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ABSTRACT 

Two-level nested simulation methods have been 

recently applied for the analysis of simulation 

experiments under parameter uncertainty. On the outer 

level of the nested run, we generate (n) observations of 

the parameters, while on the inner level; we fix the 

parameter on its corresponding value and generate (m) 

observations using a simulation model. In this paper, we 

focus on the output analysis of two-level stochastic 

simulation experiments for the case where the 

observations of the inner level are independent, showing 

how the variance of the simulated observations can be 

decomposed in the sum of parametric and stochastic 

components. Furthermore, we derive central limit 

theorems that allow us to compute asymptotic 

confidence intervals to assess the accuracy of the 

simulation-based estimators for the point forecast and 

the variance components. Theoretical results are 

validated through experiments using a forecasting 

model for sporadic demand, where we have obtained 

analytical expressions for the point forecast and the 

variance components. 

 

Keywords: Bayesian forecasting, stochastic simulation, 

parameter uncertainty, two-level simulation 

 

1. INTRODUCTION 

Simulation is widely recognized as an effective 

technique for producing forecasts, evaluating risk, 

animating and illustrating the performance of a system 

over time (see, e.g., Kelton et al. 2012). When there is 

uncertainty in some components of a simulation model, 

these random components are modeled using 

probability distributions and/or stochastic processes that 

are generated during the simulation run, in order to 

produce a stochastic simulation. 

The method that is usually applied to estimate a 

performance measure   (e.g., an expectation) in 

transient simulation, consists in computing an estimator 

n  from the output of n independent replications of the 

simulation experiment. This estimator must be 

consistent, i.e., it must satisfy  n , as n  

(where “ ” denotes weak convergence of random 

variables). Consistency guarantees that the estimator 

approaches the parameter as the number of replications 

n increases, and the accuracy of the simulation-based 

estimator n  is typically assessed by an asymptotic 

confidence interval (ACI) for the parameter. The 

expression for an ACI is usually obtained through a 

Central Limit Theorem (CLT) for the estimator n  (see, 

for example, chapter III of Asmussen and Glynn 2007). 

 

 
Figure 1: Two level algorithm for calculating a point 

estimator under parameter uncertainty 

 

In contrast to the estimation of performance measures, 

input parameters of a simulation experiment are usually 

estimated from real-data observations (x) and, while the 

majority of applications covered in the relevant 

literature assume that no uncertainty exists in the value 

of these parameters, the uncertainty can actually be 

significant when little data is available. In these cases, 

Bayesian statistics can be used to incorporate this 

uncertainty in the output analysis of simulation 

experiments via the use of a posterior distribution

 xp  . A Bayesian approach using simulation as a 

forecasting tool has been reported in diverse areas; for 

example, healthcare (see, e.g., Santos et al. 2013) or 

software development (see, e.g., Lee et al. 2009). A 

methodology currently proposed for the analysis of 

simulation experiments under parameter uncertainty 

and, in particular, for the estimation of expected values, 

is a two-level nested simulation method (see, e.g., 

Zouaoui and Wilson 2003, L'Ecuyer 2009; Andradóttir 

and Glynn 2016). In the outer level, we simulate (n) 

observations for the parameters from a posterior 

distribution  xp  , while in the inner level we simulate 

(m) observations for the response variable with the 

parameter fixed at the value generated in the outer level 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

233



(see Figure 1). In this paper, we focus on the output 

analysis of two-level simulation experiments, for the 

particular case when the observations of the inner level 

are independent, showing how the variance of a 

simulated observation can be decomposed into 

parametric and stochastic variance components. 

Afterwards, we derive a CLT for both the estimator of 

the point forecast and the estimators of the variance 

components. Our CLT´s allows us to compute an ACI 

for each estimator. Our results are validated through 

experiments with a forecasting model for sporadic 

demand reported in Muñoz and Muñoz (2011). 

Following this introduction, we present the proposed 

methodology for the construction of an ACI for the 

point forecast and the variance components in a two 

level simulation experiment. Afterwards, we present an 

illustrative an example that has an analytical solution 

for the parameters of interest in this paper. This 

example is used in the following section to illustrate the 

application and validity of our proposed methodologies 

for the construction of an ACI. Finally, in the last 

section, we present conclusions and directions for future 

research. 

