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(a)University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

(a)gasper.music@fe.uni-lj.si

ABSTRACT

The paper deals with simulation-optimization of schedules

with sequence dependent setup times. Such scheduling

problems are commonly found in industry where machine

setups or cleaning procedures are required among different

jobs. The problems can be effectively modelled by simple

Coloured Petri nets (CPNs). CPN modelling is combined

with new type of simulation based on predefined transition

set sequence conflict resolution strategy and standard

permutation representation of job schedules. This enables

generation of neighbouring solutions that are always

feasible and standard local search optimization algorithms

can be effectively applied to derived models. Modelling

approach and neighbourhood construction procedure are

explained in detail. Results of tests on sample scheduling

problems by simulated annealing and genetic algorithms

are provided.

Keywords: Petri nets, simulation, optimization, schedul-

ing, local search

1. INTRODUCTION

Scheduling problems have been one of the classical re-

search topics within Operations research for decades. Re-

cently, manufacturing operations scheduling is gaining im-

portance in line with wide informatization of industrial

processes that should facilitate the optimisation of various

operational aspects of such systems. Among those, effi-

cient operations scheduling can contribute to better pro-

duction responsiveness by more efficient processing of re-

leased manufacturing jobs.

Petri nets (PNs) are a modelling technique that is well

suited to description of manufacturing systems. In con-

trast to most system description languages, PNs are state

and action oriented at the same time providing an ex-

plicit description of both the states and the actions. When

modelling manufacturing systems PNs have several advan-

tages, such as efficient modelling of concurrency and syn-

chronization, ability of capturing functional, temporal and

resource constraints within a single formalism (Recalde

et al. 2004), and simple representation of production sys-

tems’ specific properties (Tuncel and Bayhan 2007). These

can be supplemented by various extensions that enable

quantitative performance analysis of modelled systems. A

rich variety of extensions of the original PN formalism in-

clude the time concept, considering both deterministic and

stochastic time (Viswanadham and Narahari 1992). In this

way, PNs can be applied for simulation-based operations

scheduling, that is, timed simulation can be performed to

evaluate the quality of the schedules under certain operat-

ing conditions (Piera and Mušič 2011). If the schedule is

modelled properly, the job completion times can be read

from the timestamps of tokens in the final marking ob-

tained by PN simulation. As the objective to be minimized

is always a function of the completion times of the jobs

(Pinedo 2008), this enables to implement scheduling sys-

tems with various objectives.

In our previous work a simulation based optimization

approach applying PNs was intensively studied, as well

as other, more classical approaches, such as dispatching

rules and reachability tree based heuristic search (Gradišar

and Mušič 2007, Löscher et al. 2007). In particular, the

investigations focused on combination of PN modelling

approach and local search methods (Löscher et al. 2007,

Mušič 2012b). Other authors focus on the use of PN

models for deadlock-free design, resource allocation and

scheduling optimization (Sindičić et al. 2012, Huang et al.

2013, Xing et al. 2012), and use of PNs with other meta-

heuristics, e.g. genetic algorithms (Mejı́a et al. 2012, Han

et al. 2014).

This paper focuses on PN models of scheduling prob-

lems with sequence dependent setup times (Kurz and

Askin 2004) and explores the possibilities of PN models

use in conjunction with state-of-the-art local search algo-

rithms. The previous works on standard flow-shop and

job-shop problems are generalized, so that also less re-

stricted problem classes of larger practical relevance can be

addressed and PN based scheduling methods are brought

closer to the practical needs in manufacturing and services.

2. PETRI NET MODELLING OF SCHEDULES

WITH SEQUENCE DEPENDENT SETUP TIMES

Petri net models of scheduling problems have been de-

scribed in our previous works (Mušič 2011, 2012b, 2015).

Both Place/Transition and Coloured Petri net classes have

been used for that purpose. Yet, schedules with sequence

dependent setup times have not been addressed so far.

