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ABSTRACT 
We present a dynamic multicommodity minimum cost 
network flow problem with storage at the nodes and 
optimal supply for modeling operations within a 
logistics network. 
The model can be used to evaluate critical business 
decisions such as the amount of required resources for 
storage transportation as well as optimal supply 
policies. 
A generator for test instances was written in order to 
evaluate the performance of the different solution 
strategies. Using a number of differently sized randomly 
generated problem instances we compare the execution 
time and the memory demand of two methods for 
solving the problem. The first is solving the whole 
problem formulation directly using general purpose 
linear programming solvers implemented in IBM Ilog 
CPLEX. In the second approach we attempt to split the 
model into two parts and link them together in an 
optimization network. We analyze the quality of the 
link and propose possibilities to improve the two step 
approach through input parameter variation 

 
Keywords: Dynamic networks, Minimum cost flow 
problem, Multicommodity flows, Dynamic Lot Sizing 
Problem 

 
1. INTRODUCTION 
Network flow problems have been used to model a wide 
variety of systems and therefore network flow literature 
distinguishes a large number of problems and variants.  
A good overview over problems as well as algorithms 
can be found in (Ahuja et al. 1993, Kotnyec 2003).  

When modeling a logistics network there will likely be 
more than one commodity that has to be transported 
across the network and the transport capacities must be 
shared between all the commodities. This kind of 
problem is known in the literature as a multicommodity 

network flow problem as opposed to the classical 
single-commodity network flow problem. 

Another major distinction is between static and dynamic 
networks. Dynamic network flows were first introduced 
by (Ford and Fulkerson 1958). They described the 
problem of maximum flows with transport time on the 
arcs. Their solution was to transform the dynamic 
network into a so called time-expanded network then 
solve this problem using classical static methods and 
finally transform the solution back into the original 
dynamic form. It has been shown that the same 
approach is also valid for dynamic minimum cost 
multicommodity flows (Fonoberova 2010). In this case 
the problem that has to be solved on the time-extended 
network is a minimum-cost multicommodity network 
flow problem (Assad 1978, McBride 1998, Castro and 
Nabona 1996, Karakostas 2008 ).  

Time is an essential factor in logistics networks because 
of a number of reasons. While the classical static 
problem only considers the transport capacities and 
costs on the arcs the dynamic problem can model 
storage capacity as well as costs at the nodes which are 
equally important. In order to make meaningful 
statements about the network the model must take into 
account that supplies and demands that change over 
time. Supply policies that are implemented in many 
companies, e.g. using stock reorder and order-up-to 
levels govern the time and amount of items that have to 
be purchased. These policies, if parameterized wrongly, 
put a large burden on the efficiency of the network. In 
the presented case, the model considers both the 
movement as well as the acquisition of commodities. 

The network flow problem presented in this paper is a 
dynamic multicommodity minimum cost network flow 
problem with storage at the nodes and optimal supply. 
The model also allows for multiple modes of transports 
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as well as multiple sinks and sources for each 
commodity. 

2. OPTIMIZATION MODEL 
The goal of the model is to describe operations in 
supply chains and optimize the associated costs arising 
out of the acquisition, storage, handling, and 
transportation of commodities. In general, a logistic 
network can be described as a set of transport modes 𝑀 
and a graph 𝐺 = (𝑉,𝐸) with nodes (𝑉) and edges (𝐸). 
An edge (𝑢, 𝑣,𝑚) with 𝑢, 𝑣 ∈ 𝑉 and 𝑚 ∈ 𝑀 describes 
a link between two nodes making use of a certain 
transport mode. The notation 𝐸+(𝑢) and 𝐸−(𝑢) is used 
to describe the set of all the edges going to and coming 
from a certain node u.  The logistic network is used to 
execute the flow of a set of commodities 𝐶. The 
operations are described as a series of discrete time 
steps T. In this model all commodities that are to be 
purchased emerge in a virtual node “q” from which it 
must be distributed. This option was chosen to let the 
model decide, taking into account logistic cost and 
capacities, the delivery node for a certain purchase. 

Figure 1 shows a small exemplary network with two 
large storage nodes and three smaller sink nodes. The 
supply appears in the virtual source node and because 
there is no storage capacity in this node it has to be 
delivered to one of the two warehouses immediately. 
When there is a demand at a store the network 
transports the commodities from the warehouses to this 
store. 

