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ABSTRACT 

Model building is a fundamental task in simulation-based 

optimization. In this paper we demonstrate the applica-

tion of Sim# in combination with HeuristicLab to opti-

mize set-up times of arbitrary machinery. On top of 

Sim#, custom simulation extensions have been imple-

mented and are used to create a simulation model of real 

world machinery. These extensions enable the design of 

simulation components that can be reused within differ-

ent simulation models. This allows to easily create mul-

tiple model implementations that reflect different designs 

of a machine by using a combination of already existing 

and adapted components. The resulting model is used as 

evaluation function for the optimization inside 

HeuristicLab. 

 

Keywords: simulation-based optimization, set-up time 

optimization, sim#, heuristiclab 

 

1. INTRODUCTION 

Sim# (Beham et al. 2014) is a .NET port of SimPy 

(Matloff 2008), a process-based discrete event simula-

tion framework. Implemented in the C# programming 

language, it can easily be integrated in other .NET appli-

cations such as HeuristicLab (Wagner et al. 2014). It pro-

vides an intuitive way to simulate processes as events. 

Sim# contains an event queue which allows fast evalua-

tion and computation of processes that make up the sim-

ulation model. Simulation-based heuristic optimization 

methods often require many fitness evaluations that em-

ploy a simulator. Therefore, fast simulations have to be 

implemented so that evaluation phases can be executed 

in a reasonable amount of time. 

HeuristicLab (HL) provides different ways of integrating 

external software such as simulation models in optimiza-

tion algorithms, e.g. by communicating with other appli-

cations using Google’s Protocol Buffers 

(https://developers.google.com/protocol-buffers/) or by 

using other plug-ins specifically designed for this pur-

pose (e.g. MATLAB and Scilab problems). In this publi-

cation the authors created a new customized plug-in for 

simulation-based set-up time minimization. It features a 

simulation model which is created with a new simulation 

architecture based on Sim#. 

The focus is to extend Sim# in such a way that it is pos-

sible to model reusable software components for simula-

tion models and use those components to create similar 

but individual model implementations which represent 

e.g. different machine designs. 

In Section 2, previous related work is presented. Section 

3 explains the architecture of a general simulator. In 

Section 4, insights into the actual implementation of the 

used simulation model are given. The optimization is ex-

plained in Section 5 and the achieved results are pre-

sented in Section 6. Section 7 concludes the paper with 

gained domain knowledge and an outlook about future 

work. 

 

2. RELATED WORK 

Previous work including the use of HeuristicLab has 

been done by Affenzeller et al. (2007) to tune simulation 

parameters by applying simulation-based and heuristic 

optimization methods. Bruzzone et al. (2011) conducted 

a real case study about short period production planning 

in manufacturing systems by combining a flexible simu-

lation model, genetic algorithms and dispatching rules. 

Beham et al. (2012) also worked on alternative ways for 

information exchange between simulation and optimiza-

tion processes. In (Beham et al. 2014), Sim# was used to 

implement a simple supply chain simulation. 

HeuristicLab was then used to optimize the simulation’s 

parameters. A similar set-up time optimization in the 

same domain has already been done by Karder et al. 

(2015) without using an underlying simulation frame-

work such as Sim#. Here the simulator was written and 

continuously extended with new functionality without 

reusability in mind. This made it very difficult to imple-

ment additional specifications and new features which 

were added occasionally. A specific optimization prob-

lem was also created for HeuristicLab, in which three dif-

ferent optimization aspects, namely the job execution or-

der, the storage organization and different (un-)loading 

strategies were optimized. Set-up times could be reduced 

by approximately 20.21 %. 
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3. SIMULATOR ARCHITECTURE 

The simulator is built with modularity in mind. With 

Sim# as underlying simulation framework, the focus of 

the implementation is not the creation of a simulation 

framework itself, but rather the application and extension 

of already existing simulation infrastructure and the de-

sign of modular components which can be reused in dif-

ferent versions of a simulation that belong to a certain 

kind of simulation domain. Instead of creating three sep-

arate implementations, a basic version of the machine 

can be modeled and extended with different functionality 

by deriving or adding new operations. This leads to a 

three-layered architecture, where a concrete simulation 

builds upon specific Sim# extensions, which again build 

upon the simulation framework itself. This architecture 

is shown in Figure 1. Using this concept, the changes in 

the machine’s designs should only be minor, since 

atomic operations are often implemented for a specific 

kind of machinery. 

