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ABSTRACT 
This paper presents a Fuzzy Cognitive Map (FCM) 
approach for controlling the Tunnel Boring Machine 
(TBM) operation in tunnel construction. The fuzzy logic 
based approach is used to capture the construction 
experience and knowledge from domain experts in 
creating FCMs. A supervisory FCM model is developed 
to represent the cause-effect relationships among the 
variables involved in the operation of a TBM. The 
developed model can be used to test what-if scenarios 
and to perform a real-time control of operational 
variables in response to the changing environment. A 
tunneling project in China is used as an example case 
study to demonstrate the applicability of the developed 
approach. This example case study shows that the TBM 
performance is influenced by a variety of geological and 
operational variables, and that FCMs can provide 
guidance on adjusting operational parameters in tunnel 
construction. The proposed approach can be used as a 
decision support tool for ensuring satisfactory 
performance of TBMs, and thus increases efficiency of 
tunnel construction projects. 
 
Keywords: Simulation; Fuzzy Cognitive Map (FCM); 
TBM Performance; Supervisory System 

 
1. INTRODUCTION 
In recent years, the construction of subway systems and 
underground utilities has dramatically increased due to 
the increasing population and lack of surface space. The 
tunnel boring machine (TBM) technique has found 
widespread application in tunnel construction, and is 
used for excavating tunnels in nearly all types of rock 
masses and geological conditions. However, 
occurrences of shield cutter-head failure, and even 
catastrophic failures of drive motors are frequently 
observed in real projects. In general, there is concern 
that a decrease in performance of the TBM due to a 
component failure leads to unacceptable equipment 
damage, and can significantly adversely impact the 
overall productivity of tunnel projects.  
Often, a failure in the TBM occurs due to the mismatch 
between the geological variables (e.g., soil density) and 
the operational variables (e.g., gross thrust of the TBM). 

Therefore, timely and appropriate responses to the 
changing underground conditions are very important in 
TBM operations. However, precisely predicting the 
geological conditions for every location in tunnel 
construction is impossible. Hence, real time sensing and 
monitoring of the geological conditions is required in 
tunnel construction as the TBM advances. 
Complex systems, like TBM operations, are usually 
characterized by high dimensions, and involve many 
different kinds of variables or subsystems that are 
strongly interconnected and mutually dependent. A 
large number of complex processes are not fully 
understood, but their operation is “tuned” successfully 
through experience, rather than through the application 
of pure mathematic principles (Stylios & Groumpos, 
2000, 2004). In this situation, effectively and efficiently 
capturing and utilizing experts’ knowledge can provide 
a solution to develop and improve complex system 
models (Tianfield, 2001; Wu & Cai, 2000). Soft 
computing techniques have been proposed to create a 
platform to capture and integrate experts’ knowledge in 
an effective and efficient manner. Fuzzy cognitive map 
(FCM) approach is one of the soft computing modeling 
techniques. The implementation of FCM for modeling 
supervisory control systems is a promising area, since 
FCMs can integrate all kinds of relevant knowledge 
from domain experts, and simulate 
thinking processes of human experts by using a more 
abstract representation of the cause-effect mechanism, 
general control knowledge and adaptation heuristics, 
and enhance the performance of the whole complex 
system (Stylios & Groumpos, 2004). 
The supervisory FCM is an augmented model of the 
complex system, which represents the relationships 
among the actual systems and their models. The 
supervisory FCM monitors and organizes all the 
subsystems in order to accomplish a task, to help the 
operator make decisions, to plan strategically and to 
detect and analyze failures (Stylios & Groumpos, 2000). 
A supervisory FCM for complex systems provides 
decision support and is efficient in examining what will 
happen if a state of the system changes (Stylios & 
Groumpos, 2004).  
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This paper investigates the potential of using 
supervisory FCM as a tool to model and simulate the 
TBM system, as well as assist operators in ensuring 
satisfactory performance during the TBM operation. A 
supervisory FCM model for controlling TBM 
performance is developed. The developed model 
provides further understanding on how the system 
behavior evolves quantitatively in the case of changes in 
variables, and assists engineers (the operators of the 
system) in adjusting relevant variables to ensure the 
satisfactory performance of the TBM operation. Also, 
the dynamic nature of a complex system over time is 
considered in the developed supervisory FCM models, 
in order to accurately illustrate the dynamic features of 
variables in the real world. A tunnel case in China is 
used to demonstrate the effectiveness of the proposed 
approach, as well as its application potential. 
 