 

2. METHODOLOGY 

In order to identify the variance components in each 

observation Wij of the algorithm illustrated in Figure 1, 

let     11WE , and      22
11

2   WE . 

Under this notation, the point forecast is     E , 

and the variance of Wij is  
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for i = 1,…,n; j = 1,…,m, where    22
1  E , and 

        222
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. It is worth 

mentioning that, in relevant literature, 2
1  is commonly 

referred to as stochastic variance and 2
2  as parametric 

variance. 

 

2.1. Point Estimators 

In this paper, we are interested in both the estimation of 

the point forecast     E  and the estimation of 

the variance components of the observations generated 

by the algorithm of Figure 1 and defined in (1), thus we 

first define the natural point estimators 
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for i = 1,...,m. Note that the î  are independent and 

identically distributed (i.i.d.) with expectation 

   1ˆE  and variance  
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On the other hand, the 2
iS  are i.i.d. with expectation 

E S
1
2é

ë
ù
û=s

2
2. Thus, the next proposition follows from 

the Law of Large Numbers (Theorem 5.4.2 of Chung 

2001). 

Proposition 1. Given 1m , if   11WE  then  n̂  

and  nT
2̂  are unbiased and consistent estimators  for 

  and 
2
1

12
2  m  (as n ), respectively. 

Furthermore, if 2m , then  n2
2̂  is an unbiased and 

consistent estimator for 
2
2  (as n ). 

 

2.2. Accuracy of the Point Estimators 

As we established in the previous Section, the point 

estimators proposed in (2) and (3) are consistent, and 

thus converge to the corresponding parameters values as 

n . Nonetheless, to establish the level of accuracy 

of these estimators, we must establish a CLT for each 

estimator that allows us to calculate the corresponding 

ACI. Note that both  n̂  and  n2
2̂  are averages of 

i.i.d observations, thus the next proposition follows 

from the classic CLT for i.i.d. observations. 

Proposition 2. Given 1m , if   2
11WE  then 
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as n . Furthermore, if 2m  and   4
11WE , then  
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where  1,0N  denotes the standard normal distribution, 

    2
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2 ,ˆ,ˆ,ˆ Snn   are defined in (2) and (3),  1̂V  is 

defined in (4), and    
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Since we have consistent estimators for  1̂V  and
 

V S
1
2é

ë
ù
û, the next corollary follows from Proposition 1 

and Slutsky’s Theorem (see, e.g., Serfling 2009). 

 

Corollary 1. Under the same notation and assumptions 

from Proposition 2, we have 

  

 
 1,0

ˆˆ

ˆ

1

N
V

nn






 , and 
  
 

 1,0
ˆ

ˆ

2
1

2
2

2
2 N

SV

nn



, 

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

234



for 1m  and 2m , respectively, as n , where  
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To obtain a CLT for  nT
2̂ , note that this estimator is 

the variance of a set of i.i.d. observations, thus we can 

use the following Lemma. We omit the proof of this 

Lemma, nonetheless, it can be proven by applying the 

Delta Method (see, e.g., Proposition 2 of Muñoz and 

Glynn 1997). 

Lemma 1. If ,, 21 XX is a sequence of i.i.d. random 

variables with    4
1XE , then  

  
 1,0

222/1

N
nSn

S







, 

as n , where  
2
12

2   , 

2
2431

4
12

2
1 448  S ,  

m
k

= E X
1
ké

ë
ù
û , k = 1, 2, 3, 4; 

       
 n

i iXnnS 1
2

1
12 ˆ1  ,  

 n
i iXn 1

1
1̂ . 

Corollary 2. Under the same assumptions as in Lemma 

1 we have 
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Corollary 2 follows from the fact that k̂  is an 

unbiased and consistent estimator of k , and the next 

corollary follows from the fact that  nT
2̂  is the sample 

variance of the î . 

Corollary 3. Given 1m , if   4
11WE  then 
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Let 10   , and using corollaries 1 and 3 we can 

establish a %100  ACI for the point forecast  , and 

variance components 
2
2  and 

2
1

12
2

2   mT ; each 

ACI is centered in the corresponding point estimator,

 n̂ ,  n2
2̂  or  nT

2̂ , and the halfwidths are given by 
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for  , 2
2  and 2

T , respectively, where z  is the 

  2/1  quantile of a  1,0N  distribution,  1ˆ
ˆ V  and 

 2
1

ˆ SV  are defined in Corollary 1, and TV̂  is defined in 

Corollary 3.  