 

 
Figure 1: The three simulation layers. 

Each layer’s most important classes/interfaces and their 

relations are shown in Figure 2. The base for any simu-

lated machine is a SimulationItem, which represents the 

execution environment and is shown in Listing 1. 

 
public abstract class SimulationItem 
 : SimSharp.Environment, ISimulationItem { 
 private readonly IEventFactory eventFactory; 
 public IEventFactory EventFactory 
  { get { return eventFactory; } } 

 protected SimulationItem() { 
  eventFactory = new EventFactory(); 
 } 
 
 public SimulationResult Run() { 
  var op = CreateSimulationOperation(); 
  Process(op); 
  base.Run(); 
 
  var result = new SimulationResult { 
   Duration = Now - StartDate 
  }; 
  return result; 
 } 
 
 public abstract IEnumerable<SimSharp.Event> 
  CreateSimulationOperation(); 
} 

Listing 1: The abstract base class SimulationItem from 

which all simulated environments should derive. 

 

It implements the ISimulationItem interface, which pro-

vides access to an EventFactory and a Run method. The 

EventFactory can be used to register to different events 

and allows to execute according event handlers after an 

operation, its dependencies or its sub-operations have 

been executed. This concept allows to easily extend a 

simulator with debugging, logging or visualization fea-

tures. The Run method is called to execute the simula-

tion. 

Any machine deriving from SimulationItem owns a con-

text and has specific settings. Contexts represent the cur-

rent state of a machine and its components and are com-

posites of multiple properties and sub-contexts, which 

are accessible and can be modified by the machine and 

its operations. Operations are always created with the 

specific context they modify. Each operation also has ac-

cess to the global context of the environment. Settings 

define different properties of the machine, e.g. sizes and 

speeds. Unlike the context, settings are read-only and 

therefore cannot be modified during a simulation run. 

Figure 2: The simulator’s architecture showing parts of Sim# (yellow), classes from the implemented extensions (red) and 

from the implemented simulation (green).  
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Simulated operations are always designed for a specific 

environment. By implementing (and deriving from) an 

ISimulationItem, all operations from the simulated envi-

ronment have to be defined. In the presented architecture 

it is possible to reuse operations defined for environment 

A in another environment B. The limiting factor here is 

that an operation can only be reused in B, if B is a subtype 

of A. This constraint has to be satisfied, because the op-

eration was originally designed for A and possibly re-

quires contexts and settings that have also been designed 

for A. 

Each machine operation is represented by a separate class 

that derives from Operation which implements 

IOperation. All operations have to declare their depend-

encies (i.e. operations which have to be executed before 

the actual operation) and sub-operations (i.e. all opera-

tions that are executed after the actual operation). By 

calling Operation.Execute, only the actual operation is 

executed and its dependencies and sub-operations are ig-

nored. Operation.ExecuteAll calls all dependencies, the 

actual operation and all sub-operations (in that order). 

Different information such as the start time, the duration 

and the description are set by all operations and passed 

to the EventFactory in form of OperationInformation in-

stances. Each SimulationItem defines an abstract 

CreateSimulationOperation method that represents the 

entry point of the simulation. This method is called 

within the Run method and builds the operation tree, i.e. 

yields all necessary operations as well as its dependen-

cies and sub-operations. Listing 2 shows the Operation 

class. 

