
SIMULATION-BASED SET-UP TIME OPTIMIZATION

USING SIM# AND HEURISTICLAB

Johannes Karder(a), Andreas Scheibenpflug(b), Andreas Beham(c), Stefan Wagner(d), Michael Affenzeller(e)

(a),(b),(c),(d),(e)Heuristic and Evolutionary Algorithms Laboratory

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
(b),(c),(e)Institute for Formal Models and Verification

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

(a)jkarder@heuristiclab.com, (b)ascheibe@heuristiclab.com, (c)abeham@heuristiclab.com, (d)swagner@heuristiclab.com,

(e)maffenze@heuristiclab.com

ABSTRACT

Model building is a fundamental task in simulation-based

optimization. In this paper we demonstrate the applica-

tion of Sim# in combination with HeuristicLab to opti-

mize set-up times of arbitrary machinery. On top of

Sim#, custom simulation extensions have been imple-

mented and are used to create a simulation model of real

world machinery. These extensions enable the design of

simulation components that can be reused within differ-

ent simulation models. This allows to easily create mul-

tiple model implementations that reflect different designs

of a machine by using a combination of already existing

and adapted components. The resulting model is used as

evaluation function for the optimization inside

HeuristicLab.

Keywords: simulation-based optimization, set-up time

optimization, sim#, heuristiclab

1. INTRODUCTION

Sim# (Beham et al. 2014) is a .NET port of SimPy

(Matloff 2008), a process-based discrete event simula-

tion framework. Implemented in the C# programming

language, it can easily be integrated in other .NET appli-

cations such as HeuristicLab (Wagner et al. 2014). It pro-

vides an intuitive way to simulate processes as events.

Sim# contains an event queue which allows fast evalua-

tion and computation of processes that make up the sim-

ulation model. Simulation-based heuristic optimization

methods often require many fitness evaluations that em-

ploy a simulator. Therefore, fast simulations have to be

implemented so that evaluation phases can be executed

in a reasonable amount of time.

HeuristicLab (HL) provides different ways of integrating

external software such as simulation models in optimiza-

tion algorithms, e.g. by communicating with other appli-

cations using Google’s Protocol Buffers

(https://developers.google.com/protocol-buffers/) or by

using other plug-ins specifically designed for this pur-

pose (e.g. MATLAB and Scilab problems). In this publi-

cation the authors created a new customized plug-in for

simulation-based set-up time minimization. It features a

simulation model which is created with a new simulation

architecture based on Sim#.

The focus is to extend Sim# in such a way that it is pos-

sible to model reusable software components for simula-

tion models and use those components to create similar

but individual model implementations which represent

e.g. different machine designs.

In Section 2, previous related work is presented. Section

3 explains the architecture of a general simulator. In

Section 4, insights into the actual implementation of the

used simulation model are given. The optimization is ex-

plained in Section 5 and the achieved results are pre-

sented in Section 6. Section 7 concludes the paper with

gained domain knowledge and an outlook about future

work.

2. RELATED WORK

Previous work including the use of HeuristicLab has

been done by Affenzeller et al. (2007) to tune simulation

parameters by applying simulation-based and heuristic

optimization methods. Bruzzone et al. (2011) conducted

a real case study about short period production planning

in manufacturing systems by combining a flexible simu-

lation model, genetic algorithms and dispatching rules.

Beham et al. (2012) also worked on alternative ways for

information exchange between simulation and optimiza-

tion processes. In (Beham et al. 2014), Sim# was used to

implement a simple supply chain simulation.

HeuristicLab was then used to optimize the simulation’s

parameters. A similar set-up time optimization in the

same domain has already been done by Karder et al.

