
WEB SIMULATION AS A PLATFORM FOR TRAINING SOFTWARE APPLICATION

Stepan Kartak

Faculty of Electrical Engineering and Informatics, University of Pardubice

stepan.kartak@student.upce.cz

ABSTRACT

This paper is focused on a practical use of a web

browser in a web distributed simulation. A web browser

environment is used for a realization of a

comprehensive solution for multiuser trainer

applications. A computer with the web browser as one

simulator station is usually available anywhere.

Presented solution allows to create a script of

simulation, to run the simulation and then to centrally

monitor status of individual stations and behavior of

their operation in real time. The individual stations can

be in one room or they can be geographically distant.

All this wherever and without a need of special

software. An internet browser and PC connection to a

PC network is the only requirement.

Keywords: distributed simulation, web-based

simulation, WebRTC, software for training

1. INTRODUCTION

This contribution deals with the realization of the

multiuser trainer applications just with an usage of web

technologies. A base of the solution is based on a

previous work regarding distributed web simulation

(Kartak and Kavicka 2014; Hridel and Kartak 2013),

that has solved only WebRTC applicability without an

additional user-friendly control and software support of

a remote control and central visualization. The term

“trainer application” will represent a group of

applications (an interactive simulation) for testing

(examination, teaching) workers/dispatchers. The

dispatcher (i.e. one logical process that is operated by

one user at one computer/station). This user operates

above specific area (then without knowledge of a global

status) and responds to incoming information from

nearby logical processes with which it is in direct

connection. For instance let us state an operation (i.e.

dispatcher) of a railway station within a region (where

more dispatchers occur). Another example a

management of road transport can be within an exposed

territorial entity, a management of investigative, life-

saving or military operations under geographical areas.

Individual participants of the simulation can be in one

room or they can be geographically distant (for example

they need not move away from their real workplaces).

PC connected to the PC network is the only

requirement.

2. CHARACTERISTIC

Entire solution consists of four parts which will be

described in detail in next chapters:

 administration web interface (AWI) for

assembly and setting of the simulation,

 web application for central mass management

of pages in browser (JSRC) – in this case it

will be used for a management of logical

processes,

 logical processes (LP) realized as independent

web pages put above common JavaScript

library,

 central visualization (CV) of individual logical

processes and of entire simulation.

Due to a character but found WebRTC weak points too

(see below) the entire solution focuses on distributed

simulation of smaller range, in this case to 20 logical

processes, however this restriction is given by current

state of WebRTC only. Theoretically it is not a problem

to operate a simulation of much larger range.

2.1. All in web browser

All parts are realized as web applications running in

web browser (with a server support for partial additional

activities – AWI, record of animation activities, etc.).

Very distributed simulation then runs fully in web

browsers (without using the server). A support of new

HTML5 technologies (i) WebRTC (full-duplex network

communication between browsers) is essential, (ii)

WebSockets (full-duplex communication server-

browser), (iii) canvas (medium for 2D drawing to a

display area of browser) and (iv) WebGL (using of

graphic card for 3D animation in the environment of

web browser). These features support browsers using

web core Webkit (primarily Google Chrome and many

others) and Gecko (Mozzila Firefox) in both cases both

desktop and mobile version. For the distributed web

simulation first two above mentioned features are key

which allow to communicate on network as well as

standard desktop applications.

Other two features are necessary for realization of a

graphic output.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

70

mailto:stepan.kartak@student.upce.cz

2.2. Web browsers and communication on network

Due to a request for fluent animation output it is

necessary to minimize network response among logical

processes and it is important too to consider a fact that

web browser and its programming language JavaScript

do not belong among computationally efficient

languages or environments. Too an option of suitable

communication and synchronization of course among

logical processes is essential. WebSockets communicate

on basis of TCP connection and permit connection with

server. This possibility would be potentially suitable for

a realization of distributed simulation solved similarly

as HLA (it very often selects using of centralized

architecture; Kuhl, Judith, and Weatherly 2000). Here a

summarizing of information on one node in the network

and therefore creating of global state space of running

simulation is a significant advantage of using server

element. In this case we need to send a message via

network twice for delivery of the message (these are

four messages with a request to reply). An operation is a

result that is very time-consuming and reduces

possibilities of creating above mentioned type of

application. WebRTC technology is a better choice

since it is proposed for creating direct connection

among browsers (i.e. it allows to omit “center” server

element from the communication among logical

processes). Network response time will be two times

shorter theoretically when using WebRTC compared to

WebSocket. The omitting of center element is a

negative aspect as it results in a loss of simple

realization of global state space (for example for a

central accounting, a simulation recapitulation or for yet

mentioned central visualization).