Such problems are of great practical relevance as
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complex flow lines exhibiting this property can be found in

many industries. Rı́os-Mercado and Bard (1998) state that

sequence-dependent setup times are found in the container

manufacturing industry as well as the printed circuit board

industry. Also semiconductor and automobile industries

encounter sequence dependent setup times, which result in

difficult scheduling problems (Kurz and Askin 2004).

Here we follow the formulation of Rı́os-Mercado and

Bard (1998), who assume that setup can only be performed

after the machine is no longer processing any job and the

job for which setup is being performed is ready. The basic

property that has to be captured within the model of such

a schedule with sequence dependent setup times is the de-

pendence between setup durations and job order. In the

proposed model this is achieved by explicitly represent-

ing recently processed job by an additional control place.

When using Place/Transition PNs a set of places is re-

quired for that purpose to distinguish among different jobs.

A sample resulting model for a single machine with three

jobs is shown in Figure 1.
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Figure 1: PN model of a sample scheduling problem with

sequence dependent setup times

Here setup times are assigned to transitions tij , where

i and j denote the previous and the current job in the se-

quence, respectively. Marking of Ji denotes i-th job re-

quirements, while Ji′ is used to memorize the previous job

and choose correct transition with proper setup time for the

next firing. As initially all Ji′ are empty, Jinit is used to

enable an initial transition, the choice of which depends

on the schedule. Similarly, also more than one tij can be

enabled in subsequent firing steps, but all the transitions

compete for a single shared resource M . The choice on

which of them will fire and occupy the resource depends

on the schedule. After the setup is complete the job opera-

tion is processed, which is modelled by transitions ti with

corresponding operation duration. Tokens collected in Jif
indicate processed jobs. If more stages are required, these

tokens are the input to a subsequent stage, so the model can

be easily expanded to an arbitrary number of stages.

The number of nodes in the model is polynomial with

the number of different jobs, so a graphical representation

of the Place/Transition PN model quickly becomes unman-

ageable. On the other hand it possesses large degree of

self-similarity, which indicates that representation can be
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Figure 2: CPN model of a scheduling problem with se-

quence dependent setup times

simplified by employing Coloured Petri nets (CPNs). Fig-

ure 2 shows the same model in CPN framework.

Here all job types can be represented by a single node,

containing tokens of various colours. Similarly, different

setup times or processing times are represented by a single

transition with multiple occurrence colours.

3. PETRI NET SIMULATION OF SCHEDULES

WITH SEQUENCE DEPENDENT SETUP TIMES

To use the derived model within simulation-optimization

approach, a simulation based evaluation of schedule objec-

tive function needs to be implemented. The simulation run

must depend on externally changing influential variables,

whose changes are driven by optimization algorithm.

To formalize the simulation algorithm, the modelling

framework is first presented in a formal manner.

3.1. Coloured Petri nets

For clarity of presentation, a simplified version of

Coloured Petri nets without arc expressions and guards

will be considered in the following. Compared with stan-

dard CPNs (Jensen 1997), no arc inscriptions other than

weight are used, and transition inscriptions are limited to

specification of time delay only. This allows a more fo-

cused presentation of time aspects while the mechanism

of time inclusion is kept as close as possible to the one of

standard CPNs. This enables a straightforward extension

of presented concepts to standard CPNs.

A formal definition of such a CPN is given as follows.

Note that the definition closely follows one of the repre-

sentations used in Basile et al. (2007) with an important

difference: a different interpretation of transition delays is

used, which is closer to that of Jensen (1997).

A CPN = (N ,M0) is a Coloured Petri net sys-

tem, where: N = (P, T, Pre, Post, Cl, Co) is a Coloured

Petri net structure:

– P = {p1, p2, . . . , pk}, k > 0 is a finite set of places.

– T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions

(with P ∪ T 6= ∅ and P ∩ T = ∅).

– Cl is a set of colours.
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– Co : P ∪ T → Cl is a colour function defining place

marking colours and transition occurrence colours.

