
VALIDATION AND APPROVAL OF PN CIPHERED SUBNETS: SECURITY IN PN
SHARING AND STORAGE USING PNML, XMLSECURITY AND XMLSIGNATURE

Iñigo León Samaniego (a), Mercedes Perez-Parte (b), Juan-Ignacio Latorre-Biel (c), Emilio Jiménez-Macías (d)

(a,d) University of La Rioja. Department of Electrical Engineering

(b,c) University of La Rioja. Department of Mechanical Engineering

(a)inigo.leon@gmail.com,(b)mercedes.perez@unirioja.es,(b)juan-ignacio.latorre@unirioja.es, (b) emilio.jimenez@unirioja.es

ABSTRACT
In this work I board the study of Petri nets from the
point of view of the security. There several goals. First
of all, I will take advantage from my previous work in
order to complete a subnetting process. Then, the
creation of a PNML extension that allows the
representation of subnets structures.
One application of this subnetting and PNML
representation is the possibility of hiding part of a Petri
net, facing a possible distribution, maintaining the
privacy of the critical, secret, or complex parts of the
system. However this hidden information is not
eliminated from the net, but encrypted inside.
Other application explained is the possibility of digital
signature of subnets, providing security services to the
net and/or subnets.
My contributions to knowledge are:

1. Comprehensive study of subnets, abstracting
their internal structure from the exterior by
using front-ends. A method to build these
subnets from the complete Petri net is
explained and analyzed matrixed.

2. PNML has no way to represent subnets, so I
approach a possible PNML extension to do it.

3. Subnetting and PNML extension to represents
subnets allow to apply several security technics
that offers encryption, data integrity,
authentication and non repudiation

Keywords: Petri net, Petri subnet, subnetting PNML,
XMLEncryption, XMLSignatues

1. INTRODUCTION

1.1. Background of the research
Petri nets are widespread for modeling many classes of
systems, such as manufacturing logistics processes and
services, concurrent systems, etc. However, all these
nets are described in a comprehensive way and must
have the information of the entire net to determine its
evolution.
Furthermore, these nets can be modified with no control
of integrity or authoring, for example.

1.2. Research problem
The problem occurs when somebody doesn't want to
describe the whole subnet. Or, maybe, is wanted one
part of the process to be only accessible for one specific
person or entity.
The first approach to solve this problem is to
take two Petri nets:

 one Petri Net with only the public information,
extracting the private data. This is an
incomplete model of the process

 another Petri Net with the whole information
for the interested person or entity.

As you can notice, this is not an efficient way to publish
this kind of Petri nets.
Other problem appears when I want to protect parts of
the net from undesired modifications or ensure the
authoring of some parts (or the whole net).

1.3. Justification of the research
It would be interesting to provide security to a Petri net:

 hiding a part of it. This can be useful, for
example, distributing a process we want to be
secret (León 2011), or simply to be a part of
the net to be complex and do not interest
handle for any reason (León 2011).

 avoiding not allowed changes in it.
 authenticating it (or a part of it). Useful to

ensure who has developed a Petri net or
subnet.

 avoiding the possibility of supplant other
people in the authority of the Petri net or some
of its parts.

So here is my contribution. I have researched the
possibilities of hiding a part of a Petri Net so that
everybody can access the public information,
maintaining the secret of the private data. This private
data is accessible only for authorized people. And not
only that: I ensure data integrity, authentication and
non-repudiation to Petri nets or subnets.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

349

Some authors study the possibilities of Petri nets
reduction (Valette 1979; Suzuki and Murata 1983;
Fahmy 1990; Druzhinin and Yuditskii 1992; Fahmy
1993; Xia 2011), grouping in one place or transition a
subnet, so that what happens on this subnet, is
encapsulated in a single point of execution. However,
we want to go further by defining parts of the net that
are hidden (not clustered) and what are the implications,
studied within network properties.
The main objective of this work is to extract parts
(subnets) of a Petri net and provide them of wide
security (privacy, integrity, authentication and non-
repudiation).

1.4. Methodology
In order to achieve this goal, I have defined three
milestones:

 Extend Petri Nets in order to define subnets,
abstracting the internal structure from the rest
of the net using front-ends, focusing on hiding
information.