2. METHODOLOGY 
FCM is a modeling methodology for complex systems, 
which originated from the combination of fuzzy logic 
and neural networks. The graphical illustration is a 
signed fuzzy graph with feedback, consisting of nodes 
and weighted interconnections. Figure 1 illustrates a 
simple FCM model. Nodes of the graph stand for 
concepts that are used to describe mainly behavioral 
characteristics of the system. Nodes are connected by 
signed and weighted arcs representing the causal 
relationships that exist among concepts. This simple 
illustration provides thoughts and suggestions in 
reconstructing FCM, in regards to adding or deleting 
interconnections or concepts. In conclusion, an FCM is 
a fuzzy-graph structure, which allows systematic causal 
propagation, in particular, forward and backward 
chaining. Based on the unique reasoning technique of 
FCM, a systematic decision approach to supervise the 
TBM performance in tunnel construction is developed 
in this research, which consists of the following four 
steps. 

C1 C2

C3 C4

w12
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w34

w42

w32
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Figure 1: A Simple FCM Model 

2.1. Representation of Concepts 
FCMs are dynamic systems that have the topology of a 
directed fuzzy graph (see Figure 1) consisting of nodes 
and edges and permitting cycles and feedback. Nodes of 
the graph stand for the concepts that are used to 
describe the behavior of the system and they are 
connected by signed and weighted arcs representing the 
causal relationships that exist among concepts. It must 

be mentioned that all the values in the graph are fuzzy, 
indicating the concept nodes Ci have a fuzzy nature. In 
the FCM framework, each concept, defined by C i with 
an interval of [-1, +1], represents a characteristic of the 
system (e.g., events, actions, goals, values or trends of 
the system). Relationships and interdependencies 
among concepts are represented by the arcs (i.e., 
interconnections) among concepts in FCM models, as 
shown in Figure 1. 
Concepts in FCMs (Ci, Cj,…, Cn) represent the state of 
a system. At time t, the state of an FCM is defined by 
the vector At of the values of the concepts (At =[C1, …, 
Cn] ∈ [-1,+1]), or in other words, a point in the fuzzy n-
dimensional state space. An edge eij (∈ [-1,+1]) defines 
causal flows Ci →Cj between the concepts. Based upon 
the graphical representation, it becomes clear which 
concept influences other concepts, and the degree of the 
influence. Therefore, the FCM approach permits 
thoughts and suggestions to be collected or aggregated 
in the construction of the graph by adding or deleting an 
interconnection or a concept. 
 
2.2. Fuzzy Weight Determination 
Given an FCM model with N concepts, a weight from 
the concept C i to the concept C j (1≤i, j≤N, i≠j), defined 
by Wij, is the relative influence from concept Ci that 
determines the value of concept C j. These are fuzzy 
weights that describe the degree of the causal 
interconnection among concept nodes. To be specific, 
there are three types of causal interconnections between 
concepts that represent the degree of influence from one 
concept to the other:  
• Wij>0: means the weight of the arc from C i to C j  

would be positive. An increase in the value of C i  
leads to the increase of the value of C j, and a 
decrease in the value of C i leads to the decrease of 
the value of C j. 

• Wij<0: means the weight of the arc from C i to C j  
would be negative. An increase in the value of C i  
leads to the decrease of the value of Cj, and vice 
versa. 

• Wij=0: means that there is no relationship between 
C i and C j. 