∀p ∈ P,Co(p) = {ap,1, ap,2, . . . , ap,up
} ⊆ Cl is

the set of up possible colours of tokens in p, and

∀t ∈ T,Co(t) = {bt,1, bt,2, . . . , bt,vt} ⊆ Cl is the

set of vt possible occurrence colours of t.

– Pre(p, t) : Co(t) → Co(p)MS is an element of the

pre-incidence function and is a mapping from the set

of occurrence colours of t to a multiset over the set of

colours of p, ∀p ∈ P, ∀t ∈ T . It can be represented

by a matrix whose generic element Pre(p, t)(i, j) is

equal to the weight of the arc from p w.r.t colour ap,i
to t w.r.t colour bt,j . When there is no arc with respect

to the given pair of nodes and colours, the element is

0.

– Post(p, t) : Co(t) → Co(p)MS is an element of

the post-incidence function, which defines weights of

arcs from transitions to places with respect to colours.

M(p) : Co(p) → N is the marking of place p ∈ P
and defines the number of tokens of a specified colour in

the place for each possible token colour in p. Place mark-

ing can be represented as a multiset M(p) ∈ Co(p)MS and

the net marking M can be represented as a k × 1 vector of

multisets M(p). M0 is the initial marking of a CPN.

Timed models

As described in Bowden (2000), there are three basic ways

of representing time in PNs: firing durations (FD), holding

durations (HD) and enabling durations (ED). When using

HD principle, a firing has no duration but a created token is

considered unavailable for the time assigned to transition

that created the token.

HD principle is somewhat restrictive, as can be seen

in a PN where a conflict appears. In this case more transi-

tions are enabled by one marking, but not all can fire simul-

taneously. A choice has to be made on which of them will

actually fire. With HD principle the firing occurs immedi-

ately after the choice is made and the conflict is resolved,

and the delay is only active afterwards. This indicates that

HD concept can only model non-preemptive tasks in the

system. A more general concept is presented and formally

described in Lakos and Petrucci (2007). When modelling

several performance optimization problems, e.g. schedul-

ing problems, a general framework is not needed. It is

natural to use HD when modelling most scheduling pro-

cesses as operations are considered non-preemptive. HD

principle is also used in the timed version of CPNs defined

by Jensen (1997), where the assignment of delays both to

transitions and to output arcs is allowed. We further sim-

plify this by allowing time delay inscriptions to transitions

only. This is sufficient for the type of examples investi-

gated here, and can be generalized if necessary.

To include a time attribute of the marking tokens,

which implicitly defines their availability and unavailabil-

ity, the notation of Jensen (1997) will be adopted. A group

of coloured tokens is accompanied with a time stamp,

which defines the time instant at which the tokens become

available. The time refers to the observation time and is

measured by a global clock. A timestamp is assigned to

every token at the moment of token creation; this can be

at the definition of the initial marking or at a transition fir-

ing. A group of tokens is available and can participate in

transition enabling if and only if the assigned timestamp

values are lower or equal to the global clock value. In the

opposite case the tokens are declared unavailable. As the

global clock is increasing a momentarily unavailable token

can become available at some future point in time.

The timestamp is written next to the token number

and colour and separated from the number by @. E.g.,

two c-coloured tokens with time stamp 10 are denoted

2‘c@10. A collection of tokens with different colours

and/or time stamps is defined as a multiset, and written

as a sum (union) of sets of timestamped tokens. E.g., two

c-coloured tokens with timestamp 10 and three d-coloured

tokens with timestamp 12 are written as 2‘c@10+3‘d@12.

Time stamps are elements of a time set TS, which is

defined as a set of numeric values. In many software im-

plementations the time values are integer, i.e. TS = N,

the same assumption will be used in the sequel. The times-

tamps could also be admitted to take any positive real value

including 0, i.e. TS = R
+

0 , the restriction to integers

merely simplifies the presentation of examples. Timed

markings are represented as collections of time stamps and

are multisets over TS: TSMS . By using HD principle

the formal representation of a Coloured Timed Petri net

(CTPN) is defined as follows.