  

Figure 1 Example network 
 
The number of capacity units stored in node u at any 
time is a variable called 𝑓𝑢𝑢𝑢 ∈ ℝ+. It is constrained by 
a lower and upper limit namely 𝑎𝑢 and 𝑏𝑢. The cost of 
storing one capacity unit at node u for one time step is 
called 𝛼𝑢. 

Each mode 𝑚 has a certain maximum capacity 𝑧𝑚. The 
capacity is to be distributed over all edges that specify 
that mode. Not all of the capacity needs to be assigned. 
In fact it will be a goal to minimize the employed 
capacities. So for each edge and each time step the 
decision has to be made how much capacity is to be 
assigned. That is what the continuous variable 𝑥𝑒𝑢𝑢 ∈
ℝ+ is used for. The modes are also associated with a 
certain cost per unit of capacity transported. These 

transport costs together with the handling costs that 
occur in the source and target nodes of an edge are 
called 𝛽𝑒 the total cost of transporting one unit of any 
commodity over edge e. 

The amount of each commodity c initially stored in 
each node u is given by 𝑖𝑢𝑢 ∈ ℝ+. The demand 𝑑𝑢𝑢𝑢 ∈
ℝ+ is given for each node, commodity and time step. 
When to buy how much of which commodity is to be 
determined by the model and described by the variable 
𝑠𝑢𝑢 ∈ ℝ+.  

The price of one unit of commodity c is given as 𝛾𝑢. To 
be able to account for fixed cost per order there needs to 
be an additional variable 𝑜𝑢𝑢 ∈ {0, 1} which indicates 
whether an order was placed. The value of the fixed 
costs per order is given by 𝛿𝑢. 

The factor 𝜀𝑢 is used to convert between pieces of a 
commodity which is the unit used by demand, supply 
and initial stock and transport units which are used to 
describe how much is stored or transported 

The goal is to minimize the sum of all acquisition, 
storage, handling, and transportation costs: 
 

����𝑥𝑒𝑢𝑢  𝛽𝑒 + �𝑓𝑢𝑢𝑢  𝛼𝑢
𝑢𝑒

+ 𝑠𝑢𝑢  𝛾𝑢 + 𝑜𝑢𝑢𝛿𝑢�
𝑢𝑢

 

subject to: 
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+ � 𝑥𝑒𝑢𝑢 

𝑒∈𝐸+(𝑢)

− � 𝑥𝑒𝑢𝑢 
𝑒∈𝐸−(𝑢)

 =  𝑓𝑢𝑢𝑢 ∀𝑢, 𝑐, 𝑡 (1) 
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𝑒∈𝐸−(𝑞)

 =  𝑠𝑢𝑢  𝜀𝑢 ∀𝑐, 𝑡 (2) 

� � 𝑥𝑒𝑢𝑢
𝑒∈𝐸𝑚𝑢

 ≤  𝑧𝑚 ∀𝑚, 𝑡 (3) 

� � 𝑥𝑒𝑢𝑢
𝑒∈𝐸+(𝑢)𝑢

 ≤  𝑝𝑢 ∀𝑢, 𝑡 (4) 

𝑎𝑢  ≤    � 𝑓𝑢𝑢𝑢
𝑢

 ≤  𝑏𝑢 ∀𝑢, 𝑐, 𝑡 (5) 

𝑠𝑢𝑢   𝜀𝑢  ≤ 𝑜𝑢𝑢𝑀 ∀𝑐, 𝑡 (6) 

𝑓𝑢𝑢0 =  𝑖𝑢𝑢  𝜀𝑢 ∀𝑢, 𝑐 (7) 
 
Constraint (1) guarantees that commodities do not 
simply disappear from the network by requiring that the 
storage capacity used at each node and time step for 
each commodity depends on the  previous time step as 
wells as the inflow, outflow and demand at that time 
step. The supply is not mentioned in the first constraint 
instead there is constraint (2) which states that the sum 
of all the flows out of the virtual node named q in the 
model must equal the supply for each commodity and 
time step. This is useful because otherwise the supply 
variable would need another index for the node where it 
has to be delivered which would increase the 
complexity of the model considerably. Additionaly a 
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new constraint equivalent to (4) would be needed to 
limit the processing rate for the supply. 
The constraints (3, 4 and 5) all limit the amount of 
commodities both stored in as well as transported 
between nodes. The next constraint (6) guarantees that 
there is an order whenever the supply is greater than 
zero by requiring the supply to be smaller than the order 
times the maximal possible order size. The maximum 
possible order size 𝑀 is defined to be the sum of the 
processing rates of all nodes connected to node q. 
The final constraint deals with the initially stored 
commodities. 