 Choose a lossless and extendible
representation of this kind of Petri Nets

 Define both hiding and signing methods for
this representation

For the first milestone, I complete my previous works
for the creation of the theoretical basis for further study
of Petri nets in which certain parts are hidden. So we
setup a generic framework of definitions and notations
that allow us to deepen in the study of the
characteristics and properties of Petri nets and their
subnets (Murata 1989; Silva 1985).
Also mention work already carried by other researchers
in which we rely for our goal (Silva 1993; David and
Alla 2010; Jensen and Kristensen 2009; Peterson 1981).
All of this will be necessary to create the framework
that allows us to study occultation in Petri nets. We will
expand the vision of Petri nets, providing them with
greater functionality, such us attachable subnet (León
2013).
The next step in this work is to choose (or define) a
flexible representation of Petri nets that allows us to
translate the previous extended nets. This representation
has to be really extendible and flexible in order to be
able to show actual and future characteristics of Petri
nets.
I can advance you that the selected representation is the
standard PNML and I have to define and extension for it
in order to represent subnets that are going to be
secured.
Once selected this representation, the last step is the
hiding and signing method (digital signature provide
integrity, authentication and non-repudiation services).
Once more, I bet for standard protocols like
XMLEncryption and XMLSignature.
This is a very basic investigation because I extend the
very early definitions of Petri nets. Because of it, the
results of this work are very probably extensible to any
other development whose basis are the classic Petri

nets. For example, I am not going to study colored Petri
nets, neither timed Petri nets, etc. But it is very easy to
see that the results achieved in this thesis can be applied
to them with little problems.

2. SUBNETTING

Let’s take a Petri Net R = <P, T, α, β> where P is
the set of places, T is the set of transitions, α is the pre-
incidence function and β is the post-incidence function.
We define R' = <P' , T' , α', β'> such that P'�P and
T'�T , α' and β' are restrictions of α y β over P' × T' (P'
and T' are not empty).

Then we have split the original Petri Net in two
disjoint subnets, R' and the rest of the net.

The next step is to analyze the inputs and the
outputs of R’. For example, starting from the Figure 1, I
want to extract R1 and its interface:

Figure 1: Petri Net divided into two subnets

The resultant extracted interface is:

Figure 2: R1 with its interface

So we can define the input interface and the output

interface in this way.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

350

or the same:

Figure 3: R1 with its input and output interface.

Once this is done, the next step is to implement this
information in a Petri Net representation that will allow
security implementation. For this objective, I am going
to use PNML.

3. PETRI NET REPRESENTATION FOR

SUBNETS SUPPORT.

3.1. Petri net representations
There are four standard ways to represent Petri nets.
Each one of them have their properties, advantages and
disadvantages. But I want to select one that I am able to
represent any kind of Petri net, its subnets and allow to
hide information without erasing it.

3.1.1. Graphic representation
This is the clearest and extended way to represent Petri
nets. It has a very important advantage and it is that a
picture is worth a thousand words.
Subnets can be defined simply drawing a vertical line.
The right part is one subnet and the left part is other
subnet. Places and transitions can be moved from one
location to another depending on the subnet they are
situated. This is only an example. Other way would be
to use colors for the nodes (same color indicates same
subnet) or use rectangles, etc.
So this representation is useful in order to show at one
sight the Petri net structure, but I can't choose it for my
goals.
I have not been able to discover a way to show some
people the hidden information (the hidden subnet).
However I will continue using it where a clear idea of
the Petri structure if necessary.

3.1.2. Matrix representation
This representation is very useful to study properties
and evolution of a Petri net, independently of its graphic
representation. We can reorder rows and columns and
define subnets in the matrix.
For example, let’s take the Petri net represented by the
matrix of Figure 4

Figure 4: Matrix representation of a Petri net

We could group the places and transitions of the hidden
subnet in this way, maintaining those elements other
than zero:

Figure 5: Matrix representation of a Petri net with
hidden subnet

With this representation it is possible to study properties
and it may be really important as a complement to
graphic mode. With both representations together,
everyone has a clear idea of the Petri net structure and
properties. But I haven't found a way to store
information inside the black box.

3.1.3. Equation representation
The third representation way for Petri nets is the
equation representation.
Basically, transitions are selected and, for each one, the
tokens of the places connected to that transition are
modified. This is very useful to compute the evolution
of a Petri net, choosing the transition fired.
However it is difficult to find a way for representing
subnets with this notation. And, of course, if a subnet
cannot be represented, it cannot be hidden.
In the Figure 6 we have an example of equation
representation of a Petri net.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

351

if (p1>0) then
 p1 <- p1 - 1
 p2 <- p2 + 1
if (p2>0) then
 p2 <- p2 - 1
 p1 <- p1 + 1
 p3 <- p3 + 1
if (p3>0) then
 p3 <- p3 - 1
 p2 <- p2 + 1
 p4 <- p4 + 1
if (p4>0) then
 p4 <- p4 - 1
 p1 <- p1 + 1
 p5 <- p5 + 1

Figure 6: Equation representation of a Petri net

I have tried to think about these ways of representation
but, in my opinion, no one of them is suitable enough to
represent subnets in a clear way than can be occulted.
Because of that I have chosen the fourth representation,
which is PNML, and is explained in the next section.