2.3. Using and problems of WebRTC

In theory connections through WebRTC are not limited

in no way. It does not depend on a network topology,

local networks, NAT routers (described in detail in

Kartak and Kavicka 2014) not even on a number of

connections. From this view it is possible to create a

web alternative of a Distributed Interactive Simulation

(DIS) standard in the sense of broadcast UDP

communication (IEEE standards). For creating of

connection in this style it is necessary to realize

WebRTC peer-to-peer connection of each with each

which should not be a problem in theory due to above

mentioned “limitless” situation. At an extensive

(connection of twenty or more logical processes)

practical tests of this solution it revealed that a problem

appears with frequent closing connections without an

obvious reason right after connection. It is possible in

the local network to create the connection of each with

each among twenty computers however usually it is a

need of many trials (even tens of trials with increasing

number of browsers). It is a significant problem

whereas after disconnection it is not possible to restore

the network WebRTC connection (it depends on a type

of disconnection but it is not possible in the case of

above mentioned problem) without restart of application

(i.e. must page refresh in the web browser). This

problem identified in local site will start to show much

more at “connecting” of more browsers (usually after

NAT routers) across Internet public network. Even

though this status is highly unsatisfactory and largely

limiting for application in practice it can be to

minimalize number of logical processes connections on

the basis of their natural dependences among each other

(see figure 1 or 3). It revealed from testing in local site

that connection of 20 browsers (logical processes) over

ca. 40 WebRTC connections provides stable achievable

solution in the local site. As regards connection through

public site problems with self-closing connections still

occur however achieving all stable connections seems

as possible contrary to above mentioned alternative in

broadcast connection.

For an example, an attempt to connection among 6

browsers (each with one logical process, in different

geographically distant net, 1 km to 150 km beeline

amongst physical location of browsers) failed to repeat

even after ten trials because connection between 1 or 2

browsers (usually those that were geographically

furthest apart) always closed itself after connection

without an apparent reason. Connection with the same

topology within an urban network (geographic distance

between physical location of browsers around 1 km)

succeeded repeatedly among 1 and 3 trials. Even this

result is not optimal. After successful connection

establishment the connection is always permanent and

smooth (max. 5 operation hours tested).

2.4. Synchronization of logical processes

The synchronization of logical processes is realized by a

method Conservative synchronization technique of

sending null messages with a lookahead (Chandy-

Misra-Bryant Distributed Discrete-Event Simulation

Algorithm, Fujimoto 2000). It is about standard slightly

modified version of this algorithm, the version was

described in detail in Kartak and Kavicka 2014.

2.5. JavaScript and computational demands

Programming language JavaScript is almost exclusively

one-thread in the web browser (it generally valids for

entire user source code), this means that all operations

are performed gradually, by time (or order) that they

have attributed by internal scheduler or in nearest

possible time if at the time on which an event is planned

already some calculation runs. This is a critical issue

with that it is necessary to count.

The logical process performs three operation groups:

 calculations of simulation core,

 realization of the animation,

 and a whole range of minor tasks (for example

sending information to the server).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

71

Figure 1: Administration web interface, visual editor

Just the realization of the animation currently appears as

a problematic area.

Demand depends on area for drawing size (HTML

element canvas) and too on the quantity of animation

activities that it is necessary to update in each step of

the animation – whereas it is about drawing here (in our

case in 2D space) we will not avoid often counting of

parametric curves and else not fully trivial calculations

that will begin to occupy precious time in larger

quantities with next operations of animation activities

(time control of beginning and end of display, etc.).