The causal interrelationships among concepts are 
declared using a linguistic variable which takes values 
in the universe U = [-1, +1]. It is known that the number 
of linguistic intervals can largely affect the reliability of 
the estimation. Specifically, short intervals (or a great 
number of variables) indicate that the statistic is 
precisely known, while wide intervals (or a small 
number of variables) indicate great uncertainty. In order 
to reach the high precision of the influence estimation 
among concepts, it is better to conduct a group of short 
intervals, rather than wide intervals. According to 
Dawes' (2008) experiment, the use of 5-9 point scales is 
likely to produce slightly higher mean scores relative to 
the highest possible attainable score, and besides, a 
larger number is usually impractical. Thus, in this 
research, a 9-point linguistic scale is used to provide a 
basis for an expert to describe in detail the influence of 
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one concept on another based on his/her knowledge, 
and then discern between different degrees of influence. 
Figure 2 illustrates the corresponding membership 
functions for these 9 linguistic terms: negatively very 
strong (µnvs), negatively strong (µns), negatively 
moderate (µnm), negatively weak (µnw), zero (µz), 
positively weak (µpk), positively moderate (µpm), 
positively strong (µps), positively very strong (µpvs). 
In order to exploit the knowledge and experience of 
experts on the description and modeling of a complex 
system, it is supposed that there are M experts who 
evaluate every interconnection and describe it with a 
fuzzy rule inferring a linguistic weight. The credibility 
weight for every expert is introduced to increase the 
objectivity of the FCM developing method, accepting 
that initially, all the experts are equally credible and 
have the same credibility weight. Generally, at least M/3 
of the experts have to fully agree with their suggestions, 
thus, an average weight of the interconnection is 
calculated using Equation 1. Otherwise, the credibility 
weight of an expert should be reduced by r% every time 
there is a wrong suggestion for an interconnection. Next, 
the suggested linguistic weights for an interconnection 
may be aggregated in accordance with the well-known 
fuzzy logic method of “SUM,” which can be used to 
produce an aggregated linguistic weight. Finally, the 
defuzzification method of center of gravity (COG) is 
applied, and a numerical weight for the interconnection 
is calculated (Jang, Sun, & Mizutani, 1997; Nie & 
Linkens, 1995): 
 

( )1

M k
k ijk

ij

b W
W

M
=

×
=
∑

                                            (1) 

 
where, Wij stands for the aggregated fuzzy weight from 
C i to C j; M stands for the total number of the 
participating experts; bk stands for the credibility 
weight of the kth expert; and Wij

k stands for the fuzzy 
weight from C i to C j based on the judgement of the kth 
expert. 

Influence

M
em

be
rs

hi
p

0

0.5

1.0

-1.0 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.0

µnvs µns µnm µnw µz µpw µpm µps µpvs

Figure 2: Membership Functions for the 9-point 
Linguistic Scale Regarding Influence between Concepts. 

2.3. Dynamics of FCM 
Behind the graphical representation of FCM, there is the 
mathematical model. The causal interconnections of an 
FCM model can be expressed by an n × n matrix W, 
which contains all of the n2 rules or pathways in the 
causal web between n concepts in the FCM. The state of 
an FCM model can be expressed by a 1×n vector A. 

Then, the dynamics of the FCM model are dictated by 
these matrices, and can be updated through iteration 
with other concepts and with its own value. Equation 2 
drives this interaction where the strength of the causal 
relationships is represented by the weight of the 
summation (Stylios & Georgoulas, 2011; Stylios & 
Groumpos, 2004). After some iterations, the values of 
the concepts will evolve until stabilized at a fixed point 
or a cycle limit. 
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∑             (2) 

 
In Equation 2, t stands for the interaction index; A i(t+1) 
stands for the value of concept C i at time t+1; A i(t) and 
A j(t) stands for the value of concept C i and C j  at time t, 
respectively; Wji stands for the interconnection weight 
from concept C j to concept C i; and f(•) stands for a 
threshold function. 
Generally, there are two kinds of threshold functions 
used in the FCM framework. One is the unipolar 
sigmoid function, where λ>0 determines the steepness 
of the continuous function f(•), and squashes the content 
of the function in the interval [0,1], as shown in 
Equation 3. Another threshold function can be used to 
transform the content of the function into the interval [-
1, +1], as shown in Equation 4. The selection of the 
threshold function depends on the method that is used to 
describe the concepts. In this research, we attempt to 
assess the impacts of root causes of the reliability of the 
target event in terms of “positive influence” and 
“negative influence.” As a result, the threshold function 
as shown in Equation 4 is selected for this research, and 
presented later in a case study. 
 

1( )
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2.4. FCM-based Analysis 
An FCM represents human knowledge about the 
dynamic behavior of a complex system. In other words, 
an FCM is a model about a system’s dynamic behavior 
in term of concepts and interrelationships among 
concepts. Once constructed, FCMs can be used to 
simulate the behavior of a system and perform what-if 
analysis, due to its effectiveness in representing a 
complex system’s behaviors, and the ease of use (Taber, 
1991).  
There is a cause behind every failure or problem, and 
localization and elimination of its causes should be of 
the utmost significance, in order to avoid failure 
occurrence. Predictive analysis aims to forecast the 
future outcome or effect of an event in light of some 
evidence being available. It can be used to address the 
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problem or non-conformance by localizing the true 
cause and implementing corrective action to prevent 
recurrence of the problem (Rooney & Heuvel, 2004). 
Several variables may be involved in the occurrence of 
a failure; however, what the contributions of those 
variables are is unknown. In the FCM framework, as 
shown in Figure 1, at least one concept should represent 
the target event (decision concept), and some concepts 
should represent the potential root causes. Causal 
analysis is able to identify the relationship between the 
causes and effects of a target event, and further perform 
predictive analysis. More details regarding the 
predictive analysis of the TBM performance can be seen 
later in the tunnel case study.  
 
