation Awareness establishes, considering 
environment parameters, possible correct inputs to the 
production systems in order to avoid unsuitable 
situations, such as remainders of goods to process. 

Supply networks and their behaviors have been 
studied by different mathematical models, see for 
instance Daganzo 2003, Helbing 2005, Kleijnen 2003, 
Longo 2008 and Wang 2010. Some approaches are 
discrete and based on dynamics of individual parts; 
others are continuous and deal with differential 
equations (see, for example, Cascone 2008 and Manzo 
2012 for applications to road networks). The first work 
in this direction is by Armbruster, Degond and 
Ringhofer (Armbruster 2006), who used a limit 
procedure to obtain a conservation law (Bressan 2000a, 
Bressan 2000b and Dafermos 1999), which refers to 
densities of parts. Other papers have been introduced to 
focus on further phenomena of supply systems 
(Armbruster 2007, Armbruster 2003). In our case, we 
consider the model proposed in Göttlich 2005 and 
Göttlich 2006, where conservation laws for densities of 
parts and queues for each supplier are analyzed. 
Considering various discretizations for PDEs (examples 
are in Canic 2015, De Falco 2016 and Leveque 2002), 
two different numerical schemes are analyzed for the 
fluid-dynamic model: an Upwind-Euler approach 
(precisely, Upwind method for PDEs and Euler scheme 
for ODEs), with different space meshes and a fixed time 
grid mesh to overcome problems of not rational ratios 
for lengths of suppliers (details are in Cutolo 2011); a 
Differential Quadrature (DQ) approach, firstly 
introduced in Bellman 1971 and considered as higher 
order Finite Differences (FDs), see Shu 2000, 
Shvartsman 2016, Tomasiello 2013. DQ based methods 
have found many applications in science and 
engineering (De Rosa 1998, De Rosa 2007, De Rosa 
2016, Fantuzzi 2016, Kamarian 2016, Tomasiello 2007, 
Tornabene 2016, Tornabene 2015a, Tornabene 2015b), 
because of the improved computational efficiency. 
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As there is the exigency of controlling the 
production processes and hence the input flows to the 
supply networks, Situation Awareness is necessary. As 
for Endsley’s opinion (Endsley 1995), Situation 
Awareness deals with “the perception of the elements in 
the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of 
their status in the near future”. Such a model deals with 
three different levels, useful to plan decisions on input 
flows of supply systems: perception, by which elements 
of the environment are perceived; comprehension, that 
considers which data from the environment are useful 
for the goals to achieve; projection, which is the 
capability of projecting the recognized elements in the 
future. Great advantages of Situation Awareness are 
simply obtained focusing on the characteristics of the 
three levels, useful to take decisions for particular 
domains. An example is in D’Aniello 2016, where the 
authors discuss a possible Decision Support System for 
smart commerce environment. 

Finally, simulations are made: first, the Upwind-
Euler method and the Differential Quadrature approach 
are compared, showing that they have similar 
characteristics in terms of numerical approximations 
and computational times. Then, starting from the 
numerical results, a real example of supply system for 
tomatoes production is considered. In this case, input 
flows are chosen in two different cases: decisions 
planned by the leadership of a little business company 
in Campania region (Italy); decisions obtained by a 
model of Situation Awareness, considering real 
environment data. It is proven that Situation Awareness 
is useful to accelerate the system dynamics, in terms of 
emptying of queues in some parts of the system. 

The outline of the paper is the following. Section 2 
presents Situation Awareness within the context of 
tomatoes production. Section 3 considers the 
mathematical model for supply networks. Section 4 
deals with numerical methods for the proposed model: 
Upwind-Euler with different space meshes for different 
suppliers; Differential Quadrature rules. Finally, Section 
5 contains the simulation results: first, numerical errors 
for the described numerical approaches are considered; 
then, the case study of a supply network for tomatoes is 
presented. Conclusions end the paper in Section 6. 
 
2. SITUATION AWARENESS FOR TOMATOES 

PRODUCTION 
In this section, we discuss a possible application of 
Situation Awareness using the Endsley's model 
(Endsley 1995), that is contextualized to processes for 
tomatoes production within a real little business 
company in Campania region (Italy). The overall 
approach is in Figure 1. 