Note that the ACI proposed in (5), (6) and (7) assume 

that the value of m from the algorithm of Figure 1 is 

fixed and the accuracy of the estimator improves as n 

(the number of observations in the outer level) increases 

(in turn, the halfwidth of the ACI gets smaller). Given 

that we can build a valid ACI for any value of m, a 

relevant question is how to find an adequate value of m 

to get an acceptable level of accuracy in a reasonable 

amount of running time. To answer this question for the 

case of the point estimator of  , let us fix the total 

number of iterations in the algorithm of Figure 1 to k = 

nm, and note from (3) that 
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1

2
2

1
1

1 ˆ    mkVn   (8) 

 

takes its minimal value for m = 1, suggesting that the 

point estimator  n̂  defined in (2) is more accurate as 

m approaches the value of 1. Note that for m = 1, a fixed 

number of iterations k = nm is convenient (from the 

point of view of running time), when the computation 

of ijW  requires the same or more computation time as 

i , as suggested in the relevant literature (see, for 

example, Andradóttir and Glynn 2016). Furthermore, if 

we allow m to increase with n, we can obtain the 

following proposition. We omit the proof, but mention 

that it follows from Lindeberg-Feller Theorem 

(Theorem 7.2.1 of Chung 2001). 

Proposition 3. Given 10  p , if   pnm /11  and
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as n , where  1̂V  is defined in (3). 

If, once again, we set the total number of iterations in 

the algorithm of Figure 1 to k = nm, we let ,pkn 

pkm  1
 and nm = k, it follows from Proposition 3 

that the asymptotic variance of  n̂  is  1
1 ̂Vn  for 

every 10  p . Note that this metric reaches its 

minimum value when 1p , that is, when n = k and m 

= 1. However, note that we need  2m  to estimate
2
2 . 
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In the following section, we report some experiments 

that confirm our theoretical results. 

 

3. AN EXAMPLE WITH ANALYTICAL 

SOLUTION 

The following model (reported in Muñoz and Muñoz 

2011) has been proposed to forecast sporadic demand. 

We can use this model to find analytical expressions for 

the parameters considered in this paper. This model is 

used in the following section to illustrate the validity of 

the ACI’s proposed in the previous section. 

Client arrivals for a particular item in a shop follows a 

Poisson process, yet there is uncertainty in the arrival 

rate  , so that given  , interarrival times between clients 

are i.i.d. with exponential density: 
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where   ,0000 S . Every client can order j units 

of this item with probability j1 , qj ,,1 , 2q . 

Let   11111 ,,  q  and   


1
1 11 1 q

j jq , 

then  10 ,  is the parameter vector, and 

01000 SSS   is the parameter space, where total 

demand during a period with length T is 

 
 

 












otherwise,,0

,0,
1

TNU
D

TN

i
i   (10) 

 

where  sN  is the number of client arrivals during the 

interval  s,0 , 0s , and 21,UU   are the individual 

demands (conditionally independent relative to  ). The 

information about   consists of i.i.d. observations 

 rvvv ,,1  ,  ruuu ,,1   of past clients, where iv  

is the interarrival time between client i and client (i - 1), 

and iu  is the number of units ordered by client i. By 

using Jeffrey’s non-informative prior as the prior 

density for  , we obtain the posterior density (see 

Muñoz and Muñoz 2011 for details) 

     upvpxp 10   , where  iii uvx , , ,,,1 ri   
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where    
r
i ij juIc 1 ,  and  

       
q
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q
j jq aaaaB 111 /,, , 

for 0,,1 qaa  . Using this notation, we can prove 

that 
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4. EXPERIMENTAL RESULTS 

To validate the ACI proposed in (5), (6) and (7), we 

conducted some experiments with the example from the 

previous section to illustrate the estimation of  , 
2
2  

and 
2
T . We considered the values 15T , 20r , 

101  
r
i ix , 5q , ,51 c  ,32 c  ,23 c ,34 c

75 c . With this data, the point forecast is 333.95 , 

and the variance components are ,667.3802
1   

.598.5682
2   

 