CTPN = (N ,M0) is a Coloured Timed Petri net

system, where:

– N = (P, T, Pre, Post, Cl, Co, f) is a Coloured

Time Petri net structure with (P, T, Pre, Post, Cl,
Co) as defined above.

– f : Co(t) → TS is the time function that assigns a

non-negative deterministic time delay to every occur-

rence colour of transition t ∈ T .

– M(p) : Co(p) → TSMS is the timed marking, M0 is

the initial marking of a timed PN.

Coloured Petri net firing rule

The firing rule of a CTPN is defined in accordance with

the HD timing principle. Functions Pre and Post define

the weights of directed arcs, which are represented by arc

inscriptions in the matrix form. In the case when the all

the weights in the matrix are 0, the arc is omitted. Let
•tb ⊆ P × Cl denote the set of places and colours which

are inputs to occurrence colour b ∈ Co(t) of transition

t ∈ T , i.e., there exists an arc from every (p, a) ∈ •t to t
with respect to colours a ∈ Co(p) and b ∈ Co(t).

To determine the availability and unavailability of to-

kens, two functions on the set of markings are defined.

The set of markings is denoted by M. Given a marking

and a time τi ∈ TS, m : P × M × TS → Co(p)MS

defines the number of available coloured tokens, and n :
P ×M× TS → Co(p)MS defines the number of unavail-

able coloured tokens for each place of a CTPN at a given

model time τi ∈ TS. As mentioned before, the model time

is represented by a global clock.
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Two timed markings can be added (denoted +τ ) in

a similar way as multisets, i.e. by making a union of the

corresponding multisets. The definition of subtraction is

somewhat more problematic. To start with, a comparison

operator is defined. Let M1 and M2 be markings of a place

p ∈ P . By definition, M1 ≥τ M2 iff m(p,M1, τi) ≥
m(p,M2, τi), ∀τi ∈ TS, ∀a ∈ Co(p).

Similarly, the subtraction is defined by the number of

available tokens, and the subtrahend should not contain any

unavailable tokens. Let M1, M2 and M3 be markings of a

place p ∈ P , M1 ≥τ M2, and m(p,M1, τi), m(p,M2, τi),
and m(p,M3, τi), be the corresponding numbers of avail-

able tokens at time τi, and n(p,M2, τi) = 0. The differ-

ence M3 = M1 −τ M2 is then defined as any M3 ∈ M

having m(p,M3, τi) = m(p,M1, τi)−m(p,M2, τi).
As the HD principle is used it is not important which

of the available tokens is removed. All the subsequent tran-

sition firings only deal with present or future points in time,

and all currently available tokens remain available for the

eventual enablement of future firings. The implementation

can be simplified if the new markings are always generated

in the same way, e.g., by always removing the token with

the most recent timestamp first.

Using the above definitions, the HD-based firing rule

of a CTPN can be defined. Given a marked CTPN =
(N ,M), a transition t is time enabled at time τi ∈ TS
w.r.t occurrence colour b ∈ Co(t), denoted M [tb〉τi iff

m(p,M, τi) ≥ Pre(p, t)(b), ∀p ∈ •tb. An enabled tran-

sition can fire, and as a result removes tokens from input

places and creates tokens in output places.

If transition t fires w.r.t occurrence colour b, then the

new marking is given by

M ′(p) = M(p)−τ Pre(p, t)(b)@τi (1)

+τ Post(p, t)(b)@(τi + f(t, b)), ∀p ∈ P

If markingM2 is reached from M1 by firing tb at time

τi, this is denoted by M1[tb〉τiM2. The set of markings of

CTPN N reachable from M is denoted by R(N ,M).

3.2. Simulation with predefined transition set se-

quences

Petri nets can be used either to constructively build a

schedule, employing a given set of scheduling rules, or to

evaluate the objective function for a schedule, given in ad-

vance. Within the simulation-optimization approach used

in this paper we follow the second approach.