3. FCM MODELING OF TBM PERFORMANCE 
 
3.1. Concepts Involved in TBM Operation 
A TBM is a machine used to excavate tunnels with a 
circular cross section through a variety of soil and rock 
strata. TBMs have the advantage of limiting the 
disturbance to the surrounding ground and producing a 
smooth tunnel wall, which significantly reduces the cost 
of lining the tunnel, and makes them suitable to use in 
heavily urbanized areas. In soft ground, there are two 
main types of TBMs, earth pressure balance (EPB) and 
slurry TBM. Compared with the slurry TBM, the EPB 
TBM is relatively inexpensive and does not need a large 
amount of space, and thus, is commonly used for a 
broad range of applications, especially in the 
construction of urban rail transport systems (Copur et 
al., 2014).  
Generally, TBM performance is measured in terms of 
Advance Rate (CT), which is the actual excavating and 
supporting distance divided by the total time, including 
downtime for TBM maintenance, machine breakdown 
and tunnel failure (Alber, 1996). The advance rate 
depends on various types of factors ranging from 
machine design to geological features. Therefore it may 
not be possible to capture this complex relationship in 
an explicit mathematical expression (Zhao, Gong, 
Zhang, & Zhao, 2007). In accordance with an extensive 
review of literature, the most important parameters that 
would be used in TBM performance studies can be 
divided into two major categories, as follows: 
• Geological variables: The construction of a tunnel 

project is very sensitive to geological conditions 
due to complex tunnel-soil interactions. Some 
particular geological features may increase the 
hazardous nature of the TBM advance process. Soil 
Cohesion (C1), Friction Angle (C2), Compression 
Modulus (C3) and Soil Density (C4) are four 
variables frequently used to illustrate the geological 
features. 

• Operational variables: In the process of the TBM-
driven tunneling excavation, some pressure and 
speed sensors are installed on the top and middle of 
the cutter head in advance, and engineers pay close 
attention to the measurement of those operational 
variables, in order to maintain the face stability of 

the excavation and minimize risk (Ding, Wang, 
Luo, Yu, & Wu, 2013). Rational and appropriate 
Gross Thrust (C5), Cuter Torque (C6), Earth 
Pressure (C7) and Grouting Speed (C8) are 
considered very important technical variables in 
tunnel construction practice, which can also be 
further adjusted to guarantee satisfactory 
performance in the excavation process.  

In total, nine concepts C i (i=1, 2,...,8, T) are created in 
order to model the complex system of TBM 
performance. Table 1 illustrates the definitions of the 
above nine concepts. Due to the imprecise and uncertain 
nature of the variables in the real world, measurement 
of the initial values of those concepts remains a problem. 
Although many models for the prediction of TBM 
performance have been presented, as mentioned above, 
a commonly accepted model that can be used in every 
case regardless of geological conditions has not been 
reached. One significant reason is that the scope of 
favorable or unfavorable geological/operational 
variables varies greatly among different tunnel cases in 
different areas, leading to challenges in determining the 
value of a specific concept representing a corresponding 
geological or operational variable due to uncertainty.  
In order to solve this problem, a 5-point linguistic scale 
provides a basis for an expert to describe in detail the 
favorability of a specific concept in response to the 
TBM performance based on his/her knowledge. Figure 
3 illustrates the corresponding membership functions 
for these 5 terms: negatively very unfavorable (δnvu), 
negatively unfavorable (δnu), favorable (δn), positively 
unfavorable (δpu) and positively very unfavorable (δpvu). 
Given several experts are involved in the measurement 
of concepts in a specific project, the credibility weight 
for every expert is also introduced to increase the 
objectivity during the integration of expert knowledge 
from varying backgrounds, as well as to enhance the 
confidence in using the FCM. In a similar way as shown 
above in the section of fuzzy weight determination, both 
the well-known fuzzy logic method of SUM, and the 
defuzzification method of COG, are then applied to 
obtain a crisp value of a specific concept. For instance, 
if the concept C1 has a value of 0, it means C1 lies in a 
very favorable range in response to the TBM 
performance. Contrary to that, if the concept C1 has a 
value of -1 (or 1), it means C1 lies in a negatively very 
unfavorable (or negatively unfavorable) range in 
response to the TBM performance. 
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Figure 3: Membership Functions for the 5-point 
Linguistic Scale Regarding Concept Measurement 
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3.2. Model Construction 
In order to demonstrate the effectiveness and 
practicality of FCM for supervising the TBM 
performance, a tunnel project, the Metro Line 7 (ML7) 
in the Wuhan metro system in China, is used as a case 
study. A questionnaire was prepared and distributed 
among ten experts who participated in the construction 
of ML7, including seven domain experts with at least 
five years of working experience and three professors in 
this field. The experts were asked to evaluate the 
influence/weight between the concept C i and C j (i, j=1, 
2, ...,8,T; i≠j) using the 9-point linguistic terms, as 
shown in Figure 2. In accordance with the methodology, 
as mentioned in Section II, the linguistic inputs from the 
experts were then transformed into crisp values using 
the fuzzy logic algorithm SUM and the defuzzification 
method of COG.  
 