(2015) without using an underlying simulation frame-

work such as Sim#. Here the simulator was written and

continuously extended with new functionality without

reusability in mind. This made it very difficult to imple-

ment additional specifications and new features which

were added occasionally. A specific optimization prob-

lem was also created for HeuristicLab, in which three dif-

ferent optimization aspects, namely the job execution or-

der, the storage organization and different (un-)loading

strategies were optimized. Set-up times could be reduced

by approximately 20.21 %.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

289

mailto:jkarder@heuristiclab.com
mailto:ascheibe@heuristiclab.com
mailto:abeham@heuristiclab.com
mailto:swagner@heuristiclab.com
mailto:maffenze@heuristiclab.com

3. SIMULATOR ARCHITECTURE

The simulator is built with modularity in mind. With

Sim# as underlying simulation framework, the focus of

the implementation is not the creation of a simulation

framework itself, but rather the application and extension

of already existing simulation infrastructure and the de-

sign of modular components which can be reused in dif-

ferent versions of a simulation that belong to a certain

kind of simulation domain. Instead of creating three sep-

arate implementations, a basic version of the machine

can be modeled and extended with different functionality

by deriving or adding new operations. This leads to a

three-layered architecture, where a concrete simulation

builds upon specific Sim# extensions, which again build

upon the simulation framework itself. This architecture

is shown in Figure 1. Using this concept, the changes in

the machine’s designs should only be minor, since

atomic operations are often implemented for a specific

kind of machinery.

Figure 1: The three simulation layers.

Each layer’s most important classes/interfaces and their

relations are shown in Figure 2. The base for any simu-

lated machine is a SimulationItem, which represents the

execution environment and is shown in Listing 1.

public abstract class SimulationItem
 : SimSharp.Environment, ISimulationItem {
 private readonly IEventFactory eventFactory;
 public IEventFactory EventFactory
 { get { return eventFactory; } }

 protected SimulationItem() {
 eventFactory = new EventFactory();
 }

 public SimulationResult Run() {
 var op = CreateSimulationOperation();
 Process(op);
 base.Run();

 var result = new SimulationResult {
 Duration = Now - StartDate
 };
 return result;
 }

 public abstract IEnumerable<SimSharp.Event>
 CreateSimulationOperation();
}

Listing 1: The abstract base class SimulationItem from

which all simulated environments should derive.

It implements the ISimulationItem interface, which pro-

vides access to an EventFactory and a Run method. The

EventFactory can be used to register to different events

and allows to execute according event handlers after an

operation, its dependencies or its sub-operations have

been executed. This concept allows to easily extend a

simulator with debugging, logging or visualization fea-

tures. The Run method is called to execute the simula-

tion.

Any machine deriving from SimulationItem owns a con-

text and has specific settings. Contexts represent the cur-

rent state of a machine and its components and are com-

posites of multiple properties and sub-contexts, which

are accessible and can be modified by the machine and

its operations. Operations are always created with the

specific context they modify. Each operation also has ac-

cess to the global context of the environment. Settings

define different properties of the machine, e.g. sizes and

speeds. Unlike the context, settings are read-only and

therefore cannot be modified during a simulation run.

Figure 2: The simulator’s architecture showing parts of Sim# (yellow), classes from the implemented extensions (red) and

from the implemented simulation (green).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

290

Simulated operations are always designed for a specific

environment. By implementing (and deriving from) an

ISimulationItem, all operations from the simulated envi-

ronment have to be defined. In the presented architecture

it is possible to reuse operations defined for environment

A in another environment B. The limiting factor here is

that an operation can only be reused in B, if B is a subtype

of A. This constraint has to be satisfied, because the op-

eration was originally designed for A and possibly re-

quires contexts and settings that have also been designed

for A.

Each machine operation is represented by a separate class

that derives from Operation which implements

IOperation. All operations have to declare their depend-

encies (i.e. operations which have to be executed before

the actual operation) and sub-operations (i.e. all opera-

tions that are executed after the actual operation). By

calling Operation.Execute, only the actual operation is

executed and its dependencies and sub-operations are ig-

nored. Operation.ExecuteAll calls all dependencies, the

actual operation and all sub-operations (in that order).