In detail, the environments consist of conditions by 
which high quality tomatoes depend, namely: presence 
of wind, humidity for arable fields and weather. In such 
a framework, a situation describes a state for a good 
growth of tomatoes and has three different phases: 

• Perception: environment data are obtained and 
kept. 

• Comprehension: data of the previous step are 
elaborated. This operation represents a serious 
issue, as combinations of parameters for 
tomatoes growth imply possible forecasts on 
the quality of goods. In this work, the 
comprehension step is made by analysing time 
series. 

• Projection: results of the second phase are 
used to plan possible future decisions. The 
effect of this phase is to define a Decision 
Support System (DSS). 

 

 
Figure 1: Situation-aware Decision-making process 

 
The DSS, not described in detail here, represents a 
support for the leadership of the business company. The 
DSS has rules, based on Fuzzy Logic, that allow to 
understand possible correct levels of injection to the 
production networks. 
 
3. A MODEL FOR SUPPLY NETWORKS 
In this section, we present an ODE-PDE model for 
supply networks (see Göttlich 2006), based on the 
analysis of Armbruster 2006 and described for supply 
chains in Göttlich 2005. The model considers: a 
conservation laws formulation for density of parts over 
the suppliers; time - dependent queues for the transition 
of parts among suppliers; distribution coefficients 
which indicate how the outgoing flows from a given 
node distribute over suppliers which are downstream. 

A supply network is a directed graph with a set of 
arcs J  and a set of vertices V . 

Each arc j J∈  is parameterized by a real interval 

,j ja b   , represents a supplier (possibly having infinite 

endpoints) and is considered: incoming if <jb +∞ ; 
outgoing if >ja −∞ . For each outgoing arc j J∈ , 
there exists a queue. 

Each vertex v V∈  is connected to a set of 
incoming arcs ( )Inc v J⊂  and a set of outgoing arcs 

( )Out v J⊂ . 
There are distributions coefficients , ( )( )v j j Out vα ∈  

such that , ]0,1[v jα ∈  and ,( )
= 1j vj Out v

α
∈∑  ∀  v V∈ . 
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Notice that the coefficient ,v jα  indicates the percentage 
of flux outgoing from v  and directed to the supplier j .  

For each arc j J∈ , indicate by: > 0jµ  the 
maximum processing capacity; > 0jL  the length; 

> 0jT  the processing time; := /j j jv L T  the processing 

velocity; ( ) max, 0,j jt xρ ρ ∈    the density of parts at 

point x  and time t ; ( )( ) { }, := min , ( , )j j j j jf t x v t xρ µ ρ  
the flux function. 

Considering that parts over each arc j J∈  are 
processed with velocity jv  and with a maximal flux 

jµ , the phenomenon is defined by the conservation 
law: 
 

( ) ( )( ), , = 0, , , > 0,t j x j j j jt x f t x x a b tρ ρ  ∂ + ∂ ∀ ∈  
(1) 

 

( ) ( ) ( ) ( ),
,00, = 0, , = ,j inc

j j j j
j

f t
x x t a

v
ρ ρ ρ≥            (2) 

 
where ,0jρ  and the inflow, ( ),j incf t , have to be 
assigned. 

If, for some vertex v V∈ , we get that arc 
( )j Out v∈ , we have a time dependent queue, ( )jq t , 

that obeys this equation:  
 

( ) ( )( ) ( ), ,
( )

= , .j v j k k k j inc
k Inc v

d q t f b t f t
dt

α ρ
∈

−∑               (3) 

 
For each arc j J∈ , we assume that: 
 

( )

( )

( )( ) ( )

( )

, ,
( )

,  if = ,

:= , , ,  if = 0,

,  if > 0.

j j

j inc v j k k k j j
k Inc v

j j

t a

f t min f b t q t

q t

ϕ

α ρ µ

µ
∈

−∞


 
  

 



∑  

(4) 
 
where ( )j tϕ  is an assigned input profile on the left 

boundary ( ){ }, : 0ja t t ≥ . 