 
3. SPLITTING THE MODEL 
As shown in Table 1 the effort required to solve this 
model rises very rapidly. In order to overcome this 
problem it is possible to split the model into two 
models, one model that makes decision on the 
acquisition of commodities, i.e. a purchasing problem 
and another model that decides on the movement of 
commodities, i.e. a network flow model. The 
purchasing model ignores the network aspects but 
decides when to buy how much of which commodity. 
Figure 2 illustrates the two different approaches. On the 
left is the two step approach described above and on the 
right is the combined model described in Section 2. 
 
3.1. Purchasing Model 
The network flow model gets the supplies calculated by 
the other model as input and optimizes the 
transportation and storage in the network. 
The purchasing model has the goal to minimize the 
storage costs and the purchasing costs: 
 
��(𝑓𝑢𝑢  𝛼 + 𝑠𝑢𝑢  𝛾𝑢 + 𝑜𝑢𝑢𝛿𝑢)

𝑢𝑢

 

subject to: 
𝑓𝑢𝑢−1 − 𝑑𝑢𝑢  𝜀𝑢 + 𝑠𝑢𝑢 𝜀𝑢 =  𝑓𝑢𝑢 ∀𝑐, 𝑡 (1) 

� 𝑠𝑢𝑢
𝑢

 𝜀𝑢 ≤ 𝑀 ∀𝑡 (2) 

𝑎 ≤    � 𝑓𝑢𝑢
𝑢

 ≤  𝑏 ∀𝑡 (3) 

 𝑠𝑢𝑢  𝜀𝑢 ≤ 𝑜𝑢𝑢𝑀 ∀𝑐, 𝑡 (4) 

𝑓𝑢0 =  𝑖𝑢  ∀𝑐 (5) 

 
The variables and constants have the same meaning but 
because the network aspect is ignored the variables that 
originally contained a value per node are now summed 
over all nodes. The only constraint that does not have a 
direct equivalent in the combined model is constraint 
(2). It limits the supply at each time step to the 
combined processing capacity of all nodes connected to 
the virtual source node q. This is not needed in the 
combined model because constraint (4) includes this. 
 
3.2. Network flow model 
The second model is very similar to the combined 
model but since 𝑠𝑢𝑢  and 𝑜𝑢𝑢  are now constant instead of 

variable the purchasing costs in the objective also 
become a constant. The objective function that needs to 
be minimized then looks like this: 

����𝑥𝑒𝑢𝑢  𝛽𝑒 + �𝑓𝑢𝑢𝑢  𝛼𝑢
𝑢𝑒

� + 𝐶
𝑢𝑢

 

 
Where C stands for the total purchasing costs as defined 
by the supply matrix 𝑠𝑢𝑢  the commodity prices 𝛾𝑢 and 
the fixed cost per order 𝛿𝑢. All the constraints of the 
original model remain unchanged except for constraint 
(6) which can be removed entirely. 
This new model even though it looks very similar is 
much easier to solve because there are a lot less 
variables. Additionally are all of the remaining variables 
continuous which means that the problem is no longer a 
MILP but is now simply a Linear Program. 
 

  
Figure 2 Comparing the two approaches 

 
4. EXPERIMENTS 
A generator for random problem instances was written. 
The problem instances model a retailer with several 
stores, warehouses, commodities and modes of 
transport. The warehouses are the sources where 
commodities are delivered to by the suppliers and the 
stores are sinks where the commodities sold to the 
customers disappear from the network. Each problem 
instance is completely specified by the number of 
stores, warehouses, commodities days and a seed value 
for the random number generator. A problem instance is 
generated using the following steps: 

• Store and warehouse nodes are generated and 
the storage capacities are randomly chosen. 

• Transport modes are generated and the nodes 
are connected by edges. 