The basic problem that has to be resolved when eval-

uating PN represented schedules is to translate a partic-

ular schedule into on-the-fly conflict resolution strategy

that will ensure a proper ordering of conflicting transitions.

The conflicting transitions represent jobs competing for a

shared resource at a given moment in simulation time.

The conflict resolution strategy is here embedded

within the PN simulation algorithm and parameterized by

a prescribed sequence of transition sets.

Given a set Tbe ⊆ T ×Cl of time enabled transition t
occurrence colours (t, b), shortly denoted as tb

Tbe = {tb : t ∈ T, b ∈ Co(t),M [tb〉τi}

and a set of schedule relevant transition occurrence colours

Tsch = {tb : ∃b ∈ Co(t), P re(r, t)(b) > 0}

where r ∈ P is a resource place, a transition set sequence

S is considered

S = {Tk :

Tk = {tb,a : t ∈ T, b ∈ Co(t), a ∈ Co(J),

P re(J, t)(b, a) > 0}}

where J ∈ P is the job place (see Fig.2), a is the to-

ken colour of k-th job in the scheduled sequence, and

k = 1 . . . kmax is a sequence state.

We say that transition t is sequence enabled at se-

quence state s w.r.t occurrence colour b ∈ Co(t), denoted

M [tb〉Tk
iff tb ∈ Tk ∨ tb /∈ Tsch. Note that transitions

T /∈ Tsch are always sequence enabled.

During simulation run, at the stage where firing transi-

tions are determined, the transition enabling check within

the simulation algorithm implements an additional filter,

which filters out the transitions that are not sequence

enabled. Only transitions that are both marking- and

sequence-enabled are permitted to fire and thus change the

PN marking. The new marking is computed according to

Eq. (1). Additionally sequence state k is increased, when-

ever a schedule relevant transition is fired. Such a simula-

tion model will be denoted PN(S).
This way a link is established between the scheduled

job sequence and PN transition firing sequence. Compared

to our previous work, e.g. (Löscher et al. 2007, Mušič

2012b), the approach is generalized to permit more than

one schedule relevant transition occurrence to fire at partic-

ular sequence state, which is achieved by specifying set se-

quence instead of simple firing sequence. A broader class

of scheduling models can be addressed this way, such as

the case of sequence dependent setup times, where the par-

ticular firing is chosen based on the previous system state.

Repeating the above described enablement checking

step and marking calculation step evolves the PN model

from initial marking, indicating the required number of in-

dividual jobs’ repetitions to the final marking, indicating

the number of finished jobs. Timestamps adjoined to to-

kens in the final marking indicate the job completion times,

which permits to calculate an arbitrary schedule objective

(Mušič 2012a, Napalkova et al. 2014).

4. PETRI NET BASED OPTIMIZATION OF SCHED-

ULES WITH SEQUENCE DEPENDENT SETUP

TIMES

4.1. Local search

The proposed optimization approach is to use local search

methods. Basic optimization algorithm is shown in Algo-

rithm 1.

One of the central issue within the approach is the

neighbour solution construction procedure. In Mušič

(2011) a procedure has been proposed, which constructs

a new scheduling solution by permuting sequence vectors

related to transitions in the PN model that are linked to

shared resources. The resulting solution is always feasi-

ble but the approach only works for standard job-shop and
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Algorithm 1 Local Search

generate initial solution s;

i := 0;

repeat

generate neighbour solution s′ ∈ N(s);
perform acceptance test of s′;
if test positive then

s := s′;
end if

i := i+ 1;

until termination criterion

flow-shop scheduling problems. A more general construc-

tion procedure is presented in Mušič (2015), which can

also be used for flexible job shop problems.