The following holds: 
 
Lemma 1. Consider a solution to (1), (2), (3) and (4), 
given by ( , )j t xρ  and ( )jq t . Then, ( , ) 0j t xρ ≥ , 

( ) 0jq t ≥  for every j J∈ , 0t ≥  and x .  
Proof. As , > 0j vα , the inflows (4) are positive and the 
fluxes jf  vanish at 0 , the density jρ  is always 
positive by the comparison principle of conservation 

laws. Equations (3) and (4) ensure that ( )' > 0q t  when 

( ) = 0q t , hence the conclusion follows. 
Remark 2. Lemma 1 also holds for supply chains, 
considering , = 1j vα . 
 
4. NUMERICAL SCHEMES 
We deal with some numerical schemes for the model of 
Section 3, in order to define approximations of densities 
and queues. Two possible alternatives are considered: 

• UE scheme: Upwind method for the PDE (1) 
and explicit Euler for the ODE (3) in case of 
different space meshes, see further details in 
Cutolo 2011. 

• DQ scheme: Differential Quadrature rules (e.g. 
see Tomasiello 2007, Tomasiello 2013).  

 
4.1. UE Schemes 
In this Section we introduce the Upwind-Euler method 
with different space meshes for different suppliers. This 
is useful either when jL  have not rational ratios or 
when computational complexity reductions are needed, 
see Cutolo 2011. 

For each arc j J∈ , define a numerical grid in 

[ ]0, 0,jL T ×   with points ( ), n
i j

x t , = 0,..., ,ji N  

= 0,..., jn η , where: jN  is the number of segments into 
which the j -th supplier is divided; jη  is the number of 
segments into which [0, ]T  is divided. 

Then, we indicate by: j n
iρ  the value assumed by 

the approximated density at the point ( ), n
i j

x t ; n
jq  the 

value of the approximate queue buffer occupancy at 
time nt . 

For each supplier j J∈ , set a fixed time grid mesh 
t∆  and different spaces grid meshes =j jx v t∆ ∆ . Then, 

grid points are ( ) ( ), = ,n
i jj

x t i x n t∆ ∆ , = 0,..., ,ji N  

= 0,..., jn η . The Upwind scheme for the parts density 
of arc j  reads as: 
 

( )1
1=   ,  ,j n j n j n j n

i i j i i
j

t v j J
x

ρ ρ ρ ρ+
−

∆
− − ∈
∆

               (5) 

 
= 0,..., ,  = 0,..., .j ji N n η  Notice that, as 

= min :j

j

x
t j J

v
 ∆ ∆ ∈ 
  

, the CFL condition (see 

Leveque 2002) is automatically satisfied. 
For queues, if <ja −∞ , the explicit Euler method 

gives: 
 

1
, ,

( )
= ( ) ,n n k n n

j j v j k N j inck
k Inc v

q q t f fα ρ+

∈

 
+ ∆ − 

 
∑                 (6) 
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= 0,..., ,jn η  where: 

 

( )

( )

,
( ),

( ),  ,  = 0,
=

,  > 0. 

k n n
v j k N j jn k

k Inc vj inc
n

j j

min f q t
f

q t

α ρ µ

µ
∈

  
  
  



∑     (7) 

 
As we need 0j n

iρ ≥ , 0n
jq ≥  ∀  0n ≥ , j J∈ , 

= 1, , ji N , the following numerical correction for 

,
n
j incf  is provided:  

 
( ) ,

( )
,

' ' ( )
= ,

k n
j v j k Nk

k Inc vn
j inc

t t t f
f

t

µ α ρ
∈

∆ + ∆ −∆

∆

∑
            (8) 

 
where: 
 

,
( )

' := .
( )

n
j

k n
j v j k Nk

k Inc v

q
t

fµ α ρ
∈

∆
− ∑

                                   (9) 

 
Finally, if =ja −∞ , suitable boundary data are needed, 
using ghost cells and the expression of inflows given by 

( )j tϕ , see equation (4). 
 
4.2. DQ Scheme 
The numerical scheme is defined through DQ rules 
(Bellman 1971), applied to approximate the derivatives 
of the equations. 

