
POSITIVE AND STABLE PERIODIC TIME-VARYING CONTINUOUS-TIME LINEAR 
SYSTEMS 

Tadeusz Kaczorek 

Bialystok University of Technology 

kaczorek@isep.pw.edu.pl 

ABSTRACT 
The positivity and stability of periodic  time-varying 
continuous-time linear systems are addressed. 
Necessary and sufficient conditions for the positivity 
and stability of the system are established. The proof of 
conditions is based on the Lyapunov transformation of 
time-varying systems to time-invariant linear systems. 
Examples of positive and stable linear periodic systems 
are presented. 

Keywords: positive, linear, periodic, continuous-time, 
time-varying, system, stability, test. 

1. INTRODUCTION
A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains 
forever in the positive orthant for all nonnegative 
inputs. An overview of state of the art in positive theory 
is given in the monographs Farina and Rinaldi 2000, 
Kaczorek 2002. Variety of models having positive 
behavior can be found in engineering, economics, social 
sciences, biology and medicine, etc..  
The Lyapunov, Bohl and Perron exponents and stability 
of time-varying discrete-time linear systems have been 
investigated in Czornik et. all 2012, 2013, 2014. The 
positivity and stability of  fractional  time varying 
discrete-time linear systems have been addressed in 
Kaczorek 2014, 2015b, 2015c, 2015d and  the stability 
of continuous-time linear systems with delays in 
Kaczorek 2009. The fractional positive linear systems 
have been analyzed in Kaczorek 2008, 2011, 2015a. 
The positive electrical circuits and their reachability 
have been considered in Kaczorek 2011d, 2011f and the 
controllability and observability in Kaczorek 2011a. 
The stability and stabilization of positive fractional 
linear systems by state-feedbacks have been analyzed in 
Kaczorek 2010. The normal positive electrical circuits 
has been introduced in Kaczorek 2014. The positivity 
and stability of time-varying continuous-time linear 
systems and electrical systems has been addressed in 
Kaczorek 2015f. 
In this paper the positivity and stability of periodic 
time-varying continuous-time linear systems will be 
addressed. 
The paper is organized as follows. In section 2 the 
Lyapunov reduction of the periodic time-varying 

continuous-time linear systems to time-invariant linear 
systems is recalled. The positivity of periodic time-
variant linear systems is considered in section 3. 
Necessary and sufficient conditions for the stability of 
positive periodic time-varying linear systems are 
established in section 4. Concluding remarks are given 
in section 5.  
The following notation will be used: ℜ  - the set of real 
numbers, mn×ℜ  - the set of mn×  real matrices, mn×

+ℜ  - 
the set of mn×  matrices with nonnegative entries and 

1×
++ ℜ=ℜ nn , nM - the set of nn×  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 
nn×  identity matrix. 

2. REDUCTION TO TIME-INVARIANT OF
TIME-VARYING LINEAR SYSTEMS BY
LYAPUNOV TRANSFORMATION

Consider the time-varying linear system 

xtAx )(=       (2.1) 

where nntxx ×ℜ∈= )(  and nntA ×ℜ∈)(  is a piecewise 
continuous-time time-varying and bounded matrix. 
Let nntXx ×ℜ∈= )(  be a matrix satisfying the equation 

XtAX )(=     (2.2) 

and the initial condition nIXtX == 00 )( . 

Definition 2.1. The matrix nntL ×ℜ∈)(  satisfying the 
conditions: 

1) there exists continuous-time
dt

tdLtL )()( =  in the

interval ),[ 0 +∞t , 

2) the norms of )(tL  and )(tL  are bounded in the
interval ),[ 0 +∞t ,

3) 0)(det >> ctL  for some constant c,
is called the Lyapunov transformation matrix. 
It is well-known Gantmacher 1959 that the inverse 
matrix )(1 tL−  exists and it is also the Lyapunov matrix. 
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Let 
ZtLX )(=    (2.3) 

where nntZZ ×ℜ∈= )( . 
Using (2.2) and (2.3) we obtain 

ZtLtAZtLZtLXtAX )()()()()( =+==      (2.4) 
and 

ZtBZ )(=   (2.5) 
where 

)]()()()[()( 1 tLtLtAtLtB −= − .            (2.6) 

The time-varying system (2.1) can be reduced to time-
invariant system 

BZZ =     (2.7) 

by the use of the Lyapunov transformation matrix if 
there exists matrix )(tL  satisfying the equality 