Alternatively, standard permutation representations of

schedules can be employed (Cheng et al. 1996, Werner

2013). Among others, the operation-based representation

is used, where job sequence is coded by a vector of integer

indices. Job operations are represented by repetition of in-

dices within the vector, where i-th repetition indicates the

execution of i-th operation within the job. Such a repre-

sentation is used in Xing et al. (2012) where schedules are

evaluated by a custom algorithm that takes into account the

transition precedence relations within the PN model and

corresponding operation durations. Although the work of

Xing et al. (2012) is focussed on maintaining neighbour

solution feasibility, in particular in the case of deadlock-

prone schedule models, the schedule evaluation algorithm

only works effectively for particular problem classes. As

such the approach is not directly applicable to problems

with sequence dependent setup times.

Using the simulation approach with predefined tran-

sition set sequences, presented in the previous section, a

new schedule evaluation procedure within the local search

strategy is proposed here in this paper.

The schedule is represented by a permutation vector

F = {π(1), π(2), . . . , π(kmax)}

fk = π(k) denotes an integer obtained by permuta-

tion of {1, . . . , kmax} and kmax corresponds to

kmax = nstages ·
∑

a

M(J)

i.e., it represents the number of all required job operations.

At every optimization step, a change in the permuta-

tion vector is imposed, e.g. two randomly chosen elements

are swapped:

N : F → F ′

F ′ = {f1, . . . , fj−1, fk, . . . , fk−1, fj, . . . , fkmax
}

Next the resulting vector is decoded into a sequence

of transition sets. As the setup times are sequence de-

pendent, no exact calculation of the setup duration is per-

formed at this stage. A set of corresponding transitions that

can trigger the setup is specified instead. This substantially

simplifies the decoding step.

Next, the simulation is run with the determined tran-

sition set sequence as a parameter. During each simulation

step, the compliance with the set sequence is maintained

and in case of more than one transition in a sequence el-

ement, triggering of one of participating transitions is al-

lowed, as shown above. This way, the actual setup time

that applies in a given moment is implicitly defined by

a combination of the sequence element and the sched-

ule model. It is determined automatically by checking

marking- and sequence- enablement of transitions within

the PN model.

Finally, the simulation result is used to evaluate the

objective function and the new schedule is kept or dis-

carded, depending on the detailed implementation of the

local search strategy.

The optimization algorithm is summarized as follows

Algorithm 2 Schedule optimization

generate PN model;

calculate the number of job operations;

generate permutation vector F ;

decode initial set sequence S;

simulate PN(S);

calculate initial schedule and related objective function

value;

i := 0;

repeat

generate neighbour solution F ′ ∈ N(F );
decode set sequence S′;

simulate PN(S’);

calculate new schedule and related objective function

value;

perform acceptance test of F ′;

if test positive then

F := F ′;

end if

i := i+ 1;

until termination criterion

By introducing eventual restrictions within neighbour

solution construction procedure and by using different ac-

ceptance tests, various local search algorithms can be im-

plemented, e.g., Simulated Annealing (SA) or Tabu search

(Brucker 2007).

4.2. Genetic algorithms

The local search procedure can be easily adapted to the use

of genetic algorithms (Cheng et al. 1996, Eiben and Smith

2015). The above described permutation vector is used as a

chromosome, and the described vector change, which rep-

resents the neighbourhood operator in local search strategy,

is used in mutation step of the genetic algorithm.

What remains is to define a crossover operator. Stan-

dard crossover operators for the permutation representa-

tions can be used, such as order crossover (OX), linear

order crossover (LOX) or position-based crossover (PBX)

(Cheng et al. 1999, Werner 2013, Eiben and Smith 2015).

Simulation approach with predefined transition set se-

quences is then used in the fitness evaluation stage of the

genetic algorithm.
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5. EXPERIMENTAL RESULTS

5.1. Single machine problem

The introductory example of Fig. 1 is used to show the

feasibility of the approach. The setup times are integers

selected from a uniform distribution between 2 and 4, and

integer processing times are selected from a uniform dis-

tribution between 8 and 12.

Initial optimization was attempted by SA algorithm.