Table 1: Performance of the 90% ACI based on 1000 

replications with m = 2 

 

In tables 1 and 2 we report the results of 1000 

independent replications of the algorithm of Figure 1 for 

every 90% ACI, with values nm = 200, 2000, 20000, 

and m = 2, 5. Finally, with the objective of comparing 

the choice of m = 1 (which we consider optimal for the 

estimation of the point forecast), we also report the 

results of similar experiments with nm = 100, 10000, m 

= 1 and   3/1
nmm   (suggested by Andradóttir and 

Glynn, 2016, as an adequate choice for m in the case of 

biased estimators in the inner level of the algorithm of 

Figure 1).  In Table 1, we present the coverage (fraction 

of ACI’s that cover the parameter value), average, and 

standard deviation of the corresponding halfwidth 

 n = 100, m = 2 n = 1000, m = 2 n = 10000, m = 2 
  
 

2
2  2

T
    

 
2
2  2

T
    

 
2
2  2

T
  

Coverage 0.896 0.893 0.868 0.892 0.902 0.892 0.898 0.910 0.897 
Mean HW 4.493 91.327 183.384 1.423 29.616 60.703 0.450 9.419 19.386 
St Dev HW 0.352 18.481 45.769 0.036 2.092 5.606 0.004 0.215 0.613 
R.M.S.E. 2.716 53.794 117.903 0.875 17.901 38.067 0.278 5.673 11.995 

Bias -0.015 -1.547 1.918 0.011 -0.326 -0.226 0.008 0.116 -0.048 
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defined in (5), (6) and (7), square root of the mean 

square error (R.M.S.E.) and empirical bias based on 

1000 replications for each ACI. As observed in the 

table, the coverage are acceptable (very close to the 

nominal value of 0.9, even for m = 100). This validates 

the ACI defined in (5), (6) and (7). Furthermore, every 

performance measure of the ACI (average, standard 

deviation of the halfwidth, R.M.S.E., and bias) 

improves as the number of replications n increases. 

 

Table 2: Performance of the 90% ACI based on 1000 

replications with m = 5 

 
 

In Table 2, we present the results with m = 5. We can 

observe that, while the coverage is close to the nominal 

value of 0.9, all of the performance measures for the 

ACI (average, standard deviation of the halfwidth, 

R.M.S.E., and bias) are worse (larger) tan the ones 

reported in Table 1, for the estimation of   and 2
T , 

and better for the estimation of 2
2 , suggesting that, for 

the same number of observations nm, a lower value of 

m is better for estimating   and a greater value of m is 

better for estimating 2
2 . 

 

Table 3: Performance of the 90% ACI based on 1000 

replications with m = 1 and   3/1
nmm   

 
 

Finally, in Table 3 we show the results for the 

estimation of   and 2
T  for the cases m = 1 and 

  3/1
nmm  . We again find that all performance 

measure for the ACI (average, standard deviation of the 

halfwidth, R.M.S.E., and bias) are worse (larger) for 

  3/1
nmm  , confirming our finding that, for the same 

number of replications nm, m = 1 produces better point 

estimators for   than   3/1
nmm  . 

 

5. METHODOLOGY 

In this paper, we propose methodologies to calculate 

point estimators (and their corresponding halfwidths), 

for both the point forecast and the variance components 

in two-level nested stochastic simulation experiments. 

This method can be applied to the construction of 

Bayesian forecasts using simulation models.  

Both theoretical and experimental results confirm that 

the proposed point estimators and their corresponding 

halfwidths are asymptotically valid, i.e., the point 

estimators converge to the corresponding parameter 

values and the halfwidths converge to the nominal 

coverage as the number of replications (n) of the outer 

level increases.  

Furthermore, given a fixed number of total observations 

(nm), we show that the choice of only one replication in 

the inner level (m = 1) provides more accurate 

estimators for both the point forecast ( ), and the 

variance of the point forecast ( 2
2

2
1   ). However, 

2m  is required for the estimation of 2
2 . 

Directions for future research on this topic includes 

experimentation with other point estimators, such as, 

quasi Monte Carlo or Simpson integration, with the 

objective of finding more accurate point estimators for 

the parameters considered in this paper. 
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