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ABSTRACT 

The use of thermoplastic elastomers has strongly 

increased in recent decades in order to reduce the size of 

components in the automotive and aeronautical 

industries. To design this kind of components, engineers 

face the challenge of reproducing the behavior of these 

materials by numerical simulations. This task is not 

always simple because these materials often have a 

strongly nonlinear behavior. In this paper an elastomer 

thermoplastic material has been analyzed and an 

automotive component has been studied by five 

numerical simulations with five material constitutive 

models. This study shows that a careful choice of the 

constitutive model should be made to obtain reliable 

results. Although several constitutive models fit well 

with the experimental data of uniaxial testing, when 

these are used in actual components, there are 

significant differences in the obtained results. 

Keywords: hiperelasticity, thermoplastic elastomer, 

finite element method, simulation. 

1. INTRODUCTION 

Automotive and aeronautical industries consider a 

future challenge to further increase engine efficiency by 

decreasing fuel consumption and motor weight. In order 

to reach it, designers must be able to reduce the size of 

the engine block and all its components using 

alternative materials to metals, such as thermoplastic 

elastomeric polymers. (Drobny, J. G., 2014). 

The use of these materials has strongly increased in 

recent decades due to their good mechanical properties 

(Štrumberger et al., 2012) (P. Consulting, 2014). In 

addition to its ease to manufacture complex-shaped 

components, these materials have great advantages as 

their high deformation capability, their ability to absorb 

vibrations and their low cost-weight ratio. (Malloy, 

1994). 

Despite all their advantages, developing an efficient and 

durable design with these materials is not an easy task 

as reproducing their mechanical behavior by simple 

computational algorithms is not always possible. The 

constitutive relations between stresses and strains for 

these materials are nonlinear and time-dependent, and 

additionally they also experience other effects such as 

hysteresis and softening (Charlton et al., 1994). 

Although hyperelastic constitutive models are the best 

models to reproduce the nonlinear behavior of these 

materials, several more complex constitutive models 

exist in the literature to also take into account other 

effects. Therefore, the selection of a proper constitutive 

model remains an engineering challenge to be solved 

since the behavior of the material has a good fit with 

any hyperelastic model, the mechanical behavior of the 

component is often not adapted to the actual behavior. 

From these constitutive models, simulations techniques 

must be used to obtain the stress and strain fields to 

evaluate the component from an engineering point of 

view. Simulation is one of the most important fields 

into the world of engineering due to it is used for such 

varied sectors such as structural designs and 

manufacturing studies of plastic parts (Javierre, et al. 

2013) (Javierre, et al. 2006) or numerous studies into 

the food sector (Jiménez, et al. 2014) (Latorre-Biel, et 

al. 2013). 

Finite Element Method (FEM) is a numerical technique 

currently used in simulation processes for several fields. 

Specifically, into the mechanical engineering field, it is 

used for studies of developing of food packaging 

(Fernandez, et al. 2013), designing of led weatherproof 

luminaire (Javierre, et al. 2014) or modeling automotive 

products (Jiménez, et al. 2009) (Ruiz Argáiz, et al. 

2008). 

In this paper five simulations of a real component used 

in the automotive industry, based on five different 

constitutive models of material, have been performed, 

comparing the corresponding results. In this study, FEM 

simulations were carried out using the software Abaqus 

(Version 6.11). 
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2. MATERIAL DESCRIPTION 

An automotive air duct is going to be analyzed in this 

paper. This component is made of a material called 

Santoprene 101-73 provided by ExxonMobil 

(ExxonMobil). 

The nonlinear behavior of the material has been 

described by uniaxial tensile tests like simple tension, 

planar extension and simple compression. In addition, 

cyclic behavior information is also provided at different 

levels of deformation. 

To characterize the material, the datasheet and Young 

modulus value supplied by the manufacturer have been 

used. This study focuses on the relationship between 

stress and strain for the first pull deformation, when it is 

the first time in deforming the material. The Young 

modulus recommended by the manufacturer in this 

deformation is E= 29.7 MPa (ExxonMobil). This 

relationship can also be obtained from the cyclical 

behavior information of the material, and it is 

represented by a red line in Figures 1and 2. According 

to standards (ASTM D412-15a) (ISO 37:2011), the 

provided values of strain and stress are nominal values. 

 Figure 1: Strain-stress plot of Santoprene 101-73 from 

manufacturer datasheet (ExxonMobil) for Simple 

Tension. 