In what follows, first we consider a short overview 
of DQ rules. Then, a suitable scheme for the model of 
Section 3 is provided. 
 
4.2.1. Differential Quadrature rules: an overview 
Consider a continuous function ( )u x  in the interval 

= [0, ]I L , whose a fixed and arbitrary partition is 

1 20 = < < < =Mx x x L . The DQ rules allow to 
approximate the r-th order derivative of ( )u x  by a 
weighted sum of the functional values at the grid points 

= ( )j ju u x  as:  
 

( )

=1
= , = 1, , .

r M
r

ij jr
j

d A u i M
dx ∑                                    (10) 

 
The weighting coefficients are computed as follows, see 
Shu 2000: with regard to the first–order derivative 
weighting coefficients, we get:  
 
 

( )
( )

( ) ( )
=1,1

=1,

= ,  ,  = 1,2,..., ,  = ;

M

i p
p p i

ij M

i j i p
p p i

x x
A i j M j i

x x x x

≠

≠

−

− −

∏

∏
 

(11) 
 
with regard to the higher–order derivative weighting 
coefficients ( 2 1r M≤ ≤ − ), we have: 
 

( 1)
( ) ( 1) (1)= ,  ,  = 1,2, , ,  = ;

( )

r
ijr r

ij ii ij
i j

A
A r A A i j M j i

x x

−
−

 
− 

−  
  

(12) 
 
on the other hand, for =i j  (1 1r M≤ ≤ − ): 
 

( ) ( )

=1,
= ,  = 1,2, , .

M
r r

ii ip
p p i

A A i M
≠

− ∑                                (13) 

 
As for the partition, it can be uniform or not. An usual 
choice for non-uniform partitions is given by the Gauss-
Chebyshev-Lobatto (GCL) distribution: 
 

1 ( 1)= 1 cos ,  = 1,2, , .
2 ( 1)i

ix i M
M

π
 −
− − 

                 (14) 

 
The approximate solution, which is obtained by 
applying the DQ rules, is in general written as 
(Tomasiello 2007):  
 

( ) = ( ) ,Tu x xV d                                                          (15) 
 
where 1= ( , , )T

Mu ud  , while ( )xV  is the shape 
functions vector of which the j -th element is:  
 

1
( )

1 1
=1

( ) = ,
!

rM
r

j j k
r

xV x A
r

δ
−

+ ∑                                             (16) 

 
being 1 jδ  the well–known Kronecker operator. Notice 
that equation (15) (with equation (16)) expresses an 

1M −  terms Taylor expansion around = 0x . So, the 
residual is ( )MO x  (see also Shu 2000). 
 
4.2.2. The discretized equations 
 
Let us consider equation (1). By applying DQ rules to 
the spatial derivative, we get for the j -th arc: 
 

( ) ( )( )(1)

=1
, , = 0,  = 1, , .

M j

t j i ik j j k j
k

t x A f t x i Mρ ρ∂ +∑    (17) 

 
By discretizing with respect to the time simply by 
conventional FDs, as in the UE scheme, we finally 
obtain: 
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( )( )1 (1)

=1
=  , = 0,  

M j
j n j n

i i ik j j n k
k

t A f t xρ ρ ρ+ − ∆ ∑             (18) 

 
= 1, , ,  = 0, , .j ji M n η   For the queues, we apply the 

Euler scheme as described in Section 4.1. 
As one can notice, the main difference with the UE 

scheme is in the fact that in the DQ scheme we have 
jM  (in general not equally spaced) grid points over the 

spatial axis instead of jN  intervals with length jx∆ . 
 
5. SIMULATIONS 
This section is devoted to the presentation of simulation 
results for the dynamics of queues and parts on supply 
networks. In particular, after considering a short case 
study to analyze the goodness of approximations for 
different numerical approaches, the attention is focused 
on a supply network to simulate a typical process for 
the tomatoes treatment. 
 
5.1.1. Test 1 – Comparison between UE and DQ 

schemes 
In what follows, we consider a supply chain with 

= 6N  suppliers, whose parameters (lengths, processing 
times and maximal fluxes) are in Table 1. 
 