Generally speaking computationally intensive tasks are

not an ideal type of problem for JavaScript solution and

they may represent significant problem for fluency of

simulation run from the perspective of service and in a

combination with one-thread access (in fact it can be

only about decrease of framerate of animation output).

If we take into account that a man considers fluent

animation it is possible at 25 FPS (generally accepted

number, films are distributed with that FPS) we will get

a time to a realization of calculations between

redrawing of animation scene 1000 / 25 = 40 ms.

During 40 ms it must be done at worst (in brackets

average measured times in ms stated, if they are average

larger than 1 ms; computers in one local network, 20

logical processes, topology of connection see figure 9a):

1. Calculations of simulation core, consist of:

(a) calculation of single activities and

planning of further activities (1 ms),

(b) waiting for a response of remote logical

processes because of synchronization (in

this solution it is about a request for a null

message if we have n nearby logical

processes then a time required to

realization will be ms at worst).

2. Processing planned JavaScript tasks:

(a) execute commands of central JSRC

control,

(b) responses to requests for null message

from nearby logical processes,

(c) internal planned operations, i.e. sending

information to server, sending screenshots

of animation scene, etc. (2 ms).

3. Calculations of animation module (10 ms):

(a) sorting of animation activities,

(b) time control of beginning and end of

animation activities display.

Critical time that it is not possible to optimize in no way

is 1b point (waiting for response of remote logical

processes because of synchronization). On average

response to this type of request lasts 10 ms when whole

logical process inactively waits. The more logical

processes are with that it is necessary to keep logical

process as synchronized the more (in the worst case) a

time can be longer between animation frames.

According to presented values 3 and more nearby

logical processes can mean a problem.

Standard desktop application would solve a

considerable part of these operations in parallel, in

JavaScript something like this is not possible so must be

to pay special attention to optimizing of calculations

and data structures.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

72

3. ADMINISTRATION WEB INTERFACE

Administration web interface (AWI, figure 1) is a web

application that serves primarily to a compilation of

distributed simulation model and to a creation of a

session of this simulation. The process of creating the

distributed simulation from beginning to launch is

shown in a flowchart in a figure 2.

Figure 2: Flowchart of process of creating the

distributed simulation from beginning to launch

3.1. Logical process, its type and definition

The distributed simulation consists of logical processes.

This solution considers set web page registered in AWI

as the logical process. In AWI a record about new type

of logical process is created. To this record (a) name,

(b) URL address of very web page (it represents very

logical process) and (c) URL address with XML file

that specifies possibilities of setting and network linking

with other logical processes are assigned. Based on this

record and XML configuration in visual editor (see next

chapter) a miniature of logical process is created (figure

3) that represents logical process in the editor.

Figure 3: Display of two linked logical processes in

AWI visual editor

Configuration XML file contains:

1. Meta information – basic information about

the logical process (name, author, picture for

display in AWI, etc.)

2. Description of connection with other logical

processes – i.e. input and output entit points

and their setting:

(a) list of entit types that are valid for the

logical process,

(b) distinction of input and output points,

(c) determining if the connection is required

(usually for a meaningful function of

logical process some input is required) or

not.

3. Items of setting – each requires to specify:

(a) name,

(b) description,

(c) default value,

(d) type of value (for an appropriate

processing/validation of input and display

of appropriate input fields - eg string,

integer, boolean, etc.),

(e) and few further options (for example a key

under that the logical process will expect

these data).

4. Free space (node chosen within XML file) for

any content, determined for a possibility to set

logical process above editor frame options.

3.2. Visual editor for setup of distributed simulation

model

The simulation model consists of a set of logical

interlinked processes. Visual editor in AWI serves for

creating of this set (see fig. 1).

In the left part of editor an offer of available types of

logical processes is.

In the middle a design area is located that serves for

setup and connecting of logical processes. The logical

processes are added by dragging from a left bar. Setting

and connecting of logical processes proceeds under

rules said in XML configuration files of logical

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

73

Figure 4: Remote Control web interface

processes types. In the right section a quick review of

used logical processes is with a possibility of their

setup.