Different information such as the start time, the duration

and the description are set by all operations and passed

to the EventFactory in form of OperationInformation in-

stances. Each SimulationItem defines an abstract

CreateSimulationOperation method that represents the

entry point of the simulation. This method is called

within the Run method and builds the operation tree, i.e.

yields all necessary operations as well as its dependen-

cies and sub-operations. Listing 2 shows the Operation

class.

public abstract class Operation
 : SimSharp.Event, IOperation {
 private readonly IDataContext ctx;

 protected SimulationItem Env
 { get { return (SimulationItem)Environment; } }

 public IDataContext DataContext
 { get { return ctx; } }

 public virtual IEnumerable<SimSharp.Event>
 Dependencies { get { yield break; } }
 public virtual IEnumerable<SimSharp.Event>
 SubOperations { get { yield break; } }

 public OperationInformation
 DependencyOperationInformation { get; set; }
 public OperationInformation
 OperationInformation { get; set; }
 public OperationInformation
 SubOperationInformation { get; set; }

 protected Operation(SimSharp.Environment env,
 IDataContext ctx = null)
 : base(env) {
 this.ctx = ctx;
 DependencyOperationInformation = new ...
 OperationInformation = new ...
 SubOperationInformation = new ...
 }

 public virtual IEnumerable<SimSharp.Event>
 Execute() { yield break; }

 public virtual IEnumerable<SimSharp.Event>
 ExecuteAll() {
 var depOpStart = Env.Now;
 yield return Env.Process(Dependencies);

 DependencyOperationInformation.Duration =
 Env.Now - depOpStart;
 Env.EventFactory
 .FireOperationsDependenciesExecuted(this);

 OperationInformation.StartTime = Env.Now;
 yield return Env.Process(Execute());

 OperationInformation.Duration =
 Env.Now - OperationInformation.StartTime;
 Env.EventFactory.FireOperationExecuted(this);

 var subOpStart = Env.Now;
 yield return Env.Process(SubOperations);

 SubOperationInformation.Duration =
 Env.Now - subOpStart;
 Env.EventFactory
 .FireOperationsSubOperationsExecuted(this);
 }
}

public abstract class Operation<TEnvironment>
 : Operation
 where TEnvironment : SimulationItem {
 protected new TEnvironment Env
 { get { return (TEnvironment)base.Env; } }

 protected Operation(TEnvironment env,
 IDataContext ctx = null)
 : base(env, ctx) { }
}

Listing 2: Implementation of the base class for each spe-

cific operation.

The resulting operation tree is traversed and executed by

the environment. Each operation is defined in its own

class. This allows operations to be used in more than one

environment. Each environment (i.e. each machine) con-

tains methods to create the operations it can execute.

This architecture allows developers to build simulations

with single components in a modular way. The idea is to

separate simulation definition (i.e. what operations are

available) and operation definition (i.e. what is done

when executing an operation). In Figure 2 a sample ma-

chine is described by the IBasicMachine interface, which

defines all operations, the context and the settings that

can be used. Each operation (A, B, C) represents actions

and their necessary dependencies/sub-operations. The

BasicMachine class implements IBasicMachine and is

responsible for creating operation instances. By extend-

ing from BasicMachine, each operation creation can be

overridden and alternative operations that represent dif-

ferent features can be included.

4. MODEL IMPLEMENTATION

The real world machinery is transformed into a static, de-

terministic, discrete simulation model. All machine op-

erations as well as their dependencies and sub-operations

are implemented to provide a detailed model of the real

world system. The operations are built with reusability in

mind. It should be possible to easily create alternative

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

291

model implementations with different features by ex-

tending a basic version of the simulation and adding spe-

cialized operations.

A new BasicMachine derives from SimulationItem and

implements the IBasicMachine interface. Listing 3

shows the BasicMachine class.

public class BasicMachine
 : SimulationItem, IBasicMachine {
 // ...
 public override IEnumerable<SimSharp.Event>
 CreateSimulationOperation() {
 return new SimulationOperation<BasicMachine>
 (this).ExecuteAll();
 }
 // ...
 public virtual IEnumerable<SimSharp.Event>
 MoveShuttleHome(
 BasicComponentDataContext dataContext) {
 return new MoveShuttleHome<BasicMachine>
 (this, dataContext).ExecuteAll();
 }
 // ...
}
Listing 3: An excerpt of the BasicMachine class showing

the creation of a MoveShuttleHome operation.