Table 1: Parameters of the supply chains 
Supplier j  jL  jT  jµ  

1 1 1 40 
2 0.5 1 35 
3 1.5 3 30 
4 2 4 15 
5 0.5 1 10 
6 0.5 1 5 

 
For the simulation results, we assume: 

• Empty suppliers and queues at = 0t . 
• Total simulation time = 350.T  
• Inflow ( )tϕ  for the first supplier defined as:  

 

( )

15,  0 20,

5 ,  20 < 50,
2:=
360 ,  50 < 100,
5

0,  100 < .

t
t t

t
t t

t T

ϕ

≤ ≤

 + ≤


 − ≤

 ≤

                             (19) 

 
Using the UE scheme with = 0.0125t∆  and 

=j jx v t∆ ∆ , = 1,...,6,j  we have the queue buffer 
occupancies in Figure 2. Notice that the various queues 
decrease with slow velocities as 

2 3 4 5 6> > > >µ µ µ µ µ . Although the processing 

velocities jv , = 2,...,6j , are the same, 6q  is the 
highest queue. 

The same test is made by the DQ scheme, using 
= 6M  CGL grid points on each arc. Figure 3 shows 

the behaviour of the queue buffer occupancy ( )4q t . 
Evident similar numerical approximations are obtained. 
 

 
Figure 2: Queues ( )jq t , = 2,...,5j ; 2 ( )q t  is the first 
on the left; 3 ( )q t  is the second on the left, and so on 
 

 
Figure 3: Numerical approximation of 4 ( )q t  via 
different numerical methods: UE scheme (continuous 
line); DQ scheme (dashed line) 
 
Further remarks about the convergence errors (see 
Cutolo 2011 and De Falco 2016) are useful to compare 
the numerical methods, see Table 2.  
 

Table 2: Errors for UE and DQ schemes 
t∆  Errors for UE Errors for DQ 

0.00625 0.01175 0.01554 
0.0125 0.02512 0.02812 
0.025 0.07822 0.08212 

 
From the obtained results, we get that the considered 
schemes have similar characteristics as for goodness of 
approximation. 
 
5.1.2. Test 2 – Simulation of a process for treating 

tomatoes 
We analyze some simulation results of a real supply 
network, that deals with tomatoes, see Figure 4. The 
network is used inside a little business company in 
Campania region (Italy) and, following the 
interpretation given in Göttlich 2006, each arc is either a 
conveyor belt or a machine. 
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Figure 4: Supply network for tomatoes 

 
In this case, the roles of each arc are described as 
follows. Arc 1 is a conveyor belt that transports 
tomatoes. According to a distribution coefficient 0.5, 
tomatoes are equally distributed to arcs 2 and 3, 
conveyor belts useful to discriminate goods for the 
production of peeled and diced tomatoes, respectively. 
Arcs 4 and 5 are machines with the same function, 
namely: peeling and skins separations for tomatoes. 
Arcs 6 and 7 work for a suitable selection of the 
processed tomatoes. Arcs 8 and 9 consider the closure 
of containers for tomatoes. Finally, arc 10 is useful for 
palletizing operations. 

The supply network is simulated by the UE scheme 
with = 0.00625t∆  and the following parameters for the 
arcs: = = 1i iL T , = 1,...,10;i  1 = 500µ ; 10 = 15µ ; 

= 34 2j jµ − , = 2,...,9j ; ( )0, = 0i xρ , = 1,...,10i ; 

( )0 = 0iq , = 2,...,10i ; total simulation time = 400T ; 
input profile for arc 1 given by: 

 

( )

,  0 70,
70,  70 < 80,

=
80,  80 < 150,
0,  > 150.

t t
t

t
t

t

ϕ

≤ ≤
 ≤
 ≤


                                      (20) 

 
Function (20) is chosen considering the real cases of 
production inside the business company in discussion, 
namely: tomatoes are injected inside the system 
following, first, a linear increasing profile (hard 
injection); then, constant ones; finally, a decreasing one 
(light injection). 