Table 1: Definitions of Nine Concepts Involved in TBM 
Operation 
Items Concepts Descriptions 
C1 Soil Cohesion Component of shear 

strength of a soil 
C2 Friction 

Angle 
Force that resists the relative 
motion of solid surfaces, fluid 
layers, and material elements 
sliding against each other 

C3 Compressive 
Modulus 

Capacity of a material or 
structure to withstand loads 
tending to reduce size 

C4 Soil Density Mass of many particles of the 
soil divided by the 
total volume they occupy 

C5 Gross Thrust Total thrust during the TBM 
operation 

C6 Cuter Torque Torque of the cutter disk 
during the TBM operation 

C7 Earth 
Pressure 

Pressure at the face of the 
TBM to remain a balanced 
performance 

C8 Grouting 
Speed 

Speed of the concrete grouting 
at the shield tail 

CT Advance Rate Actual excavating and 
supporting distance divided by 
the total time in TBM 
operation 

 
In order to support the computations, a Java-based 
FCM analysis software tool, FCM Analyst v1.0, 
developed by Margaritis et al. (2002), is used. This 
software tool has capabilities for creating an FCM, such 
as creating concept nodes and interconnections between 
concept nodes, manipulating the concepts/weights 
matrices, and running simulations to show the behavior 
of the FCM model. Taking the determination of the 
influence weight from concept C1 to CT as an example, 
there are five experts who have a judgement of 
negatively weak (µnw), two experts have a judgement of 
negatively moderate (µnm), and only one expert has a 
judgement of zero (µz). Figure 4 shows an illustration 

of how each individual expert’s input is entered, and 
multiple inputs are automatically aggregated and 
defuzzified in the software tool. The weight of W1T is 
then determined to be -0.275. With knowledge from all 
the participating experts integrated in an effective 
manner, Figure 5 depicts a graphical representation of 
the FCM model that is used to describe, model and 
supervise the TBM performance in tunnel construction. 
 

 
Figure 4: Illustration of Fuzzy Weight Calculation in 
FCM Analyst v1.0 
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Figure 5: Graphical Representation of the FCM Model 
for the TBM Performance 
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4. SAMPLE EXPERIMENTS 
Once an FCM is built, many what-if experiments can be 
conducted for exploring the cause-effect interaction of 
the TBM performance. In this paper, we present a 
sample experiment for predictive analysis of the TBM 
performance in tunnel construction. Predictive analysis 
aims to forecast the future outcome when evidence of a 
variable/concept is available. In the FCM framework, 
the propagation of evidence of a variable allows an 
update of the outcome of the other variables in the 
network in light of the newly found evidence. As 
mentioned above, the values of concepts correspond to 
real measurements that have been transformed in the 
interval [-1, +1] using the 5-point linguistic scale (see 
Figure 3). The concept has a value of 0 (-1 or +1), 
indicating it lies in a very favorable (negatively very 
unfavorable or positively very unfavorable) range in 
response to the TBM performance. Hence, when 
evidence is set on a specific concept in the FCM model, 
as shown in Figure 5, the evidence will propagate to the 
other concepts in the network, and cause the outcome of 
the affected concept nodes to change. Figure 6 
illustrates impacts of variations of different 
concepts/causes on the TBM performance in the 
predictive analysis. In other words, this analysis shows 
the prediction of consequences if a concept (C1-C8) has 
a non-favorable condition while other concepts remain 
in the favorable range.  
Taking into account the knowledge from domain 
experts, the developed FCM (see Figure 5) can be used 