)]()()()[(1 tLtLtAtLB −= − .            (2.8) 

For given matrices )(tA  and B the matrix )(tL  can be 
found from the equation  

BtLtLtAtL )()()()( −=  (2.9) 

The equation (2.9) follows from (2.8). 
The solution of (2.7) has the form 

BtetZZ == )(  (2.10) 

for nItZ =)( 0 . 
Substituting (2.10) into (2.3) we obtain 

BtetLtXX )()( == .           (2.11) 

It is well-known (Gantmacher 1959,  Kaczorek 1998) 
that if the periodic matrix )(tA  satisfy the condition 

)()( tATtA =+            (2.12) 

where T is the period of the matrix, then the time-
varying system (2.2) can be reduced by the Lyapunov 
transformation to the time-invariant system (2.5). 
In this case from (2.2) and (2.11) we have 

)()()()()( TtXtATtXTtATtX +=++=+   (2.13) 

and the matrices )(Tx  and )( Ttx +  are related by 

VtXTtX )()( =+      (2.14) 

where nnV ×ℜ∈  is a time-invariant nonsingular 
(constant) matrix since from (2.14) we have 

.0])()()[()(

])()()()()[(

])()()[(

1

1

1

=−+=

−+=

−+=

−

−

−

VtXTtXtAtX

VtXtATtXtAtX

VtXTtXtXV 

       (2.15) 

From (2.11) we have 

BtetXtL −= )()( .             (2.16) 

The matrix )(tL  satisfies the condition 

)()( tLTtL =+  (2.17) 

since by (2.17) and (2.13) 

)()(

)()()( )(

tLetX

eVetXeTtXTtL
Bt

BtBTTtB

==

=+=+
−

−−+−

.    (2.18) 

From (2.14) and (2.11) it follows that 

BTeV =   (2.19) 
and 

V
T

B ln1
= .          (2.20) 

From (2.19) it follows that the eigenvalues nvv ,...,1  of 
the matrix V and eigenvalues nλλ ,...,1  of the matrix B 
are related by 

T
k

kev λ=  for nk ,...,2,1= .         (2.21) 

From (2.21) we have 1<kv  for nk ,...,2,1=  if and only 
if 0Re <kλ  for nk ,...,2,1= . 
Therefore, the following Lemma has been proved. 
Lemma 2.1. The time-variant system with the matrix 

)(TA  satisfying the condition (2.12) is asymptotically 
stable if and only if 

1<kv  for nk ,...,2,1= .        (2.22) 

3. POSITIVE TIME-VARYING LINEAR 
SYSTEMS

Consider the time-varying linear system 

)()()()()( tutBtxtAtx +=   (3.1a) 
)()()()()( tutDtxtCty +=            (3.1b) 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and ,)( nntA ×ℜ∈  
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mntB ×ℜ∈)( , ,)( nptC ×ℜ∈  mptD ×ℜ∈)(  are real 
matrices with entries depending continuously on time 
and 0)(det ≠tA  for ),0[ +∞∈t . 
Definition 3.1. The system (3.1) is called positive if 

ntx +ℜ∈)( , pty +ℜ∈)( , ),0[ +∞∈t  for any initial 

conditions nx +ℜ∈0  and all inputs ,)( mtu +ℜ∈  
),0[ +∞∈t .  

Theorem 3.1. Let nntA ×ℜ∈)( , ),0[ +∞∈t . Then 

nn
t

t t

t

t
n

t
t

ddAA

dAIA

×
+ℜ∈++

+=Ω

∫ ∫

∫

...)()()(

)()(

0 0

0

0

11 ttttt

tt

t
 for 0tt ≥ (3.2) 

if and only if nMtA ∈)( , ),0[ +∞∈t . 
Proof is given in Gantmacher 1959,  Kaczorek 1998. 
Corollary 3.1. If the matrix nntA ×ℜ∈)(  satisfies the 
condition 

)()()()( 1221 tAtAtAtA =  for ),0[],[, 021 +∞∈∈ tttt (3.3) 

then 
ττ dA

τ
τ

τ

τeA
∫

=Ω 0
0

)(
)( .           (3.4) 

Proof is given in Gantmacher 1959. 
Corollary 3.2. Let nnA ×ℜ∈  be a matrix with constant 
entries independent of time t. If AtA =)(  then 