Figure 2: Strain-stress plot of Santoprene 101-73 from 

manufacturer datasheet (ExxonMobil) for Simple 

Compression. 

In order to obtain values of strain energy density, strain 

and stress values from the first pull deformation shown 

in Tables 1 and 2 are used. Strain energy density values 

were obtained by Equation (1). 

           

   

 

 

     

 
(1) 

Strain, stress and strain energy density (SED) values 

from the first pull deformation are shown in Tables 1 

and 2. 

Table 1: Strain-stress values for Santoprene 101-73 

First Pull-Simple Tension 

Nominal Strain 

(%) 

Nominal Stress 

(MPa) 

SED (MPa) 

0.000 0.000 0.000 

0.900 0.345 0.001 

2.000 0.615 0.006 

3.200 0.859 0.014 

4.700 1.084 0.027 

6.900 1.338 0.054 

8.700 1.516 0.080 

9.900 1.623 0.098 

12.20 1.792 0.137 

13.80 1.913 0.165 

14.90 1.981 0.188 

17.60 2.122 0.241 

18.90 2.193 0.269 

19.90 2.232 0.290 

23.00 2.374 0.359 

24.20 2.422 0.388 

25.00 2.451 0.406 

28.40 2.585 0.493 

29.90 2.631 0.530 

33.90 2.768 0.638 

Table 2: Strain-stress values for Santoprene 101-73 

First Pull-Simple Compression 

Nominal Strain 

(%) 

Nominal Stress 

(MPa) 

SED (MPa) 

0.00 0.000 0.0000 

-0.90 -0.219 0.0010 

-2.00 -0.437 0.0045 

-3.20 -0.662 0.0114 

-4.70 -0.884 0.0224 

-6.90 -1.181 0.0454 

-8.70 -1.399 0.0691 

-9.90 -1.533 0.0866 

-12.20 -1.783 0.1246 

-13.80 -1.957 0.1543 

-14.90 -2.086 0.1780 

-17.60 -2.393 0.2380 

-18.90 -2.550 0.2704 

-19.90 -2.668 0.2955 

-23.00 -3.066 0.3839 

-24.20 -3.233 0.4224 

-25.00 -3.338 0.4471 

-28.40 -3.854 0.5715 

-29.90 -4.088 0.6291 
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3. COMPONENT AND SIMULATIONS 

DESCRIPTION  

The component is an air duct for a combustion engine 

that has a length of 100 mm and the diameter of the 

inlet and outlet is 24 mm. In the central area it is formed 

by five bellows where the maximum diameter is 29 mm 

and the minimum diameter is 24 mm. The wall 

thickness is 2 mm. Its geometry is shown in Figure 3. 

 
Figure 3: Geometry of the component 

 

The simulation consists of subjecting the component to 

a prescribed compression deformation of 15 mm in its 

own axis direction (Figure 4). 

  
Figure 4: Prescribed deformation in the component 

The finite element model was made from a 2D section 

of the component wall. The 2D section was meshed 

with 4-node quadrilateral axisymmetric element 

(CAX4H, Abaqus) (Abaqus Analysis User's Manual, 

2011). A radial sweeping from the axis of the duct was 

used to generate the 3D model (Figure 5). A sensitivity 

analysis, checking the strain energy convergence, was 

performed in order to obtain the appropriate mesh size. 

The mesh consists of 1148 elements and 4027 nodes.  

Several simulations with different constitutive models 

of material are done to study the mechanical behavior of 

the component. 

 
Figure 5: Finite element model of the component 

Firstly, a simulation with Elastic material model with 

E=29.7 MPa was carried out (see Figure 6) to obtain the 

maximum and minimum strain values in the 

component. These values are shown in Table 3.  

Figure 6: Simulation with Elastic material model 

(E=29.7 MPa). Strain results 

Table 3: Max. and min. strains for the simulation with 

Elastic material model (E=29.7 MPa). 

Max ppal strain (%) Min. ppal. Strain (%) 

19.34 -13.94 
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Then, the constants of hyperelastic models are going to 

be fitted for each model and then the simulations with 

these models are going to be carried out to compare the 

results. 

4. HYPERELASTICITY 

The hyperelastic constitutive models are mathematical 

models that attempt to simulate the behavior of 

materials whose stress strain relationship is nonlinear.  

