
WEB SIMULATION WITH SUPPORT OF MOBILE AGENTS

Jan Voracek(a)

(a) Faculty of Electrical Engineering and Informatics, University of Pardubice

(a)jan.voracek@student.upce.cz

ABSTRACT

This paper solves the problem of mobile agents in

distributed simulation. Its main focus is on the method

of implementation of transferring mobile agents in the

JavaScript language, which does not support

marshalling. The secondary focus is on the general

suitability of agent-oriented architectures in JavaScript.

All of this with the use of WebRTC, a peer-to-peer

communications technology.

Keywords: web simulation, mobile agent, WebRTC

1. INTRODUCTION

Computer simulation is an effective approach to study

the behaviour of various systems over time. Distributed

simulation works by distributing the calculation to a

cluster of computing nodes that are interconnected in a

communication network. This approach has many

benefits, e.g., the simulation calculation can scale easily

or, in some cases, more cost-effective resources can be

used, etc. The more complex the problem is, the more

advantageous it is to distribute it to more computing

nodes (Fujimoto, 1999). Another frequent reason for

introducing distributed solution is using multiple

operators.

 Some of the problems, which have to be solved

with running distributed simulation, are (of course

among implementation of the simulation model itself)

the setup of environment which the simulation will be

running in and the interconnection of computing nodes

for communication. This interconnection becomes

nontrivial when the computing nodes are not on the

same computer network.

 For the simulation of more complex systems, it is

also advantageous to use the agent-oriented

architecture. This architecture allows to divide the

complex system into several individual logical units

which complexity is substantially lower (Macal 2005).

2. THE INTERNET AS A PLATFORM FOR

COMMUNICATION

As told in the introduction, the distributed simulation

works by distributing the calculation to a cluster of

computing nodes. For the needs of distributed

simulation, it is often sufficient to communicate in a

private network. However, we can be in a situation

where we need to run the simulation between two or

more dislocated departments which are not connected to

a private network. Alternatively, we want to link

individual computing stations around the world, where

the building of a private network is not possible for

economic or pragmatic reasons. In this case, it is

convenient to use the Internet, the global computer

network.

 This approach, however, has some drawbacks.

When communicating using the Internet it cannot be

guaranteed which way the data will be transferred or

who will be able to access it. Therefore as a security

precaution, it is preferred to encrypt all the

communication (Mitrovic 2014).

 Another difficulty is a problematic direct

communication of computing nodes. The stations

performing the simulation are typically connected to a

private network behind a router and do not have

assigned a public IP address.

3. THE WEB AS A RUNTIME ENVIRONMENT

In the introduction, there was also told that one of the

problems of running distributed simulation was putting

a runtime environment into operation. It is necessary to

install this environment on all the stations involved in

the simulation calculation. A self-executable simulation

model gives us an alternative way to run the simulation.

However, both of these approaches are more or less

dependent on the hardware (processor architecture) or

software (operation system) platform.

 Proposed solution uses, as its runtime environment,

a web browser, which is available not only for personal

computers but also for tablets, smartphones and smart

TVs (Mitrovic 2014). The fact that web browsers are

(unlike the majority of specialized environments) free

may be also considered as a benefit.

 A solution using a web browser is not so much

dependent on a particular platform as usual approach,

but in combination with various types of

communication it may be dependent on specific

browsers or their versions (Kartak 2014).

After mentioning the communication, it would be

appropriate to outline what are the possibilities of

communication on the web. It is possible to divide the

communication options into two groups:

 native – used from JavaScript,

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

32

mailto:jan.voracek@student.upce.cz

 third-party products – Java Applets, Flash,

Silverlight (Kartak 2014).

Solutions that use third-party products were evaluated

as unsuitable as they used to be unwieldy and brings a

lot of their own problems – especially in terms of safety

(Kartak 2014).

 As for the native forms of communication, there are

several technologies to use:

 XmlHttpRequest known as AJAX,

 WebSockets,

 WebRTC.

The AJAX is available in all commonly used web

browsers while WebSockets and WebRTC come as part

of an HTML5 specification and their availability in

popular web browsers is listed in Table 1.

Table 1: Availability of HTML5 communication

technologies in popular web browsers by their version

and its release date

Web Browser WebSockets WebRTC

Chrome 14 (09-2011) 23 (11-2012)

Firefox 6 (08-2011) 22 (06-2013)

Internet Explorer 10 (08-2012) –

Opera 12.10 (11-2012) 22 (06-2014)

Safari 6 (07-2012) –

Adapted from Kartak 2014

3.1. AJAX

It is a standard client-server communication based on

HTTP requests. The communication is always initiated

by the client (the web browser), and the server only

responds to the requests. It cannot initiate the

connection (Zehe 2013). For the needs of distributed

simulation, it is not ideal because the communication is

centralized, and the server can easily become a

bottleneck of the entire simulation calculation.