3.1.4. PNML Petri Net Marked Language
PNML is a way to represent Petri nets as xml content.
The advantages over the other three representation ways
described before are clear. By one side, XML is a
widely extended format to represent almost everything.
In the other side, XML is a robust technology free of
errors and it is really flexible. Its flexibility comes from
the possibility of adding any kind of labels and
functionality with a very little amount of work. Its
robustness come from the strict specification of the
schemas declared to define completely the XML files
that support. Once the schema is defined, the associated
files have no way to get out of this definition, so we can
validate a XML given its schema. And this is not all. If
you have an XML file, you can extract information and
complete it to create a schema for that file.
Originally, with basic Petri nets, the structure of a Petri
net was fully provided. The only thing that is not
supported in comparison with graphic mode is the
graphical appearance of Petri nets: the position of nodes
and transitions was not important, but with the arrival of
High level Petri nets and Petri nets design software, it is
necessary to store this kind of information.
In this work, I am going to study only basic Petri nets,
but that concept and the method is easily exportable to
other kind of nets, such as Symmetric nets and High
Level Petri nets (representable in PNML format too).

4. PNML

4.1. Description
Petri Net Marked Language is an xml language created
to represent Petri Nets. With it, we can take a Petri Net
and store it into an xml file without loss of information.
One of the best properties of PNML is that, as it is an
xml based schema, it can be extended with more
functionality extending the grammar. Virtually, any
extension over Petri nets can be translated into PNML
in a logical and natural way.

Moreover, this extension is defined by Petri net type
definition (Billington et al 2003; Iso/iec 15909-2:2011}.
In this case, PNML hasn't got a way to represent
subnets. There is something named <page> that is used
to represent several nets in the same PNML file. But, by
default, a node inside a page cannot connect with a node
of other page. So it cannot be used as "subnets". So I
will extend the language in order to get several goals:

1. Represent subnets of a Petri Net.
2. Include input and output interfaces for every

subnet.

As we can think, definition of several subnets of a Petri
net is possible and the connection over them is always
through their respective interfaces.

4.2. PNML grammar
As PNML is an xml based language it has to be
described by a schema that define the creation rules of
the PNML representation of a Petri net.
The grammar is defined since 2009 and updated until
2012, which is the most recent revision. I am not going
to do and extensive explanation of all the possibilities of
the grammar, but the most important. As we can see
later, anything we think is useful can be added to the
process with little effort.
So I am going to study only the most basic elements of
a Petri net. The rest of the element can be attached later
with facility.

4.2.1. PNML basics
In this section I am going to explain several
characteristics of PNML files. With these explanations
it is going to be easier the understanding of PNML
structure.
First of all, as PNML files are xml files, there are
several things to comply:

1. A xml file normally starts with a line defining
some characteristics of the file, like the version
and the encoding type. It has an aspect like this
(Note: for clarity, in the following examples,
this line can be deleted.):
<?xml version="1.0" encoding="utf-8"?>

2. A root node must exist. In this case, the root
node is <pnml>. So every PNML files has to
start with the tag <pnml> and end with the tag
</pnml>. Below this tag, there is a new tag
<net> that can contain:
(a) Type: the type of the Petri net as an

attribute. In this case, as I am going to
study only Place/Transition nets, it will be
ptnet.

(b) Name of the net: New tag
<name><text>...</text></name>

(c) Pages: one page is an invention to store
several Petri nets inside an unique PNML
file, but usually there is only one page for
file. It is nested inside a <page> tag.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

352

Furthermore, we cannot link elements
from different pages.

3. Each element in PNML has to have a unique
id inside the net to be identified
unambiguously. So there cannot be two
elements with the same id.

With these three observations, we can have an idea
about how a PNML file is structured:

<?xml version="1.0" encoding="utf-8"?>
<pnml>
 <net id="myNet"
 type="http://www.pnml.org/version-
2009/grammar/ptnet">
 <name>
 <text> My new net </text>
 </name>
 <page id="page1">

 </page>
 </net>
</pnml>

Figure 7: Example of general PNML file

Once this structure is defined, I am going to explain the
next stage, which is the most important one in this
work.

4.2.2. Places, transitions and arcs in PNML
As Petri nets have three main elements (places,
transitions and arcs), PNML has them too. These three
elements have several things in common in a PNML
file:

 They are all nested in a tag <page>.
 Places and transitions (not arcs) can contain a

tag <name> with its name. This tag has been
defined before for the net's name. It can store
information about the text of the name and the
graphical position of this label in this way:

<name>
 <text> Element Name </text>
 <graphics>
 <offset x="22" y="-10"/>
 </graphics>
</name>

 They can contain information about its position
and dimension in a tag <graphics>:

<graphics>
 <position x="100" y="200"/>
 <dimension x="40" y="40"/>
</graphics>

These are the common properties of places, transitions
and arcs. Now let's go on the particular characteristics
of each one of them.
Places are represented with the tag <place> and the can
have a marking with the tag <initialMarking>.
Here we have an example of a place with two tokens in
PNML:

<place id="p1">
 <name>
 <text> Place number one </text>
 <graphics>
 <offset x="130" y="130"/>
 </graphics>
 </name>
 <graphics>
 <position x="130" y="90"/>
 <dimension x="40" y="40"/>
 </graphics>
 <initialMarking>
 <text> 2 </text>
 </initialMarking>
</place>