 
public abstract class Operation 
 : SimSharp.Event, IOperation { 
 private readonly IDataContext ctx; 
 
 protected SimulationItem Env 
  { get { return (SimulationItem)Environment; } } 
 
 public IDataContext DataContext 
  { get { return ctx; } } 
 
 public virtual IEnumerable<SimSharp.Event> 
  Dependencies { get { yield break; } } 
 public virtual IEnumerable<SimSharp.Event> 
  SubOperations { get { yield break; } } 
 
 public OperationInformation 
  DependencyOperationInformation { get; set; } 
 public OperationInformation 
  OperationInformation { get; set; } 
 public OperationInformation 
  SubOperationInformation { get; set; } 
 
 protected Operation(SimSharp.Environment env, 
                     IDataContext ctx = null) 
  : base(env) { 
  this.ctx = ctx; 
  DependencyOperationInformation = new ... 
  OperationInformation = new ... 
  SubOperationInformation = new ... 
 } 
 
 public virtual IEnumerable<SimSharp.Event> 
  Execute() { yield break; } 
 
 

 public virtual IEnumerable<SimSharp.Event> 
  ExecuteAll() { 
  var depOpStart = Env.Now; 
  yield return Env.Process(Dependencies); 
   
  DependencyOperationInformation.Duration = 
   Env.Now - depOpStart; 
  Env.EventFactory 
     .FireOperationsDependenciesExecuted(this); 
 
  OperationInformation.StartTime = Env.Now; 
  yield return Env.Process(Execute()); 
   
  OperationInformation.Duration = 
   Env.Now - OperationInformation.StartTime; 
  Env.EventFactory.FireOperationExecuted(this); 
 
  var subOpStart = Env.Now; 
  yield return Env.Process(SubOperations); 
   
  SubOperationInformation.Duration = 
   Env.Now - subOpStart; 
  Env.EventFactory 
     .FireOperationsSubOperationsExecuted(this); 
 } 
} 
 
public abstract class Operation<TEnvironment> 
 : Operation 
 where TEnvironment : SimulationItem { 
 protected new TEnvironment Env 
  { get { return (TEnvironment)base.Env; } } 
 
 protected Operation(TEnvironment env, 
                     IDataContext ctx = null) 
  : base(env, ctx) { } 
} 

Listing 2: Implementation of the base class for each spe-

cific operation. 

 

The resulting operation tree is traversed and executed by 

the environment. Each operation is defined in its own 

class. This allows operations to be used in more than one 

environment. Each environment (i.e. each machine) con-

tains methods to create the operations it can execute. 

This architecture allows developers to build simulations 

with single components in a modular way. The idea is to 

separate simulation definition (i.e. what operations are 

available) and operation definition (i.e. what is done 

when executing an operation). In Figure 2 a sample ma-

chine is described by the IBasicMachine interface, which 

defines all operations, the context and the settings that 

can be used. Each operation (A, B, C) represents actions 

and their necessary dependencies/sub-operations. The 

BasicMachine class implements IBasicMachine and is 

responsible for creating operation instances. By extend-

ing from BasicMachine, each operation creation can be 

overridden and alternative operations that represent dif-

ferent features can be included. 

 

4. MODEL IMPLEMENTATION 

The real world machinery is transformed into a static, de-

terministic, discrete simulation model. All machine op-

erations as well as their dependencies and sub-operations 

are implemented to provide a detailed model of the real 

world system. The operations are built with reusability in 

mind. It should be possible to easily create alternative 
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model implementations with different features by ex-

tending a basic version of the simulation and adding spe-

cialized operations. 

A new BasicMachine derives from SimulationItem and 

implements the IBasicMachine interface. Listing 3 

shows the BasicMachine class. 

 
public class BasicMachine 
 : SimulationItem, IBasicMachine { 
 // ... 
 public override IEnumerable<SimSharp.Event> 
  CreateSimulationOperation() { 
  return new SimulationOperation<BasicMachine> 
   (this).ExecuteAll(); 
 } 
 // ... 
 public virtual IEnumerable<SimSharp.Event> 
  MoveShuttleHome( 
   BasicComponentDataContext dataContext) { 
    return new MoveShuttleHome<BasicMachine> 
     (this, dataContext).ExecuteAll(); 
 } 
 // ... 
} 
Listing 3: An excerpt of the BasicMachine class showing 

the creation of a MoveShuttleHome operation. 