The interface specifies methods to create all Operations

that are available in the basic implementation of the ma-

chine, e.g. the MoveShuttleHome operation that is shown

in Listing 4.

public class MoveShuttleHome<TEnvironment>
 : Operation<TEnvironment>
 where TEnvironment : BasicMachine {
 protected new
 BasicComponentDataContext DataContext {
 get { return
 (BasicComponentDataContext)base.DataContext;
 } }

 public MoveShuttleHome(TEnvironment env,
 BasicComponentDataContext ctx)
 : base(env, ctx) { }

 public override IEnumerable<Event> Dependencies {
 get { yield return Env.Process(
 Env.SwitchMagnetState(DataContext,
 MagnetState.MagnetOff));
 } }

 public override IEnumerable<SimSharp.Event>
 Execute() {
 var shuttle = DataContext.Shuttle;

 if (shuttle.Position.IsAlmost(0.0)) {
 shuttle.Position = 0.0;
 yield break;
 }

 yield return Env.Timeout(
 Env.Settings.ShuttleMove.CalculateMovementTime(
 shuttle.Position));
 OperationInformation.Distance = shuttle.Position;
 shuttle.Position = 0.0;
 }
}

Listing 4: Implementation of the MoveShuttleHome op-

eration that shows how dependencies and operation logic

can be added.

All methods are implemented in BasicMachine and re-

turn an according instance of the required operation

class. This creates two possibilities for extending the ma-

chine design. On the one hand it is possible to derive

from BasicMachine and override particular methods to

return new operations. Those extended operations should

derive from the original operation and can introduce new

dependencies, sub-operations and logic by overriding as

required. On the other hand new interfaces can be added

to a new class derived from BasicMachine which intro-

duce new methods for creating new operations.

The operation sequence of a simulated environment is

represented by the operation tree. This tree is constructed

by the operations and their dependencies/sub-operations

themselves. The entry point of the simulation is the Run

method defined in the ISimulation interface. It creates a

SimulationOperation (root operation) and generates the

operation tree by calling ExecuteAll on that operation.

The operation tree is traversed when the environment

processes all resulting operations.

An improved machine could for example require addi-

tional steps before the shuttle is moved to its home posi-

tion and therefore, an AdvancedMoveShuttleHome oper-

ation could be derived. The new operation would then be

returned by the respective environment method and yield

additional dependency operations.

5. OPTIMIZATION

The optimization focuses on the set-up time minimiza-

tion of a machine that sequentially processes multiple

jobs. Each job requires a certain set of tools that are

stored in a storage area and must be set up in the ma-

chine’s working area before processing can be started.

The machine automatically loads and unloads required

components.

A new HeuristicLab problem which is targeted to work

with already existing evolutionary algorithms such as ge-

netic algorithms is used to optimize the job sequence and

the storage organization. The problem derives from

Heuristiclab’s BasicProblem, which makes it easy to im-

plement the necessary evaluation and analysis logic with-

out the need to create custom operators. The required

problem data is stored in a TJOData instance. A TJOData

object represents the scenario of the machine, i.e. availa-

ble tools and jobs as well as the machine settings. This

TJOData instance is then passed on to each solution eval-

uation. Solutions are represented by a multi-encoding

that represents the identified optimization aspects. It con-

sists of three permutations that are used in combination

with the TJOData to construct the actual solution. The

first permutation represents the order of jobs the machine

has to process. Depending on the processing order of the

jobs, the simulated execution time can increase or de-

crease. The other two permutations are used to create the

storage layout of the machine. The way that components

are sorted plays an important role when executing job af-

ter job. The indices of the tools are fixed within the

TJOData of the problem instantiation. Each storage rack

is assigned exactly one tool (or none). The actual storage

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

292

configuration can be created with the respective permu-

tation by rearranging the tools by their index in the per-

mutation. Figure 3 shows how the actual storage config-

uration is constructed by combining the respective per-

mutation and the data that is available within the

TJOData object. In this example tool 0 (T0) was origi-

nally assigned to rack 0 (index 0 contains 0). The upper

rack assignments permutation now dictates that in rack 0

tool 3 can be found (index 0 contains 3). If there are less

tools (n) than racks (m), all numbers greater than n rep-

resent void tools that are used to create empty racks.