Usually these models are represented by strain energy 

density function W which is formulated as a function 

depending on different magnitudes associated to the 

strain field and the material constants, in the way:  

                                  (2) 

where          are principal stretches, and          are 

the invariants of left Cauchy-Green strain tensor, B, 

respectively, obtained as: 

             (3) 

   
 

 
    

       (4) 

           (5) 

In hyperelastic models the Cauchy stresses are derived 

by differentiating the strain energy density function as 

follows: 

   
 

 
   

  

  
 

 

 
 
  

  
    (6) 

where F is the strain gradient tensor and    et    . 

In this paper, five different constitutive models have 

been used: 

 Linear elastic model 

 Hyperelastic Neo Hookean model 

 Hyperelastic Mooney-Rivlin model 

 Hyperelastic Ogden model 

 Hyperelastic Marlow model 

4.1. Linear elastic model 

In this model the material returns to its original shape 

when the loads are removed, and the unloading path is 

the same as the loading path. This model is known as 

Hooke’s Law. The stress is proportional to the strain 

and the constant of proportionality is the Young’s 

modulus (E). 

       (7) 

The strain energy density functions is defined as:  

  
 

 
         (8) 

4.2. Hyperelastic Neo Hookean model 

This model was proposed by Treloar in 1943 (Treloar, L 

R.G., 1943). In this model, the strain energy density 

function is based only on the first strain invariant: 

           
 

 
       (9) 

where C1 is a material constant, J is the determinant of 

the strain gradient tensor F and D is a material constant 

related to the bulk modulus. 

4.3. Hyperelastic Mooney-Rivlin model 

The Mooney-Rivlin model (Mooney, 1940) (Rivlin, R. 

S. and Saunders, D. W., 1951), proposed in 1951, is one 

of the most used hyperelastic models in the literature. 

Although there are various versions of this model, the 

most general is based on the first and second strain 

invariants. The strain energy density function is defined 

as follows: 

                      
 

 
       (10) 

where Cij are material constants, J is the determinant of 

the strain gradient tensor F and D is a material constant 

related to the bulk modulus. Neo Hookean is a 

particular case of the two parameters Mooney-Rivlin 

model. 

4.4. Hyperelastic Ogden model 

The Ogden hyperelastic model (1972) (Ogden, R. W., 

1972) is possibly the most extended model after 

Mooney-Rivlin model. This model is based on the three 

principal stretches ( 1,  2,  3) and 2N material constants, 

where N is the number of polynomials that constitute 

the strain energy density function, defined as: 

   
  

  

   
     

     
     

 

   

  
 

 
       

 

   

 

(11) 

where μi y αi are material constants, J is the determinant 

of the strain gradient tensor F and D is a material 

constant related to the bulk modulus. 

4.5. Hyperelastic Marlow model 

The Marlow hyperelastic model (2003) (Marlow, R. S. , 

2003) means the strain energy density is independent of 

the second invariant, and a single test such as a uniaxial 
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tension test is necessary to determine the material 

response. The strain energy density function is defined 

as: 

         
    

 

 (12) 

where T(ε) is the nominal uniaxial stress and λT is the 

uniaxial stretch. 

4.6. Fitting parameters of material models 

For all the previously presented models, the optimal 

constant values were obtained by means of an 

optimization algorithm to try to faithfully reproduce the 

material behaviour provided by the manufacturer. A 

least squares algorithm was used to minimize this 

variable. The error function is defined as: 

                           
 

 

   

 
(13) 

where m is the number of points on the chart provided 

by the manufacturer. 

Since the minimum principal strain provided on the 

component is about -14% and the maximum principal 

strain is 20%, the models have been adjusted to this 

range of strain. 

Once the optimal constant values were obtained, for 

each model, the strain energy density and the strain-

stress curves were obtained and they were compared 

with the actual material curves. To determine the 

quality of each of the models, the R
2
 correlation 

coefficient was calculated for the strain-stress plot 

(Figure 7).  

The values of material parameters and R
2 

values for the 

models are shown in Table 4. 

Table 4: Parameters and R
2
 values of models 

Model Parameter Optimal 

Value 

R
2
 

Linear elastic E 14.602 0.978 

Hyperelastic 

Neo Hookean 
C1 2.416 0.977 

Hyperelastic 

Mooney 

Rivlin 

C10 
3.190 

0.975 
C01 -0.818 

Hyperelastic 

Ogden N=2 

μ1 25.560 

0.977 
α1 0.065 

μ2 76.579 

α2 0.108 

In view of the obtained results, all presented models fit 

well with actual values of the material datasheet 

because the R
2
 correlation coefficient is always higher 

than 0.960. Therefore any of the studied models should 

provide good results in the simulation of the 

component. 