3.3. Creating of simulation session

The simulation model created as described in part 3.2 is

only an executable description of a simulation structure

and setup. Usable simulation became from the model by

creating of simulation session (de facto of session of the

simulation model).

Such action consists of these steps:

1. Assignment of an unique identifier to each

logical process in the model.

2. Creating/preparing of relevant data structures:

(a) preparing of data in a database,

(b) creating of XML configuration file

describing compilation of model with

added information about simulation

session (especially identifiers of single

logical processes).

3. Creating of a group of stations in JSRC

application (see below). Creating of single

stations in this group for each logical process.

(All through relevant JSRC API.)

Created XML configuration file represents enter data

for very logical processes, on the basis of information

from this file WebRTC connection and assistant data

structures is set.

4. REMOTE CONTROL

Remote control (JSRC, web interface is shown on

figure 4) is a separate application intended to a multiple

control of web pages. In this case it serves to a control

of logical processes. Primarily to a load of logical

process, creating of WebRTC connection and startup of

all logical processes.

4.1. Description of working and integration to the

simulation

This application as an entirely independent product

serving for a mass control of web pages that is from one

place (JSRC web application) any quantity of web

pages is controlled. Web pages are identified as

workstations within JSRC.

Workstations are defined by:

 name,

 initialization page (page that will be

controlled).

These workstations are grouped into categories of

workstations (workstation groups). And just within

these groups it is possible to enter mass commands

(nevertheless it is possible to specify a workstation

subset that will receive the command).

Really the workstation corresponds to the logical

process and one group of workstations corresponds to

the whole model.

The commands are entered by text form (figure 4),

moreover there is an option to create advance prepared

command sets at “one click” (figure 5).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

74

Figure 5: JSRC: Prepared command set, one square is

user-defined command (or commands), prepared for

touch-devices

Each work group can dispose different command set,

here used for a separation of remote control of central

visualization (CV, see next chapter) from very

simulation.

The session of distributed simulation is realized within

one work group and CV control in the second entirely

independent work group (it contains only one

workstation).

4.2. Description of used API

This application communicates with pages via API that

allows to:

 add groups of stations (WG_ADD),

 add stations to groups (WE_ADD),

 add commands (COMMAND_ADD),

 remove commands for processing

(COMMAND_FETCH),

 send responses (results) of commands

(COMMAND_RESULT),

 get information about commands (primary

results, COMMAND_GET),

 get information about station groups

(WG_INFO),

 get information about very stations

(WE_INFO).

The communication via API is displayed at picture 6.

Figure 6: The communication via JSRC API with order

of API calls for execute one command

An usage scheme in the simulation is displayed at

figure 7.

Figure 7: The scheme of usage JSRC API in the

simulation

5. REALIZATION OF LOGICAL PROCESSES

The logical processes are realized as common web page

in that with assistance of prepared JavaScript library (it

is not a condition while respecting communication

standards) is: (a) XML file for transmission of

information about configuration of distributed model,

(b) structure of messages transmitted among logical

processes.

It can be to quickly create with this library activities for

simulation cores and on the basis of several prepared

prototypes of animation activities too an animation

output.

While all can be created user friendly in an uniform

style of control and appearance too.

So prepared web page represents type of logical process

that is potentially configurable and reusable (in more

models and in one model multiply too).

It is necessary to prepare a picture yet for adding new

type of logical process (a miniature schematically

representing the logical process) and XML

configuration file specifying setup and network

connections with that type of logical process disposes

(described in detail in chapter 3.1).

6. CENTRAL VISUALIZATION

The central visualization (CV) is an independent web

page that is created from the same components as very

logical processes – especially for keeping united visual

style and control. It allows to repeatedly play animation

status of logical processes.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

75

6.1. Realization of animation play of one logical

process

Animation of logical processes sends new, changed and

removed animation activities to the server (currently

solved as a part of AWI). The sending is solved,

according to server workload, in two modes: (a) sending

immediately, (b) queuing of activities and their batch

sending after some time. CV page in regular intervals

downloads these information about animation activities

that it immediately ranks to the animation output or

removes them by record type. The output is due to delay

in communication between logical process and server

and between page with the visualization and the server

burdened by delay against real in order of tens to

hundreds of milliseconds (according to selected setting).