 

The interface specifies methods to create all Operations 

that are available in the basic implementation of the ma-

chine, e.g. the MoveShuttleHome operation that is shown 

in Listing 4. 

 
public class MoveShuttleHome<TEnvironment> 
 : Operation<TEnvironment> 
 where TEnvironment : BasicMachine { 
 protected new 
  BasicComponentDataContext DataContext { 
   get { return 
    (BasicComponentDataContext)base.DataContext; 
   } } 
 
 public MoveShuttleHome(TEnvironment env, 
  BasicComponentDataContext ctx) 
  : base(env, ctx) { } 
 
 public override IEnumerable<Event> Dependencies { 
  get { yield return Env.Process( 
   Env.SwitchMagnetState(DataContext, 
                         MagnetState.MagnetOff)); 
  } } 
 
 public override IEnumerable<SimSharp.Event>  
  Execute() { 
  var shuttle = DataContext.Shuttle; 
 
  if (shuttle.Position.IsAlmost(0.0)) { 
   shuttle.Position = 0.0; 
   yield break; 
  } 
 
  yield return Env.Timeout( 
   Env.Settings.ShuttleMove.CalculateMovementTime( 
    shuttle.Position)); 
  OperationInformation.Distance = shuttle.Position; 
  shuttle.Position = 0.0; 
 } 
} 

Listing 4: Implementation of the MoveShuttleHome op-

eration that shows how dependencies and operation logic 

can be added. 

All methods are implemented in BasicMachine and re-

turn an according instance of the required operation 

class. This creates two possibilities for extending the ma-

chine design. On the one hand it is possible to derive 

from BasicMachine and override particular methods to 

return new operations. Those extended operations should 

derive from the original operation and can introduce new 

dependencies, sub-operations and logic by overriding as 

required. On the other hand new interfaces can be added 

to a new class derived from BasicMachine which intro-

duce new methods for creating new operations. 

The operation sequence of a simulated environment is 

represented by the operation tree. This tree is constructed 

by the operations and their dependencies/sub-operations 

themselves. The entry point of the simulation is the Run 

method defined in the ISimulation interface. It creates a 

SimulationOperation (root operation) and generates the 

operation tree by calling ExecuteAll on that operation. 

The operation tree is traversed when the environment 

processes all resulting operations. 

An improved machine could for example require addi-

tional steps before the shuttle is moved to its home posi-

tion and therefore, an AdvancedMoveShuttleHome oper-

ation could be derived. The new operation would then be 

returned by the respective environment method and yield 

additional dependency operations. 

 

5. OPTIMIZATION 

The optimization focuses on the set-up time minimiza-

tion of a machine that sequentially processes multiple 

jobs. Each job requires a certain set of tools that are 

stored in a storage area and must be set up in the ma-

chine’s working area before processing can be started. 

The machine automatically loads and unloads required 

components. 

A new HeuristicLab problem which is targeted to work 

with already existing evolutionary algorithms such as ge-

netic algorithms is used to optimize the job sequence and 

the storage organization. The problem derives from 

Heuristiclab’s BasicProblem, which makes it easy to im-

plement the necessary evaluation and analysis logic with-

out the need to create custom operators. The required 

problem data is stored in a TJOData instance. A TJOData 

object represents the scenario of the machine, i.e. availa-

ble tools and jobs as well as the machine settings. This 

TJOData instance is then passed on to each solution eval-

uation. Solutions are represented by a multi-encoding 

that represents the identified optimization aspects. It con-

sists of three permutations that are used in combination 

with the TJOData to construct the actual solution. The 

first permutation represents the order of jobs the machine 

has to process. Depending on the processing order of the 

jobs, the simulated execution time can increase or de-

crease. The other two permutations are used to create the 

storage layout of the machine. The way that components 

are sorted plays an important role when executing job af-

ter job. The indices of the tools are fixed within the 

TJOData of the problem instantiation. Each storage rack 

is assigned exactly one tool (or none). The actual storage 
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configuration can be created with the respective permu-

tation by rearranging the tools by their index in the per-

mutation. Figure 3 shows how the actual storage config-

uration is constructed by combining the respective per-

mutation and the data that is available within the 

TJOData object. In this example tool 0 (T0) was origi-

nally assigned to rack 0 (index 0 contains 0). The upper 

rack assignments permutation now dictates that in rack 0 

tool 3 can be found (index 0 contains 3). If there are less 

tools (n) than racks (m), all numbers greater than n rep-

resent void tools that are used to create empty racks. 