Figure 1: The procedure for creating the actual storage

configuration.

For all experiments, a genetic algorithm with offspring

selection (Affenzeller and Wagner 2005) is used. Selec-

tion scheme and replacement strategy are set to linear

rank selection (LR) and 1-elitism, respectively. For all

permutations, crossover and mutation operators have

been selected carefully. For recombination, the

OrderCrossover2 (OX2) (Davies 1985; Affenzeller et al.

2009) was chosen since it is known to preserve order ra-

ther than position within a permutation. For mutation, the

InsertionManipulator (IM) was used.

Each time a solution has to be evaluated, a new simula-

tion instance is created specifically for this evaluation to

allow parallel execution of optimization algorithms.

Therefore, efficient algorithm usage is assured. Quality

is measured in total seconds of simulation time, i.e. the

simulated time the machine took to load and unload tools

for all jobs.

6. RESULTS

Three different problem configurations were tested. In

the first configuration, five different jobs were defined.

This scenario can be found in rather small manufacturers

or manufacturers with low fluctuation in production cy-

cles. The second configuration represents middle class

manufacturers and contains ten different jobs together

with a medium filled storage. This scenario should sim-

ulate a daily production cycles of medium sized manu-

facturers that are not restricted to just five different jobs.

The last configuration features 20 different jobs and a

storage that contains a large variety of different tools.

This scenario represents large manufacturers or manu-

facturers with a high fluctuation in production. In each

problem configuration, only the least amount of tools and

the machine’s default settings were used. Each problem

instance was tested within an experiment containing a

batch run with 10 repetitions. The results of the best pa-

rameter combinations are shown in Table 1.

Table 1: Selected algorithm parameters and achieved re-

sults for each problem instance.

Parameter Prob. 1 Prob. 2 Prob. 3

Population Size 1000 1000 1000

Max. Generations 100 100 100

Elites 1 1 1

Selection Operator LR LR LR

Crossover Operator OX2 OX2 OX2

Mutation Operator IM IM IM

Mutation Prob. 5 % 5 % 5 %

Comp. Factor 1 1 1

Success Ratio 1 1 1

Max. Sel. Press. 100 200 200

Result

Worst Quality 546.041 944.004 2629.342

Best Quality 476.568 832.955 2354.767

Avg. Best Quality 476.621 833.449 2356.019

Avg. Eval. Sol. 248700 611490 830640

The results shown in Table 1 were selected based on the

number of runs that achieved the best found solution in

each configuration and the number of evaluated solu-

tions. The only difference between the configurations

that is worth mentioning is the change in the number of

evaluated solutions. The achieved quality values were

quite similar in each algorithm setup. The simulated pro-

cessing times for problem instance 1, 2 and 3 could be

reduced by approximately 12.72 %, 11.76 % and

10.44 %, respectively.

7. CONCLUSION AND OUTLOOK

Despite the machine’s current constraints, set-up time

improvements of more than 10 % have been achieved.

By extending the machine in its design, more optimiza-

tion potential can be created and set-up times could be

reduced even more. Currently, only one tool can be

stored in one storage rack. This limits the number of dif-

ferent storage layouts and the number of tools that can be

used. A redesign could e.g. allow multiple tools to be

stored within one storage rack. Adding new unloading

strategies would allow to move the tools in different

ways, e.g. back to their original location or to other posi-

tions. This approach can be extended by using priority

rules to select a specific rack for each tool that needs to

be unloaded.

ACKNOWLEDGMENTS

The work described in this paper was conducted within

the NPS (Sustainable Production Steering) project and

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

293

funded by the Austrian Research Promotion Agency

(FFG).

REFERENCES

Affenzeller, M., Wagner, S., 2005. Offspring Selection:

A New Self-Adaptive Selection Scheme for

Genetic Algorithms. Adaptive and Natural

Computing Algorithms, 218–221. Springer.

Affenzeller, M., Kronberger, G., Winkler, S., Ionescu,

M., Wagner, S., 2007. Heuristic Optimization

Methods for the Tuning of Input Parameters of

Simulation Models. Proceedings of I3M 2007, 278–

283. October 4-6, Bergeggi, Italy.

Affenzeller, M., Winkler, S., Wagner, S., Beham, A.,

2009. Genetic Algorithms and Genetic

Programming - Modern Concepts and Practical

Applications. Chapman & Hall/CRC. ISBN 978-

1584886297.