Three problem instances were generated and 10 optimiza-

tion runs were performed by each instance. Objective func-

tion was the makespan, i.e. the finish time of the last job.

Figure 3 shows how objective function of the current so-

lution changes with the iterations of the SA algorithm for

the three problem instances. Figure 4 shows the conver-

gence of the solutions for all optimization runs. It can be

seen that although the convergence rates are different, all

the runs converge to the same values for the same problem

instances.

One of the solutions is illustrated by Gantt chart in

Figure 5, where processing times for jobs J1, J2 and J3
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Figure 3: Solution changes during the run of SA algorithm
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Figure 4: Convergence of solutions for three problem in-

stances
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Figure 5: Sample Gantt chart for a problem with sequence

dependent setup times

are 12, 9 and 10, respectively, initial setup times are 3, 3

and 4, and sequence depended setup times are given by

matrix:

Sij =





3 4 3
2 3 3
2 3 4





where Sij denotes the setup time when job Ji is followed

by Jj . The optimal makespan is 115 time units.

5.2. Two stage flow line

The two stage flow line example is inspired by the set of

sample problems in Kurz and Askin (2004). Basically, the

model of the first example is extended to 6 different jobs,

and then repeated twice in sequel, where final job places

of stage 1 are used as initial job places of stage 2. Integer

setup times are selected from a uniform distribution be-

tween 5 and 90, and integer processing times are selected

from a uniform distribution between 50 and 70.

Figure 6 illustrates a sample optimization run for the

second example.
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Figure 6: Solution changes during the run of SA algorithm

for the two stage example

Additionally, the second example was optimized by

genetic algorithm. The Matlab implementation of genetic

algorithm within Global Optimization Toolbox was used,

with custom defined fitness function, which implements

the proposed set sequence simulation based evaluation of

solutions. Additionally, custom crossover and mutation

functions were defined, which are able to process permu-

tation based solutions.
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Although good solutions were obtained in general,

significant dependence on algorithm parameter settings

was observed, e.g., dependence on Fitness Scaling Options

and Selection Options. In general, the settings that main-

tain greater population diversity lead to better overall re-

sults. Figures 7 and 8 show the convergence for one of

the problem instances and two different sets of algorithm

settings. The same crossover and mutation operators were

used, but different fitness scaling (rank vs. proportional)

and different selection settings (stochastic uniform vs. uni-

form).
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Figure 7: Optimization of the two stage example by genetic

algorithm - fast convergence, poor solution
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Figure 8: Optimization of the two stage example by genetic

algorithm - slow convergence, good solution

Figures 9 and 10 illustrate the optimal solution by

Gantt charts. Note that setup and processing stages of a

job are represented by the same colour.

Finally, a comparison of different crossover operators

was performed. No significant impact of the crossover op-

erator choice to the solution quality is observed, which

is illustrated in Figure 11 by shoving average resulting
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Figure 9: Gantt chart for the two stage example - job or-

dering
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Figure 10: Gantt chart for the two stage example - machine

usage
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Figure 11: Average results of 10 optimization runs for five

problem instances using different crossover operators

makespan of 10 optimization runs for five problem in-

stances using operators PBX, OX, and LOX, respectively.

6. CONCLUSIONS

The paper shows how existing simulation-optimization

framework using Petri net models and specific, sequence

dependent PN simulation can be extended to the class of

scheduling problems with sequence dependent setup times.

Related PN modelling approach is presented, the advan-

tage of Coloured Petri nets use is illustrated, and sequence

dependent simulation algorithm is extended by allowing

set sequence specification. This way an additional degree

of freedom is introduced in specifying firing sequences,

which permits to partially determine the actual sequence

on-the-fly during simulation execution. Some illustrating

examples show the feasibility of the approach in combina-

tion with local search techniques and genetic algorithms.
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Mušič, G., 2011. Efficient exploration of coloured Petri

net based scheduling problem solutions, 23th Eu-

ropean Modeling & Simulation Symposium, Rome,

Italy, pp. 681–689.
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