)( 0
0

)( ttAt
t eA −=Ω .      (3.5) 

Proof is given in Gantmacher 1959. 
Lemma 3.2. The solution of the equation (3.1a) with 
given initial condition ntxx ℜ∈= )( 00  and input 

mtu ℜ∈)(  has the form 

ττττ duBτKτxAx
τ

τ

τ
τ ∫+Ω=

0

0
)()(),()()( 0       (3.6a) 

where 
1)]()[(),(

00

−ΩΩ= AAtK t
t
t

tt .           (3.6b) 

Proof is given in Gantmacher 1959. 
Theorem 3.3. The time-varying linear system (3.1) is 
positive if and only if 

nMtA ∈)( , mntB ×
+ℜ∈)( , 

nptC ×
+ℜ∈)( , mptD ×

+ℜ∈)( , ),0[ +∞∈t .      (3.7) 

Proof is given in Kaczorek 1998. 
Definition 3.2. The matrix nntL ×

+ℜ∈)(  is called 
monomial if only one entry in each row and in each 
column is positive for ),0[ +∞∈t  and the remaining 
entries are zero. 
Theorem 3.4. The time-varying linear system (2.1) 
with periodic matrix )(tA  satisfying the condition 

(2.12) is positive if and only if the matrix nntL ×
+ℜ∈)(

is monomial and nMB∈ . 

Proof. It is well-known that nnBteZ ×
+ℜ∈=  for 

),0[ +∞∈t  if and only if nMB∈ . From (2.3) it follows 

that nntX ×
+ℜ∈)(  for ),0[ +∞∈t  if and only if 

nntL ×
+ℜ∈)(  is monomial matrix. □ 

Theorem 3.5. The positive time-variant linear system 
(3.1) with matrices satisfying the condition 

)()( tATtA =+ , )()( tBTtB =+ , 
)()( tCTtC =+ , )()( tDTtD =+             (3.8) 

is positive if and only if: 
1) the matrix nntL ×

+ℜ∈)(  is monomial and 

nMB∈ ,

2) mntB ×
+ℜ∈)( , nptC ×

+ℜ∈)( , 
mptD ×

+ℜ∈)(  for ),0[ +∞∈t .      (3.9) 

Proof of the first condition follows immediately from 
Theorem 3.3. Proof of (3.5) is standard and similar to 
the one given in Gantmacher 2011f. □ 
Example 3.1. Consider the system (2.1) with the 
matrices 

,

cos2
cossin2

sin2
cos2

0
sin2

cossin24

)(



















−
++−

+
−
+

−+
−

=

t
tt

t
t
t

tt

tA   (3.10) 

It is easy to see that the matrix (3.10) is periodic and its 
period is .2π=T  
In this case the Lyapunov transformation matrix has the 
form 

,
0cos2
sin20

)( 







−

+
=

t
t

tL  (3.11) 

and its period is also .2π=T  
Using (2.5), (2.6) and (2.7) we obtain 
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,
20

11

0sin
cos0

0cos2
sin20

cos2
cossin2

sin2
cos2

0
sin2

cossin24

0
sin2
1

cos2
10

)]()()()[(1









−

−
=





































−








−

+
×

















−
++−

+
−
+

−+
−

×

















+

−=

−= −

t
t

t
t

t
tt

t
t
t

tt
t

t

tLtLtAtLB 

 (3.12) 

The equation (2.7) has the form 

ZZ 







−

−
=

20
11    (3.13) 

and its solution 

.
0

)( 2

2











 −
=== −

−−−

t

ttt
Bt

e
eeeetZZ            (3.14) 

The matrix of solution of (2.2) with (3.10) is given by 

.
))(cos2()cos2(

)sin2(0

00cos2
sin20

)()()(

2

2

2

2













−−−
+

=











 −








−

+
=

==

−−−

−

−

−−−

ttt

t

t

ttt

eette
te

e
eee

t
t

tZtLtXX

 (3.15) 

It is easy to check that every column of the matrix 
(3.15) is a solution of the equation (2.2) with (3.10). 
Example 3.2. Compute the solution of the equation 
(3.1a) with the matrix )(tA given by (3.10) and 









−
+

=
t
t

tB
cos2
sin2

)(    (3.16) 

for given initial condition 0)0( xx =  and an input ).(tu  
The matrices (3.10) and (3.16) are periodic with the 
same period .2π=T  
Using (3.6b), (3.11) and (3.14) we obtain 