Figure 8: PNML representation for places

Transitions are represented with the tag <transition>.
Except the initial marking, it is really similar to a place.
This is an example of a transition in PNML:

<transition id="t1">
 <name>
 <text> Transition number one </text>
 <graphics>
 <offset x="270" y="140"/>
 </graphics>
 </name>
 <graphics>
 <position x="270" y="100"/>
 <dimension x="40" y="40"/>
 </graphics>
</transition>

Figure 9: PNML representation for transitions

Arcs are represented with the tag <arc>. Arcs must have
a source and a target, which are defined by the attributes
source and target that have to point to a transition and
a place, identified by their id. Furthermore, the arc
weight can be fixed by the tag <inscription>. If the
weight is one, the tag inscription is not necessary
because this is the default value. This is an example of
the arc with weight 3 that connects the place and the
transition of the previous examples in PNML:

<arc id="a1" source="p1" target="t1">
 <inscription> 3 </inscription>
</arc>

Figure 10: General PNML representation for arcs with
arbitrary weight

And this is the same example but with weight 1, that is
obviated:

<arc id="a1" source="p1" target="t1"/>

If we take the last examples all together, we can
represent the following Petri net:

For clarity and space reasons, I am going to obviate
several options. I am not going to draw the graphic
information and the names, but the id. And moreover,

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

353

the tags <?xml>, <pnml>, <net> and <page> are going to
be obviated too. In many of the later examples they will
not be present. So this last example is as follows:

<place id="p1">
 <initialMarking>
 <text> 2 </text>
 </initialMarking>
</place>
<transition id="t1"/>
<arc id="a1" source="p1" target="t1">
 <inscription> 3 </inscription>
</arc>

Figure 11: Simplified PNML representation for a basic
Petri net

4.3. PNML extension for representing subnets
 In this section I am going to define new tags and
structures in PNML. At this point, I have developed all
the necessary to extend PNML in order to represent
subnets inside a concrete Petri net.

Figure 12: Subnet to represent in PNML

Let's take simple Petri net of the figure 12. It will serve
us to explain the method to achieve a subnet
representation and the PNML extension associated to it
parting from a determinate Petri net:
The PNML code for this net is:

<place id="p1"/>
<place id="p2"/>
<place id="p3"/>
<transition id="t1"/>
<transition id="t2"/>
<transition id="t3"/>
<arc id="a1" source="p1" target="t1">
 <inscription>
 <text> 3 </text>
 </inscription>
</arc>
<arc id="a2" source="t1" target="p2"/>
<arc id="a3" source="t1" target="p3"/>
<arc id="a4" source="p3" target="t2">
 <inscription>
 <text>2</text>
 </inscription>
</arc>
<arc id="a5" source="t3" target="p3"/>
<arc id="a6" source="p2" target="t3"/>
<arc id="a7" source="t2" target="p1"/>

I want the ellipse region to be a subnet, so I have to
specify a subnet with the elements inside the ellipse.
The first step is to define a new tag <subnet>. This tag
will have an id, as the rest of PNML elements. And now
we proceed in this way:

1. The places and transitions inside the subnet are
moved into the tag <subnet>.

2. The arcs linking two elements that are both
inside the subnet will be moved to into this
new tag too.

3. The arcs entering or leaving the subnet will be
copied inside the tag. This means that there are
arcs duplicated inside and outside the tag.

If we apply these rules to the example:

1. p2, p3 and t3 are moved into the tag <subnet>.
2. a5 and a6 are put inside the tag.
3. a2, a3 and a4 are copied inside the tag.

And we have this other PNML extended code:

<subnet id="sn1">
 <place id="p2"/>
 <place id="p3"/>
 <transition id="t3"/>
 <arc id="a2" source="t1" target="p2"/>
 <arc id="a3" source="t1" target="p3"/>
 <arc id="a4" source="p3" target="t2">
 <inscription>
 <text> 2 </text>
 </inscription>
 </arc>
 <arc id="a5" source="t3" target="p3"/>
 <arc id="a6" source="p2" target="t3"/>
</subnet>
<place id="p1"/>
<transition id="t1"/>
<transition id="t2"/>
<arc id="a1" source="p1" target="t1">
 <inscription>
 <text> 3 </text>
 </inscription>
</arc>
<arc id="a2" source="t1" target="p2"/>
<arc id="a3" source="t1" target="p3"/>
<arc id="a4" source="p3" target="t2">
 <inscription>
 <text> 2 </text>
 </inscription>
</arc>
<arc id="a7" source="t2" target="p1"/>

Now I will separate the inside and the outside of the
subnet completely. Taking advantage of the process
described in section 2, I can extract its front-end.
In this case I have two igp (input gate to a place) and an
ogt (output gate to a transition) with weight 2.

Figure 13: Subnet with its front-end

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

354

This is the complete net including subnet and front-end.