In Figures 5–7, queues are depicted. Notice that 
( )2q t  is smoother than other queues as arc 2 receives 

directly goods from arc 1. Slopes of queues ( )jq t , 

= 3,...,9j , are quite different from the one of ( )10q t , 
due to the values of jµ , = 1,...,10.j  Moreover, 
although (20) is zero ∀  > 150t , queues dynamics is 
very slow. This is confirmed by ( )10q t  that vanishes at 
a time instant, which is about 390, much higher than 
150. 

In Figure 8, we have the density of arc 3 for various 
instants of time. Unlike the behaviour of queues, arcs 
become full in a short time, i. e. arc 3 at = 40t  already 
reaches the maximal density (coincident with 3µ  as 

3 = 1v ). 
 

 
Figure 5: Behaviour of 2 ( )q t  

 

 
Figure 6: Dynamics of queues ( )jq t , = 3,...,6j ; 3 ( )q t  

is the first on the left; ( )4q t  is the second on the left, 
and so on 
 

 
Figure 7: Queues ( )jq t , = 7,...,10j ; 7 ( )q t : dot dot 
dashed line; 8 ( )q t : dot dashed line; 9 ( )q t : dashed line; 

10 ( )q t : continuous line 
 

 
Figure 8: Density 3 ( , )t xρ  for different time instants; 

= 5t  (dot dot dashed line); = 10t  (dot dashed line); 
= 20t  (dashed line); = 40t  (continuous line) 
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Notice that the presence of queues is principally due to 
( )tϕ , jv  and jµ , = 1,...,10j . In general, as it is not 

possible to redesign the system in terms of lengths, 
processing times and maximal fluxes, the levels of 
( )tϕ  determine the dynamics of the overall supply 

network. A possible optimization of supply systems 
modelled by a fluid-dynamic approach is nowadays still 
under investigation, especially in terms of criteria for a 
correct choice of ( )tϕ  in order to erase queues. 

In our case, using an approach based on Situation 
Awareness, the aim is to establish an alternative choice 
for ( )tϕ . From environment data and using the 

procedure described in Section 1, we get that ( )tϕ , the 

new choice of ( )tϕ , foresees only constant levels, 
namely:  
 

( )

30,  0 < 45,
80,  45 90,

=
50,  90 < 150,
10,  > 150.

t
t

t
t

t

ϕ

≤
 ≤ ≤
 ≤


                                       (21) 

 
Decisions for (21) are due to typical Italian weather 
conditions in months useful for tomatoes, from May to 
September. Assuming that the time t  is expressed in 
days, a Situation Awareness procedure suggests to have 
constant levels of injections, that obey the following 
criteria: a light injection from May 1st to June 15th 
(about 45 days); a high profile from June 15 to July 
30th; a medium injection from August 1st to September 
30th; a low profile from September 30th. 

Indeed, performances due to ( )tϕ  and ( )tϕ  are 
evaluated via the cost functional: 
 

( )
10

=1 0

1:= ,
10

T

i
i

J q t dt
 
  
 

∑ ∫                                               (22) 

 
that measures the average area due to queues inside the 
supply system. As queues are strictly dependent on the 
input profiles, different values occur for the choices 
( )tϕ  and ( )tϕ . We get that: 

 
( )( ) ( )( )149889, 112742.J t J tϕ ϕ= =                  (23) 

 
As expected, the adoption of a new profile is not 
suitable to erase queues in the overall system. Indeed, 
choosing ( )tϕ  allows only to decrease the contribution 
of queues. This last aspect is still under investigation. 
 

6. CONCLUSIONS 
Focusing on the model for supply systems proposed in 
Göttlich 2005 and Göttlich 2006, a real case of 
production network for tomatoes has been studied. 

First, two numerical approaches have been 
proposed, proving that different schemes produce the 
same orders of approximation. 

Then, using a procedure based on Situation 
Awareness, the simulations have showed that input 
profiles are able to modulate production queues, but not 
to erase them completely. 

Further studies, based on Situation Awareness and 
Fuzzy Logic for the comprehension and the projection 
phases, are going to be developed in order to obtain 
robust optimization criteria for the performances of 
supply networks. 
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