as a tool to supervise TBM performance. It can be used 
to examine what will happen if a scenario is running, 
and what the consequences will be for the whole 
process if a state of the system changes. In general, the 
geological concepts C1, C2, C3 and C4 all perform 
markedly negative corrections with the concept CT, 
while the operational concepts C5, C6, C7 and C8 all 
perform markedly positive corrections with the concept 
CT. With respect to the measurement of this kind of 
correction among different concepts, the concept C4 
displays a strongest negative correction with the 
concept CT; while the concept C8 displays the strongest 
positive correction with the concept CT. That is to say, 
the concepts C4 and C8 are both very sensitive to 
ensuring satisfactory performance of the TBM operation, 
and thus, should be given significant attention in 
tunneling excavation. This is consistent with observed 
construction practice, indicating the established FCM 
model is valid to some extent. As a matter of fact, to 
maintain the face stability of the excavation and 
minimize risk, engineers need to adjust the operational 
parameters continuously during the TBM operation so 
as to fit the surrounding geological conditions in a 
dynamic manner. The results achieved from the 
predictive analysis can provide more understanding on 
how the TBM performance evolves quantitatively in 
case either the geological or operational variables suffer 
a change, which can offer insights on the guidance for 
the reasonable adjustment of operational parameters in 
tunnel construction. 

 

 
Figure 6: Impacts of variations of different concepts/causes on the TBM performance in the predictive analysis: (a) the 
concept C1; (b) the concept C2; (c) the concept C3; (d) the concept C4; (e) the concept C5; (f) the concept C6; (g) the 
concept C7; and (h) the concept C8 
 
5. DISCUSSION 
The FCM model that has been described in this paper 
takes into consideration expert feedback on the 
interrelationships between concepts that impact the 
performance of a TBM. An improved understanding of 
the relationships between these concepts can extend this 
theoretical model to practical applications in tunneling 
construction. One such potential application could be 

using the FCM as an intelligent automated supervisor 
that assesses and reacts to changing conditions. 
FCMs integrated as an Intelligent Supervisor System 
have been previously proposed as a method to model a 
supervisory control system for dynamic environments 
(Stylios & Groumpos, 2000). If we were to consider a 
range of optimal TBM advancement rate as an objective, 
it is possible to design a supervisory FCM based on this 
model. This would be very useful when the tunneling 
area under consideration consists of several different 
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kinds of soil types that are unevenly distributed. 
Traditionally, engineers would have to conduct rigorous 
surveys and determine operational parameters for every 
instance of soil variation and then provide these values 
integrated with a schedule to the TBM driver. However, 
if the TBM were equipped with sensors that detect these 
geological conditions, the FCM could automate this 
process with greater considerations for the interactions 
between all the concepts, and provide operational 
parameters for an optimized TBM advancement rate. 
 
6. CONCLUSIONS AND FUTURE WORK 
The operation of TBM systems is very complicated, 
since various kinds of variables are involved. Balancing 
the interaction among all the variables as to ensure 
satisfactory performance of the TBM operation 
becomes a challenging task. In this research, an FCM-
based model is developed to supervise the TBM 
performance in tunnel construction, with construction 
experience and knowledge from domain experts taken 
into account. The developed approach is capable of 
performing predictive analysis given that an observation 
of change is available, providing insights into how the 
system should be adjusted over time. The obtained 
simulation results for the TBM performance illustrate 
the feasibility of the proposed approach, as well as its 
application potential in the modeling and controlling of 
complex systems in other areas. 
The developed FCM-based approach also has some 
limitations. FCM provides an immediate understanding 
of causal knowledge in an intuitive way because of its 
simplicity. It is very helpful in the decision-making 
processes; however, constructing an FCM causal model 
by means of knowledge acquisition from experts is 
time-consuming. In addition, domain experts are 
generally considered scarce resources, especially in the 
construction industry, and finding experts in certain 
domains is challenging. Our subsequent research work 
would focus on the data mining technique in the 
knowledge engineering process, as well as the future 
application of FCM in the construction industry. 
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