Figure 14: Petri net with subnet

And now that I have the graphic, how can I represent it
in PNML? To answer this question I will define four
new tags: <interface>, <gate>, <inscription> and
<content>. Let's explain them.
As its name says, <interface> is the tag name for
encapsulate the front-end. This tag has no attributes
(just the id, of course) but it has embedded the gates
inside of it. These gates are represented by <gate>. This
tag has two new attributes: action and type. These two
attributes have information about the gates. The
attribute action can take two different values: input
and output. It indicates whether the gate is an input or
an output gate. The other attribute, type, can take other
two values: place and transition.
As arcs have weight, gates have it too. For being in
accordance, I define the tag <inscription> embedded
in the tag <gate>. It has the weight of the arc
associated. If the weight is 1 this tag can be obviated.
There is one other tag <content> that probably at this
moment seems useless, but it is necessary for the rest of
the process, as we will see in next sections. So I am
going to introduce it now. This tag is used to
encapsulate the rest of the subnet outside the interface.
That is, <subnet> has two children: <interface> and
<content>, that have the input/output place/transition
gates and the rest of the elements, respectively.
At this moment I have to do only one thing more. The
last step is to modify the arcs that are repeated inside
and outside the net changing their id and source or
target, depending on where is it:

 Change the id of one of the copies of the arc.
 If the arc is entering the subnet

o For the <arc> tag inside the tag <subnet>,
the source attribute of the arc is changed
by the input gate associated

o For the <arc> tag outside the tag
<subnet>, the target attribute of the arc
is changed by the output gate associated

 If the arc is leaving the subnet

o For the <arc> tag inside the tag <subnet>,
the target attribute of the arc is changed
by the input gate associated

o For the <arc> tag outside the tag
<subnet>, the source attribute of the arc
is changed by the output gate associated

Applying again all these rules to the example we have
the definitive code for this Petri net:

<subnet id="sn1">
 <interface id="sn1-interface">
 <gate id="igp1"
 action="input" type="place"/>
 <gate id="igp2"
 action="input" type="place"/>
 <gate id="ogt1"
 action="output" type="transition">
 <inscription>
 <text> 2 </text>
 </inscription>
 </gate>
 </interface>
 <content id="sn1-content">
 <place id="p2"/>
 <place id="p3"/>
 <transition id="t3"/>
 <arc id="sn1-a2" source="igp2" target="p2"/>
 <arc id="sn1-a3" source="igp1" target="p3"/>
 <arc id="sn1-a4" source="p3" target="ogt1">
 <inscription>
 <text> 2 </text>
 </inscription>
 </arc>
 <arc id="a5" source="t3" target="p3"/>
 <arc id="a6" source="p2" target="t3"/>
 </content>
</subnet>
<place id="p1"/>
<transition id="t1"/>
<transition id="t2"/>
<arc id="a1" source="p1" target="t1">
 <inscription>
 <text> 3 </text>
 </inscription>
</arc>
<arc id="a2" source="t1" target="igp2"/>
<arc id="a3" source="t1" target="igp1"/>
<arc id="a4" source="ogt1" target="t2">
 <inscription>
 <text> 2 </text>
 </inscription>
</arc>
<arc id="a7" source="t2" target="p1"/>

Figure 15: Final PNML subnet representation

Once this is done, the only way to enter or leave the
subnet is crossing the front-end.
This is a comprehensive definition of how to represent
subnets in PNML. Now there are several ways to create
a grammar extension that frame this structure of xml.
For example, we can define a dtd file, a xsd file or, by
coherence with the original grammar of PNML, a Relax
NG file. I have defined a way to represent subnets, but
the formal grammar is outside the scope of my work
because of the wide casuistry of these Petri net types.
However, the method is explained enough in order to
each one of these types to define their own extension.

5. SECURITY

This is the second main goal, after subnetting. Once the
possible subnets are defined it is the turn of securing
them. It is possible to secure subnets or the entire net.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

355

With secure, I mean four goals:

 Privacy. Concrete parts of the net must be
occulted: the content is secret, so not
everybody should be able to know it.

 Integrity. Any change in the secured parts has
to be detected. If any of these parts suffers any
kind of modification, the information may
have been compromised, and perhaps it is not
valid or correct. But I cannot know what has
been modified: I can only detect that the
original content has been changed.

 Authentication. I can authenticate the source of
that net/subnet (signer, author or guarantor).

 Non repudiation. With this characteristic, the
possibility of supplant other people is avoided.
So the person that signs that part can’t say that
he hadn't done it. The signer cannot deny it.

But this information should be accessible to authorized
people without necessity of supplying any other kind of
data. So the whole information may be stored in the
same file.
In the same way, there can be reasons for the rest of the
security characteristics. For example, suppose that we
have a Petri net that several people can access and:

 Some parts of that Petri net have been
validated an accepted, so I want nobody to
change them. In this case integrity is needed.

 I want to know who has developed a concrete
chunk of the net. Authentication is required.