Display of the communication is in a figure 7 (“b”

commands).

6.2. Page with a summary of all logical processes

CV provides a possibility too to display at once status

(i.e. the animation in this case) of all logical processes

(within the session of distributed simulation) in bulk in

the summary. Whereas fluent play of animation

activities in one animation scene is computationally

very difficult the realization of displaying larger number

of animation scenes is difficult to achieve.

From that reason it was proceeded to that the logical

processes after selected intervals (specified in XML

configuration of logical process type) send to server

(part of AWI) screenshots of the animation scene and

these static images are then displayed in the summary –

the animation is not fluent but it is enough for the

summary.

Neither this solution is not ideal because creating of

animation scene screenshot lasts in order of tens of

milliseconds after that it is not possible to restore the

animation of the logical process – so impression of

choppy video generates that definitely is not an ideal

status and it disturbs an user serving the logical process.

Generally speaking the larger animation scene the more

time creating of the screenshot will take.

6.3. Remote control of central visualization

For a comfortable CV control it is created through

JSRC to control the page (primarily the animation

output and selection of logical process or page with the

summary) remotely from another instance/CV page.

In this case one CV is in a master position (i.e. control,

) and the second one in a slave position (i.e.

controlled visualization,).
A practical use display can be on a projector and its

control through that can run for example on a

tablet that service or trainer handles.

The animation output is always synchronized with a

system time and therefore we can suppose that one

second of and animation will in real time

correspond to one second.

This premise is not valid relative to JavaScript “one-

thread” architecture and displayed time at both

animations will not remain synchronized for a long

time.

From this reason it was proceeded to running and

 synchronization.

Practically it works that continually sends (after 5

seconds interval, through JSRC) information about an

actual time that displays animations and with respect

to own actual animation time, a real measured

animation speed and network communication delay

adjusts speed of own animation to achieve a

synchronous time.

This way of synchronization currently requires an exact

time on both equipments.

7. COMPARISON WITH OTHER SOLUTION

TYPES

7.1. Web vs desktop application

There are three fundamental reasons for using web

browser instead of native desktop application:

 web browser is available for all ordinarily

available OS without a dependency on

hardware components,

 theoretically seamless network connection of

logical processes in various networks,

 it is free.

The reasons why the web simulation (through

WebRTC) is not an ideal way:

 offending WebRTC,

 low computing performance of JavaScript,

 a problem of a connection to yet existing

architecture/product relative to an unique

reports size.

7.2. Comparison with other standard solutions

As noted in chapter 2.3 relative to found problems and

limitations an aim of this work is to create the

environment for realization of small simulations (to 20

logical processes) not to create a competition usually by

a military solution.

Only a brief look back at contemporary most used

standards:

 HLA is a very extensive and complex solution

its implementation is very demanding

according to all standards. For that reason

using of HLA is wholly unpractical for models

with a small number of logical processes on

that this work is just focused on. (Kuhl, Judith,

and Weatherly 2000)

 DIS is in general replaced by HLA today, from

this view already only a thought of network

connections after this pattern (each with each)

is interesting but as described in chapter 2.3

this approach is not usable.

 TENA is an extensive complex architecture (as

HLA is) created for needs of US Army

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

76

comprising LVC distributed simulations with

emphasis on live simulation thus totally

exceeds scope of this work. (Powell and

Noseworthy 2012)

8. TESTING A USE CASE

For testing road/highway network was chosen because

it is possible to set up almost any (and still realistically

looking and behaving) distributed model from several

prepared types of logical processes.

These types of logical processes are used (see fig. 8):

 highway with ramp on/off (fig. 8a),

 straight stretch of highway,

 highway multilevel intersection (fig. 8c),

 road stretch with small window with

refreshments (fig. 8b, primarily for testing

queue realization).

Figure 8: Examples of types of logical processes

The testing runs in local network, at 20 computers

where only web browser runs with one opened panel.