 

 
Figure 1: The procedure for creating the actual storage 

configuration. 

For all experiments, a genetic algorithm with offspring 

selection (Affenzeller and Wagner 2005) is used. Selec-

tion scheme and replacement strategy are set to linear 

rank selection (LR) and 1-elitism, respectively. For all 

permutations, crossover and mutation operators have 

been selected carefully. For recombination, the 

OrderCrossover2 (OX2) (Davies 1985; Affenzeller et al. 

2009) was chosen since it is known to preserve order ra-

ther than position within a permutation. For mutation, the 

InsertionManipulator (IM) was used. 

Each time a solution has to be evaluated, a new simula-

tion instance is created specifically for this evaluation to 

allow parallel execution of optimization algorithms. 

Therefore, efficient algorithm usage is assured. Quality 

is measured in total seconds of simulation time, i.e. the 

simulated time the machine took to load and unload tools 

for all jobs. 

 

6. RESULTS 

Three different problem configurations were tested. In 

the first configuration, five different jobs were defined. 

This scenario can be found in rather small manufacturers 

or manufacturers with low fluctuation in production cy-

cles. The second configuration represents middle class 

manufacturers and contains ten different jobs together 

with a medium filled storage. This scenario should sim-

ulate a daily production cycles of medium sized manu-

facturers that are not restricted to just five different jobs. 

The last configuration features 20 different jobs and a 

storage that contains a large variety of different tools. 

This scenario represents large manufacturers or manu-

facturers with a high fluctuation in production. In each 

problem configuration, only the least amount of tools and 

the machine’s default settings were used. Each problem 

instance was tested within an experiment containing a 

batch run with 10 repetitions. The results of the best pa-

rameter combinations are shown in Table 1. 

 

Table 1: Selected algorithm parameters and achieved re-

sults for each problem instance. 

Parameter Prob. 1 Prob. 2 Prob. 3 

Population Size 1000 1000 1000 

Max. Generations 100 100 100 

Elites 1 1 1 

Selection Operator LR LR LR 

Crossover Operator OX2 OX2 OX2 

Mutation Operator IM IM IM 

Mutation Prob. 5 % 5 % 5 % 

Comp. Factor 1 1 1 

Success Ratio 1 1 1 

Max. Sel. Press. 100 200 200 

Result    

Worst Quality 546.041 944.004 2629.342 

Best Quality 476.568 832.955 2354.767 

Avg. Best Quality 476.621 833.449 2356.019 

Avg. Eval. Sol. 248700 611490 830640 

 

The results shown in Table 1 were selected based on the 

number of runs that achieved the best found solution in 

each configuration and the number of evaluated solu-

tions. The only difference between the configurations 

that is worth mentioning is the change in the number of 

evaluated solutions. The achieved quality values were 

quite similar in each algorithm setup. The simulated pro-

cessing times for problem instance 1, 2 and 3 could be 

reduced by approximately 12.72 %, 11.76 % and 

10.44 %, respectively. 

 

7. CONCLUSION AND OUTLOOK 

Despite the machine’s current constraints, set-up time 

improvements of more than 10 % have been achieved. 

By extending the machine in its design, more optimiza-

tion potential can be created and set-up times could be 

reduced even more. Currently, only one tool can be 

stored in one storage rack. This limits the number of dif-

ferent storage layouts and the number of tools that can be 

used. A redesign could e.g. allow multiple tools to be 

stored within one storage rack. Adding new unloading 

strategies would allow to move the tools in different 

ways, e.g. back to their original location or to other posi-

tions. This approach can be extended by using priority 

rules to select a specific rack for each tool that needs to 

be unloaded. 
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