 There is a part of the Petri net that is bad
defined and goes wrong. The person
responsible of this part says that he hasn't
made it and somebody has supplanted him.
Then, non-repudiation is needed.

The best way to reach these goals is using standard and
proved technologies. In this case, the selected
technologies are:

 XMLEncryption (Xml encryption syntax and
processing version 1.1, 2013) for privacy.

 XMLSignature (Xml signature syntax and
processing version 1.1, 2013) for integrity,
authentication and non- repudiation.

5.1. XMLEncryption

XMLEncryption is a World Wide Web Consortium
(W3C) Recommendation for encrypting xml or non xml
content. It is a standard xml file cipher. Both symmetric
and asymmetric ciphering can be used. The main idea of
this encryption is to replace the xml element or
elements we want to be ciphered by other xml code that
contains the ciphered data, in addition to information of
the algorithms and keys used for the encryption process.
When a non xml file is ciphered, the only option is to
encrypt it completely. But, when it is applied to xml
content, this technology allows us to define concrete

fragments of the document we want to hide. Moreover,
the xml document can be transformed before applying
the encryption, for example, in order to normalize the
xml content.
In this work, the pieces of xml content susceptible to be
ciphered are, obviously, the subnets represented in
PNML format.
Regardless of the data source (xml or non xml) the
result is always a xml element. Normal is that this xml
encrypted chunk has the whole necessary information to
be decrypted. Among that information we can find:

 Ciphering algorithm: it is the name of chosen
method to encrypt the data. It can be not
included. In this case, both ciphering and
deciphering agents have to know which is the
exact this algorithm.

 The ciphered data: obviously this part is
mandatory and has always to be present.

 Name of the chosen key: it is optional. It is
used when a set of keys is known by both
ciphering and deciphering agents.

 Key: it is optional. In this case there is a
symmetric key in order to encrypt the data and
an additional pair of keys: one (known by the
cipher agent) to encrypt the symmetric key and
the other (known by the decipher agent) to
decrypt it.

Actually, there are several options to apply
XMLEncryption, such as the algorithm or the key. The
exact election of those option values is responsibility of
the Petri net sender.
This section does not want to be an extensive
explanation about XMLEncryption but a general idea
about its functionality. So I am not going to deepen the
whole characteristics of XMLEncryption. The final
decision about which options use is responsibility of
those people that want to apply this work, basing their
decision on the requirements of their own Petri net.
Petri subnets are represented by a <subnet> tag that
contains <interface> and <content>. This last tag
contains the xml content that is going to be ciphered.
Obviously, if we encrypt the interface we will have no
way to connect the subnet with the rest of the net. So
here is the utility of <content> tag.
Let’s take the example of the figure 14 and its PNML
representation. The goal is to hide the internal content
of the subnet. If we apply XMLEncryption to the data
contained inside the <content> tag, we will get
something like this, depending on the algorithm and key
selected for the ciphering:

<subnet id="sn1">
 <interface id="sn1-interface">
 <gate id="igp1" action="input" type="place"/>
 <gate id="igp2" action="input" type="place"/>
 <gate id="ogt1" action="output" type="transition">
 <inscription>
 <text> 2 </text>
 </inscription>
 </gate>
 </interface>
 <content id="sn1-content">
 <xenc:EncryptedData

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

356

 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <xenc:EncryptionMethod
 Algorithm=http://www.w3.org/2001/04/xmlenc#aes128”
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" />
 <xenc:CipherData
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:CipherValue
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
Wr1njyJlYYOM9lAYqcwGCWkw2L4pUjQD2GGVoU9lVZ0wKqHY8y3lGY8FY4i5K
3GY8FY4i5K3G8grIe1HRFqe7RtkFiXZgGMeYnQp6oB6ckKp3KFKHVqtucc9rA
VzOgC7XAwe61HRFqe6RRVzXjNM9hlVZ0wKqHY8y3l3GY8FY4i5K3G8grIe2xN
4u7x7fRtkFiXZgGMeYnQp6oB6ckKp3KFRRVzXjNAtVzOgC7XAw/oe61HRFqe6
RRVzXjNMLU5ZgGMeYny8NVPQmUSDX7NRtnR6YnQp6oB6GY8F=
 </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </content>
</subnet>
<place id="p1"/>
<transition id="t1"/>
<transition id="t2"/>
<arc id="a1" source="p1" target="t1">
 <inscription>
 <text> 3 </text>
 </inscription>
</arc>
<arc id="a2" source="t1" target="igp2"/>
<arc id="a3" source="t1" target="igp1"/>
<arc id="a4" source="ogt1" target="t2">
 <inscription>
 <text> 2 </text>
 </inscription>
</arc>
<arc id="a7" source="t2" target="p1"/>

Figure 18: Ciphered Petri subnet content

The subnet content has vanished and replaced by xml
code, corresponding to the ciphered data.