Beham, A., Pitzer, E., Wagner, S., Affenzeller, M.,

Altendorfer, K., Felberbauer, T., Bäck, M., 2012.

Integration of Flexible Interfaces in Optimization

Software Frameworks for Simulation-Based

Optimization. Companion Publication of the 2012

Genetic and Evolutionary Computation

Conference, GECCO'12 Companion, 125–132.

July, Philadelphia, PA, USA.

Beham, A., Kronberger, G., Karder, J., Kommenda, M.,

Scheibenpflug, A., Wagner, S., Affenzeller, M.,

2014. Integrated Simulation and Optimization in

HeuristicLab. Proceedings of I3M 2014, 418–423.

September 10-12, Bordeaux, France.

Bruzzone, A., Longo, F., Nicoletti, L., Diaz, R., 2011. On

the short period production planning in industrial

plants: A real case study. Proceedings of the 23rd

European Modeling and Simulation Symposium

EMSS 2011, 782–791. September 12-14, Rome,

Italy.

Davis, L., 1985. Applying Adaptive Algorithms to

Epistatic Domains. Proceedings of the

International Joint Conference on Artificial

Intelligence, 162–164. August, Los Angeles, CA,

USA.

Karder, J., Scheibenpflug, A., Wagner, S., Affenzeller,

M., 2015. Optimizing Set-up Times using the

HeuristicLab Optimization Environment. Accepted

to be published in Proceedings of the Computer

Aided Systems Theory – Eurocast 2015, February

8-13, Las Palmas de Gran Canaria, Spain.

Matloff, N., 2008. Introduction to Discrete-Event

Simulation and the SimPy Language. Davis, CA.

Dept of Computer Science. University of California

at Davis. Available from:

http://heather.cs.ucdavis.edu/~matloff/156/PLN/D

ESimIntro.pdf [accessed 13 July 2015]

Wagner, S., Kronberger, G., Beham, A., Kommenda, M.,

Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler,

M., Winkler, S., Dorfer, V., Affenzeller, M., 2014.

Architecture and Design of the HeuristicLab

Optimization Environment. Advanced Methods and

Applications in Computational Intelligence, Topics

in Intelligent Engineering and Informatics Series,

197–261. Springer.

AUTHORS BIOGRAPHIES

JOHANNES KARDER received his Master in software

engineering in 2014 from the University of Applied Sci-

ences Upper Austria and is a research associate at the Re-

search Center Hagenberg. His research interests include

algorithm theory and development as well as production

planning and logistics optimization. He is a member of

the HeuristicLab development team.

ANDREAS SCHEIBENPFLUG received his Master in

software engineering in 2011 from the University of Ap-

plied Sciences Upper Austria and is a research associate

at the Research Center Hagenberg. His research interests

include parallel and distributed computing. He is a mem-

ber of the HeuristicLab architects team.

ANDREAS BEHAM received his Master in computer

science in 2007 from from the Johannes Kepler Univer-

sity Linz, Austria, and is a research associate at the Re-

search Center Hagenberg. His research interests include

metaheuristic methods applied to combinatorial and sim-

ulation-based problems. He is a member of the

HeuristicLab architects team.

STEFAN WAGNER received his PhD in technical sci-

ences in 2009 from the Johannes Kepler University Linz,

Austria. He is a professor at the University of Applied

Sciences Upper Austria, Campus Hagenberg. He is the

project manager and head developer of the HeuristicLab

optimization environment.

MICHAEL AFFENZELLER has published several pa-

pers, journal articles and books dealing with theoretical

and practical aspects of evolutionary computation, ge-

netic algorithms, and meta-heuristics in general. In 2001

he received his PhD in engineering sciences and in 2004

he received his habilitation in applied systems engineer-

ing, both from the Johannes Kepler University of Linz,

Austria. Michael Affenzeller is professor at University of

Applied Sciences Upper Austria, Campus Hagenberg.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

294