• Commodities are generated along with prices 
and conversion factors. 

Purchasing
model

Network flow
model

sct
oct

Obj .

fuct  xect

Obj .
Combined

model

fuct xect
sct  oct

Obj .

Problem
instance
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• The nodes are filled with an initial stock of 
commodities. 

• Demands are generated for each store 
proportional to the stores storage.  

• The capacity of the transport modes and the 
processing capacity of the nodes are chosen so 
that a feasible solution exists. 

4.1. Comparing the two approaches 
The first important question is how difficult is it to 
solve each of the models presented earlier. The models 
were set up like illustrated in Figure 2 then the time and 
memory consumption needed to obtain the solution 
using the two different approaches was recorded for 
problem instances of varying size.  

As a next step the solution quality was compared 
between the two alternative ways of solving the 
problem. The idea is that if the solution is good enough 
it is not even necessary to run the bulky combined 
model. Finally it was examined if the solution of the 
two step approach could be improved by varying 
parameters of the purchasing model used as a first step. 
If this is the case it should be possible to run an 
algorithm that solves the problem by repeatedly solving 
the optimization network and varying these parameters. 

5. RESULTS 
All three models were implemented and tested using 
IBM ILOG CPLEX (IBM 2015). All tests were run on a 
Dell Latitude E6540 with an Intel i7 4810MQ CPU 
@2.80GHz and 16 GB RAM running Windows 7. 
 

Table 1 Time and memory consumption for differently 
sized problem instances 

Table 1 compares the time and memory needed to find 
the solution using the two sub models with the 
integrated model. The column labeled C and T shows 
the number of commodities and time steps in the 
problem instance. The size of the logistics network was 
for all tests set to ten nodes. The values under 𝑡𝑠𝑒𝑠 and 
𝑡𝑢𝑐𝑚 are the total time in seconds, it took to find the 
solution using the two separate models and the 
combined model respectively. Finally m stands for the 
peak memory consumption in megabytes. 

Solving both of the separate models is as expected 
much faster. For tiny problem instances the runtimes are 

comparable, but as the problem instances grow larger is 
the differences are so big that the integrated model does 
not even find a single solution candidate before the   
solution of the two models is found. Additionally the 
solving time of the combined model varies greatly 
depending on the problem instance.  

5.1. Comparing the solution quality 
As mentioned before is the two step solution likely to 
be worse than the one from the combined model. To 
find out how much worse the objective values of the 
combined model and the two step approach were 
compared while varying problem parameters. The 
problem instances used in this test all have 3 
warehouses 7 stores 10 commodities and 30 days and 
fixed cost per order 𝛿𝑢 was varied between 0 and 100 
with step size 10 and the storage cost multiplier 𝛼𝑢′  was 
varied between 0 and 2 with step size 0.2. Each problem 
instance was solved to optimality with both approaches 
and the gap between the optimal solution and the 
approximation is shown in Figure 2. It can be seen that 
using two separate models can provide solutions that 
are close to the optimum. In five cases the solution of 
the optimization network was exactly the same as the 
one of the combined model. Considering how much 
faster it is to solve the two models than to solve the 
integrated model this is quite remarkable. 

 
Figure 3 Differences in solution quality between the 

integrated and the two step model. 
 

5.2. Parameter Variation 
For the problem instance with the parameters 𝛿𝑢 = 50 
and 𝛼𝑢′ = 1 the objective value of the network flow 
model was 1.163% bigger than that of the combined 
model. The goal of the next test is to determine if a 
better solution can be found if the parameters of the 
purchasing model are changed. So the 𝛿𝑢 was again 
varied between 0 and 100 this time using a step size of 
5 and 𝛼𝑢′  was varied between 0 and 2 with a step size of 
0.1. The purchasing model was parametrized with all 
the combinations and the resulting supply matrix  𝑠𝑢𝑢  
was passed on to the network flow model. This way we 
obtain a number of different solutions which can be 
compared to the solution to the integrated model that 
was calculated for the previous test. 