5.2. XMLSignature
Although privacy is a solved question with
XMLEncryption, there are other aspects of the security
that XMLEncryption can't cover that are: integrity,
authentication and non-repudiation.
In this case I want to sign the whole Petri net or
concrete parts of it. Obviously, if I sign only a fragment
of a Petri net, this part keeps integrity, authentication
and non-repudiation, but the rest of net doesn't.
As with XMLEncryption, the best way to achieve these
goals is using standard technologies. For signing, the
method chosen is XMLSignature.
With XMLSignature we can sign any kind of content
but the result is XML content. It requires the use of
digital certificates and a set of public/private keys, using
asymmetrical ciphering algorithms for the process.
This signature can be enveloped, enveloping or
detached, but they are very similar. I am going to use
enveloped signature
A XML enveloped signature consists of <Signature>
tag that is defined in the namespace:
http://www.w3.org/2000/09/xmldsig\# and attached to
the original xml file before closing the root node.
XMLSignature forces a digital signature to have:

 Canonicalization method: All the equivalent
xml files are transformed in the same
representative.

 Reference: Each reference indicates a part of
the document that has to be signed. The set of

all of these references are signed together and
generates only one signature.

 Key information: Optionally, the signature can
include necessary information to be validated,
for example, with X.509 digital certificates.

 Transforms: It is a ordered list of processing
steps that has to be applied to the content
before being signed.

Many times we will need to sign the whole Petri net,
but it in this case I want to sign certain parts of a Petri
net, for example a critical subprocess. The modus
operandi here is similar to XMLEncryption. First of all,
the content to be signed should be grouped in a subnet
and then, this subnet is signed.
The standard way to indicate a subnet to sign in
XMLSignature is through a XPath expression. In
XMLSignature, the way to specify XPath addresses is
using XMLSignature XPath Filter . XPathFilter returns
the node set that is going to be signed and it is placed
into /Signature/SignedInfo/Reference/Transforms
as a new <Transform>.
I am not going to explain all the possibilities of XPath
Filter. I will explain only those main configurations
useful to my objective.
The exact configuration depends on the particular
necessities of each case.
The goal in this work is the signing of a concrete
subnet. In this case, it is a little different as in
XMLEncryption. Remember that in XMLEncryption, if
I want to mask a subnet I don't process the <subnet> tag
but the subnet/content. This is because the interface
has to be visible. But in a signature I want to sign the
complete subnet, including the interface. Suppose that
this subnet has id="sn1". The XPath expression that
represents it is: /pnml/net/page/subnet[@id="sn1"].
And the result of signing the subnet of the figure 14 is:

<?xml version="1.0" encoding="UTF-8"?>
<pnml>
 <net id="myNet" type="http://www.pnml.org/version-
2009/grammar/ptnet">
 <name>
 <text> My new net </text>
 </name>
 <page id="page1">

 <!—This is the same content as in the figure 15 -->

 </page>
 </net>
 <ds:Signature
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>
 <ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 <ds:Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <ds:Transform
Algorithm="http://www.w3.org/2002/06/xmldsig-filter2">

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

357

 <dsig-xpath:XPath xmlns:dsig-
xpath="http://www.w3.org/2002/06/xmldsig-filter2"
Filter="intersect">
 /pnml/net/page/subnet[@id="sn1"]
 </dsig-xpath:XPath>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>
 prCzhLgTCZ1ck6MjQnFy6cASCZw=
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
QoO7mQmGBFTg2UxgiZnzlsnKi8V477JC0v12JPItL53zIOCpjhOwLoyxENl6v8lC
r3GdqrgZimNXMUjwR4zkd9FVNcIrn85DuRjHA/zDwSuPMq9w0N5A07c0xJ24uvn9
+zpbQxfblYTbkiy08+S0pqczU/bv5+g=
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
MIICgTCCAeqgAwIBAgIETfh4CTANBgkqhkiG9w0BAQUFADCBhDELMAkGA1UEBhMC
BAgTCExBIFJJT0pBMREwDwYDVQQHDAhMT0dST8KlTzEgMB4GA1UEChMXVU5JVkVS
TEEgUklPSkExDDAKBgNVBAsTA1BGQzEfMB0GA1UEAwwWScKlSUdPIExFw6BOIFNB
Fw0xMTA2MTUwOTE0NDlaFw0xMTA5MTMwOTE0NDlaMIGEMQswCQYDVQQGEwJFUzER
TEEgUklPSkExETAPBgNVBAcMCExPR1JPwqVPMSAwHgYDVQQKExdVTklWRVJTSURB
SU9KQTEMMAoGA1UECxMDUEZDMR8wHQYDVQQDDBZJwqVJR08gTEXDoE4gU0FNQU5J
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQChePFNVCIfphFlyXQ9BysiR5BfXIuv3AnA
nVUjJeGnkUYQO32oUu+fEBK8WsEqjeH8A7zrHTRQjfYZWyuGWrM8gJXOa/P0MROP
1/+zLwR0tYkqLI2xqDOFII2RwK5L2yGeV4T4y8i3h1U0OFTSEwIDAQABMA0GCSqG
A4GBAIDOvAAdOCaTpy+83bGB2KmngMJrNxxWDpAi5LGFrN8iCShmbTpIeIbYBUAa
wD5QOENSFipQcdH5GEpPM9Rquy6xMwfda9EU5UfOSEmbk4fK2vaIOVjynpQsJ9P9
9enO2smQlyvw=
 </ds:X509Certificate>
 </ds:X509Data>
 <ds:KeyValue>
 <ds:RSAKeyValue>
 <ds:Modulus>
oXjxTVQiH6YRZcl0PQcrIkeQX1yLr9wJwCvNBbsOLUxcAp1VIyXhp5FGEDt9qFLv
/AO86x00UI32GVsrhlqzPICVzmvz9DETj5v3Px/G+Wujcdf/sy8EdLWJKiyNsagz
hSCNkcCuS9shnleE+MvIt4dVNDhU0hM=
 </ds:Modulus>
 <ds:Exponent>AQAB</ds:Exponent>
 </ds:RSAKeyValue>
 </ds:KeyValue>
 </ds:KeyInfo>
 </ds:Signature>
</pnml>