3.2. WebSockets

WebSockets also offers a client-server communication,

however, compared to AJAX, the connection remains

open, and the data can flow in both directions.

Therefore, the server can initiate a data transfer and

send a message to a client at any time (Green 2012).

However, the communication is still centralized.

3.3. WebRTC

WebRTC significantly extends the capabilities of web

browsers in the field of communication. The main

benefit of the distributed simulation is the support of

peer-to-peer communication, which does not require

any central element, through which all the data flow

(Barnes, 2014). In addition, the WebRTC implements

an ICE protocol (Interactive Connectivity

Establishment), which allows connecting two stations in

separate private networks without requiring any

configuration of network elements. The proposed

solution uses WebRTC despite the limited support in

web browsers.

WebRTC Security

As told, the encryption of communication is one the

most important aspects of communicating in a public

network. Also because of that, the WebRTC standard

specifies that all its implementations have to support the

DTLS-SRTP (Data Transport Layer Security – Secure

Real-time Transport Protocol). This protocol works like

HTTPS only it is based on the UDP communication

protocol instead of TCP (Barnes 2014).

4. AGENT-ORIENTED SIMULATION

The agent-oriented simulation consists in dividing of a

comprehensive system to autonomous logical units

capable of interaction (a.k.a. agents). Combined actions

of individual agents then simulate the behavior of the

modeled system.

 Agents can be classified into different groups. For

example, in terms of complexity of their autonomous

behavior, they can be classified as (Nwana 1996):

 intelligent – with the ability to meet their goals

using logical deduction,

 reactive – with the ability to respond to stimuli,

 deliberative – with the ability to plan their

actions and to affect their environment to gain

an advantage,

 cognitive – with the ability to deduce logical

conclusions from observing their environment,

they can learn and create a knowledge base,

 rational – they have all of the characteristics.

In a distributed system, the agents can be classified in

terms of variability of place of execution of their code

as:

 stationary – the agent is allocated on a single

computation node, where its code is executed

until its termination or until the end of

simulation,

 mobile (migrating) – agent may move its code

and state to another computation node by itself

(without human intervention), where it

continues with performing its task (Pinsdorf

2002, Zehe 2013).

4.1. Mobile agents in web environment

The main focus of proposed solution is an

implementation of mobile agents in JavaScript.

Unfortunately, this language does not support

marshalling (the serialization of data structures

representing the agent into a form suitable for

transmission over the network), which is an essential

prerequisite for moving the agent to another

computation node.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

33

5. JAVASCRIPT SERIALIZATION

As mentioned above, unlike most currently used

languages, JavaScript does not support a complete

transform of objects and functions into a form suitable

for transmission over the network, or for storing. It

supports only conversion into JSON, which,

unfortunately, supports only these data types:

 Number,

 String,

 Boolean,

 Array,

 Object,

 Null,

where the Object data type is only a map and can only

contain string keys and values with data types listed

above (see RFC 7159 and ECMA-404).

5.1. Serialization libraries

Besides the built-in functionality for converting objects

to JSON, there are also libraries, which tries the full

serialization. Each of them has a greater or lesser

restrictions. According to search results, libraries

GSerializer and JASON are the most used. Both project,

however, are no longer maintained, and they do not

work with the current version of JavaScript. Also, for

example, the GSerializer does not support serialization

of parametric methods.

5.2. Proposed solution of serialization

The proposed solution is slightly inspired in the Dart

language and the way this language solves conversion

to JSON and back without losing information. Dart

allows each class to define methods toJSON and

fromJSON whose implementation is completely up to

the developer. Support of a similar approach can also be

found in other languages. E.g. in Java, there are

methods writeObject and readObject in C# method

GetObjectData and a special private constructor. The

main taught is that there are two methods. One method

can extract the object state to a simpler data structure

(e.g. those which can already be converted into JSON or

XML) and the second one is able to restore the object to

its original state based on the data. These methods are

called getState and setState in the proposed solution.

 For example, assume an instance of the class Car,

which has properties color and topSpeed and several

methods representing the behaviour of this object. The

methods are the same for all objects. What differs is the

current state of individual objects represented by values

of their properties. To create any instance of the Car

class, we therefore, need a prescription of this class and

mentioned values of its properties.

 The prescription of a class is represented by its

source code, and the state is obtained using method

getState, as shown in Figure 1.

car: Car

color = "red"
topSpeed = 180

 {
 color: "red"
 topSpeed: 180
 }

getState()

Figure 1: Obtaining the state of an object

To restore the original object just create any

(presumably “empty”) instance and use method

setState, as shown in Figure 2.