 Figure 7: Strain-stress plot for different models 

between -14% and 20% strain 

5. SIMULATIONS AND RESULTS 

In order to check the mechanical behavior of the 

component depending on the constitutive model used, 

five finite element simulations of the duct compression 

were performed. Each of them uses one of the different 

material constitutive models introduced in Section 3.  

  

Figure 8: Four characteristic elements of the model 

The values of the variables most commonly used in the 

engineering field, like stresses, strains and energy, have 

been obtained from integration points of four 

characteristic elements of the model (Figure 8). 
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In several studies maximum principal strain and the 

strain energy density were used to evaluate the life of 

component when a cyclic load was applied to it. (Mars, 

W. V., & Fatemi, A., 2002). Other investigations about 

fatigue use maximum principal stresses to calculate the 

life of component. (André, N., Cailletaud, G., & Piques, 

R., 1999). Finally, the Von Mises comparison stress is 

commonly used to know if the material is able to resist 

a static load or displacement. 

So, concerning the strain field, the maximum and the 

minimum principal strains, respectively, were studied 

(Figures 9 and 10). On the other hand, for the stress 

field, the maximum and minimum principal stresses, 

respectively, (Figures 11 and 12) and the von Mises 

stress were analyzed (Figure 13) at each of the 

integration points and these values were referred at 

centroid of elements. And finally, the strain energy 

density was also studied (Figure 14). 

6. DISCUSSION 

The obtained results show that the mechanical behavior 

of Santoprene 101-73 can be accurately adjusted by 

using the different models of hyperelastic behavior 

considered with the appropriate material constants, with 

a good agreement with the data supplied by the 

manufacturer for the uniaxial stress-strain curve. A least 

squares algorithm allows obtaining the material 

constant reaching values of R
2
 over 0.975 in all studied 

models when applied for stress-strain uniaxial curve. 

However, important differences were found in stresses 

(up to 40%) and the strain energy density (up to 90%) 

when the models were applied to a real component in a 

wide range of strain as occurs in the normal operation of 

that kind of pieces.  

To this respect, the pure elastic, the NeoHookean, the 

Mooney-Rivlin and the Ogden models provide similar 

results as much in principal strains as in principal 

stresses. A similar trend is observed for von Mises 

stress and strain energy density. 

A more realistic behavior is obtained by using Marlow 

model and important divergences were found respect 

the other models. The divergence is more pronounced 

for stresses and strain energy density, whereas it is 

considerably lesser for strains. 

So, a careful election of the appropriate constitutive 

model must be done in order to obtain realistic 

simulations of real components, in such a way that the 

results corresponding to strains and stresses would be 

reliable enough, allowing the strength and functionality 

verifications, considering that those magnitudes are 

used to predict mechanical performance, fatigue life, 

etc., and then can determine important features of the 

component design. 

7. CONCLUSIONS 

The aim of this paper was to determine the best 

constitutive model for reproducing the mechanical 

behavior of Santoprene 101-73, material used in 

automotive industry. To reach it, four different 

hyperelastic models and the commonly used linear 

elastic model have been studied in order to obtain the 

material constants of each of them. An optimization 

least squares algorithm were used to fit the best values 

of material constants to each of them. In order to 

conclude which of them best represents the actual 

behavior of the material, the R
2
 correlation coefficient 

for stress-strain relationship has been used.  

In view of the obtained results, it can be concluded that 

all the considered models fit the actual material 

behavior with enough accuracy, being the Marlow 

model the most accurate model to reproduce the 

mechanical behavior of Santoprene 101-73, considering 

the stress-strain uniaxial curve. 

However, the study has demonstrated that despite using 

constitutive models that fit correctly to the actual 

behavior of the material in standardized uniaxial tests, 

the different models show large differences concerning 

the realistic behavior when they are applied to real 

components, in which complex stress/strain fields can 

arise. So, more information from biaxial and planar tests 

is needed in order to perform accurate simulations for 

real components. 
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Figure 9: Maximum principal strain for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements. 

 

Figure 10: Minimum principal strain for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements. 
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Figure 11: Maximum principal stress for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements. 

 

Figure 12: Minimum principal stress for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements. 
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Figure 13: Von Mises comparison stress for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements. 

 

Figure 14: Strain energy density (SED) for different models calculated at each of the integration points and referred at 

centroid of four characteristic elements.
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