𝑪 𝑻 𝒕𝒔𝒔𝒔 𝒎𝒔𝒔𝒔 𝒕𝒄𝒄𝒎 𝒎𝒏𝒔𝒕 

10 10 0.41 15.61 0.91 87.61 

10 20 0.66 31.09 511.96 290.78 

10 30 1.12 28.93 111.29 99.98 

100 10 5.02 105.59 404.65 529.21 

100 20 38.38 200.98 >12h  

100 30 126.74 281.84 >12h  
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 Figure 3 shows the gap in percent between the optimal 
and the approximated solution for all the combinations 
of parameters the purchasing model was set to. While 
the gap was 1.163% using the original parameters the 
lowest gap found in this case was 0.119%  and was 
found at 𝛿𝑢 = 95 and 𝛼𝑢′ = 2. With this parameter grid 
variation of input parameters we can thus obtain much 
better results while still having a model that can be 
solved in reasonable time and close to optimality. 

Additionally, Figure 4 shows a rough sketch of the 
fitness landscape of the optimization problem if we 
would use a meta-solver to vary these input parameters. 
The landscape is not as nice to optimize as we would 
wish as the best solutions can be obtained with only a 
very small range of parameters that are surrounded by 
much worse solutions. 

 
Figure 4 Results of the parameter variation for one 

instance 
 
6. MODEL APPLICATION 
The model describes relevant costs arising due to 
logistics operations such as handling costs when 
accepting or commissioning items to or from a 
warehouse, costs for storing an item for a certain 
number of time steps and costs that arise out of 
purchase and transportation. The optimization decides 
on the transportation and thus determines all 
movements of commodities in the network. The 
constraints enforce that demand has to be supplied in 
time and that commodities that enter the network are 
being moved should the maximum storage capacity be 
reached. 
One application of the model that is interesting for the 
real-world is to act as a scenario evaluator for logistics 
operations. The inputs to this model, i.e. the nodes, 
edges, when and where items appear and disappear, 
capacities, cost factors, etc. may be subject to a master 
level optimization algorithm to which the optimization 
of this model may appear as an evaluation function. The 
scenario evaluation aspect is useful in critical business 
situations such as when new warehouses are to be 
opened, logistics capacities are expanded or reduced, or 

also to evaluate environmental effects such as a change 
in demand. The model can then be used to evaluate the 
effects on the network and determines costs and 
capacities. 

7. DISCUSSION 
Using the two separate models is clearly not equivalent 
to solving the integrated problem, because in this case 
the layout of the logistics network does not influence 
the purchasing decision made by the first model. The 
network flow model only has to find the best solution 
for one given supply vector while the combined model 
optimizes both the flow through the network as well as 
the supply. So the two step approach is likely to deliver 
a solution that is suboptimal. What makes the two step 
solution interesting is that it can be obtained much 
faster while still providing good solutions. The biggest 
benefit gets apparent when considering real world 
problem instances where the number of commodities is 
likely to be at least an order of magnitude larger and the 
logistics networks may be bigger. In this case the 
optimization network can still provide solutions while 
the combined model becomes utterly unsolvable. 
It was shown that by varying the parameters of the 
purchasing model it is possible to arrive at solutions   
that are better than the one found with the original 
parameters. This means that is possible to optimize the 
combined problem even in cases where the combined 
MIP is too large to be solved at all. All that is needed is 
some kind of strategy of how to modify the parameters 
of the purchasing models. Whatever strategy is used to 
choose the parameters while optimizing when only the 
fixed cost per order 𝛿𝑢 and the storage cost multiplier 
𝛼𝑢′  are used the number of different supply matrices that 
can be generated is very limited. This can be remedied 
by adding a dimension to the price array 𝛾𝑢 and turn it 
into a price matrix 𝛾𝑢𝑢. Using the price matrix the 
purchasing model can be rewarded for buying a 
commodity at a certain point in time. It should therefore 
be possible to generate every valid supply matrix. 
 

8. OUTLOOK 
The next step is to implement a meta-solver for the 
optimization network approach. While changing the 
parameters randomly might work it is certainly not very 
efficient. The goal therefore is to find ways to 
intelligently adept the parameters of the purchasing 
model using the solutions of the network flow model. 

CPLEX offers a way to add a starting point for a MIP 
problem. In theory it should be possible to combine the 
two solutions of the sub problems into a starting point 
for the combined model. This effectively turns the two 
smaller models into a construction heuristic for the 
combined model. Using this approach it should be 
possible to cut down the runtime considerably without 
having to let go of the advantages of an exact solution. 
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