 {
 color: "red"
 topSpeed: 180
 }

car: Car

color = ""
topSpeed = 0

car: Car

color = "red"
topSpeed = 180

setState(state)

state

Figure 2: Restoring the object

The problem will occur when a part of the state is an

object shared with other serialized object (shown in

Figure 3). This may be the subject of further research.

john: Driver

name = "John"
surname = "Doe"

blueCar: Car

color = "blue"
topSpeed = 190

redCar: Car

color = "red"
topSpeed = 180

driver = john driver = john

Figure 3: Two objects sharing third one

6. CASE STUDY

As a case study was chosen distributed strategic game

codenamed “devconquest”. The target is to conquer the

opponent’s castle while protecting their own. Each

player builds a castle from available material and

programs his military units to defend his castle and

conquer the opponent’s one.

 The player can choose from several different

materials on the construction of fortifications, where

more solid are of course more expensive. He can also

build loopholes up on the walls into which can be

placed archers.

 Regarding the military units, the game offers

several basic types:

 soldier – offensive / defensive unit with a

sword,

 archer – offensive / defensive unit with a bow,

 scout – reconnaissance unit a dagger.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

34

Each unit has a basic offensive and defensive number

(its attack and defence capabilities), visibility range and

maximum velocity of movement. The player can

modify these abilities, but only so that their sum dos not

exceed a fixed maximum. Each unit is needed to

program its behaviour so that player has reached the

victory.

 During the game, the military units turn in

performing their action – moving over the game field,

attacking an enemy unit in range, exploring the

condition of walls, communicating with other units, etc.

First, all units of one player perform their turns, and

then continue the second one’s and so on.

 At the beginning of the game the player has

covered the opponent’s part of the map and gradually

reveals it as his units move over the opponent’s field.

Opposing units are visible only if some player’s unit has

them in sight. For a better imagination, there is a game

in progress shown in Figure 4.

Figure 4: Game in progress

6.1. Utilization of mobile agents

Every military unit represents one agent who can travel

between the connected stations. It uses the services

provided by the hosting system for communication with

its environment. The agent can, for example, send

messages to the other agents, explore the game field or

interact with it (attack enemy units, walls).

 The agents’ logic can be implemented directly in

the browser. The application contains simple code

editor with highlighting, as you can see in Figure 5.

Figure 5: Agent editor

7. CONCLUSION

The article introduces the reader to the possibilities of

implementing a distributed simulation on the Web,

especially using the WebRTC technology. WebRTC

brings the possibility of creating distributed simulation

without central node (server). The article extends the

distributed simulation with a support of mobile agents.

To implement mobile agents has to be solved the

problem of missing serialization of objects in

JavaScript, which eventually became a major problem

that this article addresses. The proposed solution is

verified through a case study represented by a strategic,

conquering game, where mobile agents represent

different military units. The proposed solution provides

space for further research – especially in the sharing

object between multiple agents.

REFERENCES

Barnes R. L., Thomson M., 2014. Browser-to-Browser

Security Assurances for WebRTC. Internet Computing,

IEEE 18 pp. 11–17.

Fujimoto R. M., 1999. Parallel and Distribution

Simulation Systems. John Wiley & Sons, Inc.

Green I., 2012, Web Workers: Multithreaded Programs

in JavaScript. O’Reilly Media.

Kartak S., Kavicka A., 2014. WebRTC Technology as a

Solution for a Web-Based Distributed Simulation. In

Proceedings of the European Modeling and Simulation

Symposium, pp. 343–349, Genova: Università di

Genova.

Macal C. M., North M. J., 2005. Tutorial on agent-

based modeling and simulation. In Proceedings of the

37th conference on Winter simulation, pp. 2–15,

Orlando, Florida.

Mitrovic D., Ivanovic M., Budimac Z., Vidakovic M.,

2014. Radigost: Interoperable web-based multi-agent

platform. Journal of Systems and Software 90 pp. 167–

178.

Nwana H. S., 1996. Software agents: an overview. The

Knowledge Engineering Review 11 pp 205-244.

Pinsdorf, U., Roth, V., 2002. Mobile agent

interoperability patterns and practice. In Proceedings of

the 9th IEEE International Conference on Engineering

of Computer-based Systems, pp. 238–244.

Zehe D., Aydt H., Lees M., Knoll A., 2013. JavaScript

Distributed Agent Based Discrete Event Simulation. In

Proceedings of the 2013 IEEE/ACM 17th International

Symposium on Distributed Simulation and Real Time

Applications (DS-RT '13). IEEE Computer Society,

Washington, DC, USA, 21-29.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

35