It is about a medium performance ordinarily available

computers with Intel® Core™ i3 processor.

Schemes of used models (topology of logical processes

connections is primarily important) are in figure 9a-c.

Model in figure 9c represents closed system that detains

entities and serves to testing behavior of solution in

extreme (i.e. normally absent) amount of entities. Then

in a table 1 measured values for indexes are shown that

normally guarantee smooth run of simulation. So these

values indicate limits (especially table 1 / fig. 9c) of an

applicability on above mentioned processor. A more

powerful processor may enable you to smoothly

animate a larger number of entities on other parameters

will have no effect.

 (a) (b)

 (c) Legend

Figure 9: Schemas of tested models

Table 1: The average values of run of distributed

simulations on models by fig. 9, lookahead 500 ms

 Schemes of model in fig. 9

Scheme Fig. 9a Fig. 9b Fig. 9c

Time from start

[min]

30 30 15

Count of entities in 220 450 1400

Time between

request for null

message and

response [ms]

18,7 15,4 12,2

Time between send

WebRTC message

and response

delivery [ms]

5,39 9,5 7,7

FPS of animation

output

141 125 103

Status No problem, values

continued in time

unchanged

Last

smooth

anim.

9. FUTURE DEVELOPMENT

Still a space remains here for future development

especially in terms of solving problem with more

connections and stable logical processes connection

among more local networks operated behind NAT

routers.

The future development will be focused too to a

possibility to save the status of logical processes at

server and thus allow to supervisory staff to return to

(a)

(b)

(c)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

77

required moment whether for any simulation play and

for a initiation of different solution procedure.

So option will arise to later (after finishing simulation)

repeat course or to change procedure from chosen

moment of time.

Hereafter there is the space for the whole series of

improvements starting with improving and
synchronization. Creating of animation for monitoring

entity transitions among logical processes, etc.

10. CONCLUSION

Presented solution creates the environment for service

training or testing whenever and wherever using only

web browser that today it is available practically at any

computer connected to a computer network.

Just this feature is key and competitive against existing

alternatives that usually cannot do without an specific,

single purpose and costly software.

However JavaScript character and WebRTC problems

yet close a path to extensive use and soon we cannot

expect an essential progress.

A final product can find an application for smaller

models (ca around 10 logical processes) or in static

distributed scenes.

REFERENCES

Fujimoto, R.M., 2000. Parallel and distribution

simulation systems. New York: Wiley.

Kartak, S., Kavicka, A., 2014. WebRTC Technology as

a Solution for a Web-Based Distributed

Simulation. Proceedings of the European

Modeling and Simulation Symposium 2014, pp.

343–349. Genova: Università di Genova.

Tropper, C., 2002. Parallel and distributed discrete

event simulation. New York: Nova Science Pub

Inc.

Kuhl, Frederick, Judith Dahmann, and Richard

Weatherly. Creating computer simulation

systems : an introduction to the high level

architecture. Upper Saddle River, NJ: Prentice

Hall PTR, 2000.

Bergkvist, A., Burnett, D.C., Jennings, C., Anant

Narayanan, 2013. WebRTC 1.0: Real-time

Communication Between Browsers. W3C.

Available from: http://www.w3.org/TR/webrtc/

[accessed date July 2014]

Rosenberg, J., 2014. Interactive Connectivity

Establishment (ICE). IETF. Available from:

http://tools.ietf.org/html/rfc5245 [accessed date

May 2014]

Hridel, J., Kartak, S., 2013. Web-based simulation in

teaching. The European Simulation and Modelling

Conference 2013. EUROSIS-ETI.

Powell, E.T., Noseworthy, J.R., 2012. The Test and

Training Enabling Architecture (TENA). Available

from: https://www.tena-sda.org/download/

attachments/6750/TENA-2012-Paper-Final.pdf

[accessed date 1 July 2015]

IEEE standard for distributed interactive simulation:

application protocols. New York: Institute of

Electrical and Electronics Engineers, 2012.

IEEE standard for distributed interactive simulation

communication services and profiles. New York:

Institute of Electrical and Electronics Engineers,

1996. Print.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

78