 −








−

+
=

=

==

−

−−−

−−

−−

t

ttt

e
eee

t
t

LZtZtL

ZLtZtLXtXtK

2

2

11

11

00cos2
sin20

)]([)]()[()(

)]()()[()()]()[(),(

tt

tttt

 (3.17) 



















−
−

+
−−

+
+

=



















+

−+
−













−−−
+

=









−

+











 −
=

−−−

−

−−−

−

−−

−

−−−

2cos
)2(cos

sin2
)2)(cos(

0
sin2

)sin2(

0
sin2

cos2sin2
)cos2)(()cos2(

)sin2(0

0cos2
sin20

0

)(2

)(2

2

2

2

2

11

2

2

ττ

τ

τ

ττ

τ
τ

τττ

τ

τ

τττ

τ

τττ

τeτee

τe

e

eee

τeeτe
τe

e
eee

τττ

τ

τττ

τ

(3.17) 
Taking into account that in this case 













−−−
+

==Φ −−−

−

= ))(cos2()cos2(
)sin2(0)()( 2

2

00 ttt

t
t
t eette

tetXA

(3.18) 
and using (3.6a) and (3.17) we obtain the desired 
solution of the equation (3.1a) with (3.10) and (3.16) in 
the form 

.)(

sin2
)sin2)(2)(cos(

2cos
)2(cos

)sin2(2
92cossin8(

))(cos2()cos2(
)sin2(0

)()(),()0()()(

0
)(22

)(2

02

2
0

ττ

ττ

τ

ττττ

τττ

τ

du
ττeeτe

ττe

x
eeττe
τe

duBτKxτXτX

τ

τττ

τ

τττ

τ

τ

∫

∫



















+
+−−

−
−
−

+
+−

+













−−−
+

=

+=

−−−

−

−−−

−

(3.19) 

4. STABILITY OF POSITIVE PERIODIC
SYSTEMS

Consider the time-varying linear system (2.1) with 
periodic matrix )(tA  satisfying the condition (2.12). 
Definition 4.1. The positive periodic time-varying 
system (2.1) is called asymptotically stable if 

0)(lim =
∞→

tX
t

 for all nX +ℜ∈0 .          (4.1) 

It is assumed that there exists the Lyapunov 
transformation matrix )(tL  satisfying the conditions of 
Definition 2.1 that reduces the system (2.1) to (2.7). 
Theorem 4.1. The positive periodic time-varying 
system (2.1) is asymptotically stable if and only if the 
coefficients ka  of the characteristic polynomial of the 
matrix B of the reduced system (2.7) 

01
1

1 ...]det[ asasasBsI n
n

n
n ++++=− −

− ,    (4.2) 
are positive, i.e. 0>ka  for 1,,1,0 −= nk  . 
Proof. It is well-known Kaczorek 2014 that the positive 
linear time-invariant system is asymptotically stable if 
and only if the coefficients of the characteristic 
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polynomial of its Metzler matrix nMB∈  are positive.  
From (2.3) it follows that for Lyapunov transformation 
matrix )(tL  we have 

0)(lim =
∞→

tX
t

 if and only if 0)(lim =
∞→

tZ
t

.   (4.3) 

This competes the proof. □ 
Example 4.1. (Continuation of Example 3.1). From the 
matrix (3.10) it follows that the matrix B is given by 
(3.12) and its characteristic polynomial 

23
20

11
]det[ 3

2 ++=
+
−+

=− ss
s

s
BsI ,      (4.4) 

has positive coefficients: 3,2 10 == aa . 
Therefore, the positive system (2.7) with the matrix 
(3.12) is asymptotically stable. The Lyapunov 
transformation matrix is given by (3.11) and it is easy to 
verify that (4.3) holds. 
Remark 4.1. Note that for checking the asymptotic 
stability of the positive periodic time-varying linear 
systems all tests given in Kaczorek 2014 can be applied. 

5. CONCLUDING REMARKS
The positivity and stability of the periodic time-varying 
linear systems have been addressed. Necessary and 
sufficient conditions for the positivity and asymptotic 
stability of the system have been established. Using the 
Lyapunov transformation of the periodic time-varying 
linear systems to time-invariant linear systems. The 
considerations have been illustrated by examples of 
periodic time-varying linear systems. The consideration 
can be easily extended to discrete-time periodic linear 
systems.  
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