6. CONCLUSIONS

I have explained a comprehensive method to define
subnets with interfaces. The interaction between these
subnets and the rest of the net is always through this
front-end. The selected representation method selected
has been PNML. Once this is done, the conclusion of
this work is to show that it is possible to apply security
measures to Petri nets in order to fulfill four
characteristics to Petri nets, or parts of it:

1. Privacy: not everybody can access some data
2. Integrity: not allowed changes are detected
3. Authentication: ensure who guarantee some

information
4. Non-repudiation: one person cannot supplant

other one

With XMLEncryption we achieve privacy. Integrity,
authentication and non-repudiation are achieved with
XMLSignature

REFERENCES
Silva, M., 1985. Las Redes de Petri: en la Automática y

en la Informática. Madrid: Editorial AC
León, I., 2011. Security and Protection in Petri Nets

sending and storage. Signing and Encryption.

Proceedings of EMSS, September 12-15, Rome
(Italy)

León, I., 2013. Analysis of information partial
encryption options for exchanging Petri Nets
systems. Proceedings of EMSS , September 25-27,
Athens (Greece)

León, I., 2014. Petri net representation with ciphered
subnets: definition of PNML extensions for
subnets representation and use of XMLEncryption
for ciphering. Proceedings of EMSS, September
10-12, Bordeaux (France)

Valette, R., 1979. Analysis of petri nets by stepwise
refinements. Journal of Computer and System
Sciences, 18(1):35–46.

Suzuki, I and Murata, T., 1983. A method for stepwise
refinement and abstraction of petri nets. Journal of
Computer and System Sciences, 27(1):51–76.

Fahmy, H.M.A., 1990. Analysis of petri nets by
partitioning: Splitting transitions. Theoretical
Computer Science, 77(3):321–330.

Druzhinin, Va and Yuditskii, 1992. Construction of
well-formed petri nets from standard subnets.
Automation and Remote Control, 53(12):1922–
1927.

Fahmy,HMA,1993.Analysi of petri nets by partitioning:
splitting places or transitions. International Journal
of Computer Mathematics, 48(3-4): 127–148.

Xia, C., 2011. Analysis and application of petri subnet
reduction. Procs. of the IEEE, 6 (8):1662–1669.

Murata, T., 1989. Petri nets: properties, analysis and
applications. Proceedings of the IEEE, 77(4):541–
580.

Silva, M., 1993. In Practice of Petri Nets in
Manufacturing. Chapman and Hall, London, UK.

David, R. and Alla, H., 2010.. Discrete, Continuous and
Hybrid Petri Nets. Springer, Berlin, Germany, 1st
ed., 2004 edition.

Peterson, JL., 1981. Petri Net Theory and the Modeling
of Systems. Prentice Hall, Englewood Clifs, NJ.

Jensen, K. and Kristensen L.M., 2009. Coloured Petri
Nets: Modelling and validation of concurrent
systems.

Billington, J., Christensen,S., Van Hee, K., Kindler, E.,
Kummer, O., Petrucci, L., Post, R., Stehno, C. and
Weber, M., 2003. The petri net markup language:
Concepts, technology, and tools. Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2679: 483–505.

Iso/iec 15909-2:2011 - systems and software
engineering – high-level petri nets – part 2:
Transfer format. http://www.iso.org/iso/catalogue
detail.htm?csnumber=43538. [Online; accessed
21-May-2015].

Xml encryption syntax and processing version 1.1,
2013. URL http://www.w3.org/TR/xmlenc-core1/.
[Online; accessed 20-Jun-2015].

Xml signature syntax and processing version 1.1, 2013.
URL http://www.w3.org/TR/xmldsig-core1/.
[Online; accessed 20-Jun-2015].

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

358

